The invention relates to a wingtip extension for reducing wake vortices of an aircraft. The invention furthermore also relates to a wing of an aircraft, which wing is adapted to reduce wake vortices of the aircraft.
Every aircraft comprising lift-generating airfoils creates wake vortices due to physical laws. The physical mechanism for generating lift on the wing consists of the air flow, in flight, along the wing underside experiencing less acceleration than it does along the wing top. This results in greater pressure on the underside of the wing relative to the top of the wing. For this reason the air flowing around the wing tries to create pressure equalisation between the underside and the top of the wing. This results in a flow around the wingtip in which flow the airstream is deflected by the pressure gradient around the wingtip. Consequently, on the top of the wing a speed component away from the wingtip results, while on the underside of the wing a speed component in the wingspan direction towards the wingtip results. Such flow around the wingtip results in circular movement of the air, which as a result of the layered airflow creates a vortex that propagates in a wake-like manner behind the aircraft. In larger aircraft such vortices can be so pronounced that smaller aircraft flying into the vortices are exposed to a serious danger of crashing. As a rule the vortices display very high stability, and consequently can still be in existence minutes after they were generated. In this process the vortex intensity depends among other things on the size and the weight of the aircraft, and consequently a minimum distance (“separation”) is prescribed between aircraft that are taking off and aircraft that are landing. The lower the vortex intensity, the shorter the separation interval that is to be observed. The tendency towards increasing passenger numbers and thus also towards steadily increasing aircraft size, which aircraft in theory generate increasingly intense wake vortices, would result in an increase in the required separation interval. However, such an increased separation interval and the consequential reduction in takeoff and landing frequencies would counteract intended increased passenger numbers, so that options need to be created to reduce the intensity of wake vortices.
From the state of the art devices and systems are known that may reduce wake vortices. For example DE 10 2005 017825 A1 states that a component affixed to the outer end of a wing of an aircraft disturbs the swirling action of the air in the region of the outer wing by periodic swivel movements, thus reducing wingtip vortices and consequently also the arising wake vortices. Such a system is associated with a disadvantage in that it is an active system, which is relatively elaborate, cost-intensive and maintenance intensive and, furthermore, generates oscillating loads that may lead to fatigue fractures at the wingtip.
A further system is known from DE 199 09 190 C2, in which on each wing of the aircraft at least one vortex generator is arranged. The vortex generator generates an interference vortex, whose direction of rotation is the opposite of the direction of rotation of the wingtip vortex arising at the wing, which wingtip vortex is consequently destabilised and decays behind the aircraft. This system is associated with a disadvantage in that these additional interference vortices may reliably be generated to an adequate extent only in special configurations of the inner and outer landing flaps, and furthermore in that they generate increased drag. This is the case in particular when a fin arranged on the top of the wing, as presented in the above-mentioned printed publication, is used for permanently generating interference vortices.
Therefore, there may be a need for reducing or entirely eliminating the above-mentioned disadvantages. In particular, there may be a need to propose a simple system, which in an ideal case is a passive system, which supports accelerated vortex decay and thus significantly reduces the wake vortices that are present behind an aircraft during takeoff and landing.
The invention meets this need by a wingtip extension—as defined in claim 1—with a leading edge and a trailing edge, which wingtip extension may be affixed to an outer end of a wing, wherein the leading edge, at least in some sections, is essentially straight; the straight section of the leading edge comprises a leading-edge sweep angle that exceeds the leading-edge sweep angle of the wing, and the local depth of the wingtip extension gradually decreases between a connecting region for connection to the wing and the outer end of the wingtip extension. This wingtip extension takes advantage of the phenomenon of vortex burst, which phenomenon occurs with delta wings. In the context of delta wings it is known that, in particular at high angles of attack, the wingtip vortices generated by delta wings become increasingly unstable and “burst”. Depending on the design of the wing, the angle of attack and the velocity, the so-called “vortex burst region” moves from a position behind the wing as far as into to the wing region; it may, in particular, be influenced by the sweep of the leading edge of the wing. Delta wings with a low leading-edge sweep (for example 45°) shift commencement of vortex burst towards lower angles of attack when compared to a higher leading-edge sweep (for example 70°). If a wingtip is modified in such a manner that it comprises suitable leading-edge sweep, the wake vortex decay is positively influenced. In this arrangement the leading edge of the wingtip extension does not have to be strictly straight, it may also be straight only in some sections. This results in various alternative leading-edge shapes, which comprise a kink, as is the case, for example, in a double delta wing or in a wing with a strake, or which are curved, in a manner that is similar to the airfoils of Concorde. In this arrangement the geometry of the wingtip extension at the wingtip is to be set in such a manner that, at the angles of attack common during takeoff and landing, bursting of the vortices takes place in a region between the leading edge and the trailing edge or only insignificantly further downstream. Consequently an arising wingtip vortex is influenced by a bursting vortex core to such an extent that starting from it the entire wingtip vortex decays significantly more rapidly than is the case with a conventional wingtip.
Further advantageous embodiments are stated in the subordinate claims.
Furthermore, the need may also be met by a wing of an aircraft, which wing is designed to reduce wake vortices of the aircraft and comprises a wingtip extension, affixed to the outer end of the wing, according to the explanations stated above.
Finally, the need may also be met by an aircraft comprising wings according to the above-mentioned criteria, as well as by the use of a wingtip extension according to the first main claim and the related subordinate claims.
Below, the invention is explained in more detail with reference to the figures. In the figures, identical components have the same reference characters. The following are shown:
The wingtip extension 10 according to the invention also comprises a leading edge 14 and a trailing edge 16. The leading edge 14 is clearly more swept when compared to the leading edge 4 of the wing, and consequently a clear kink results at the leading edges 4 and 14 at the point of connection between the wingtip extension 10 and the wing 2. The angle designated φs in
As a result of the strong sweep of the wingtip extension 10, a vortex burst region that is immanent to delta wings during the takeoff and landing phases is placed in such a manner that the cores of wingtip vortices burst behind the wingtips and consequently become unstable to such an extent that they decay comparatively quickly and cause a correspondingly significantly less pronounced wake vortex.
Depending on the size, on the specific aerodynamics and on further boundary conditions, the leading-edge sweep angle φs may be selected so as to be smaller or larger than the one shown in
In the exemplary embodiment of
In contrast to this,
In order to increase the delta wing effect it may furthermore be provided for all the shown wingtip extensions 10 to be positively warped. This means that the respective angle of attack of a local profile 22 of the wingtip extension 10—as diagrammatically shown in
The exemplary embodiments of the wingtip extension 10 according to the invention are not to be interpreted as limitations of the invention. The invention is defined by the subject of the claims. In particular, the invention is not limited to particular sweep angles of the wing or the wingtip extension; instead, any sweep angles between approximately 40° and 75° are imaginable, which sweep angles an average person skilled in the art may select, taking into account the aerodynamic context, the size of the aircraft, and the aircraft speeds.
In addition, it should be pointed out that “comprising” does not exclude other elements or steps, and “a” or “one” does not exclude a plural number. Furthermore, it should be pointed out that characteristics or steps which have been described with reference to one of the above exemplary embodiments may also be used in combination with other characteristics or steps of other exemplary embodiments described above. Reference characters in the claims are not to be interpreted as limitations.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 059 455 | Dec 2007 | DE | national |
This application is a national phase entry under 35 U.S.C. §371 of International Application No. PCT/EP2008/066997, filed Dec. 8, 2008, published in German, which claims the benefit of the filing date of U.S. provisional patent application No. 61/007,015, filed Dec. 10, 2007, and German patent application No. 10 2007 059 455.2, filed Dec. 10, 2007, the disclosures of which applications are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/066997 | 12/8/2008 | WO | 00 | 8/3/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/074528 | 6/18/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1112126 | Emmons | Sep 1914 | A |
3369775 | Rethorst | Feb 1968 | A |
4108403 | Finch | Aug 1978 | A |
4700911 | Zimmer | Oct 1987 | A |
4776542 | Van Dam | Oct 1988 | A |
5039032 | Rudolph | Aug 1991 | A |
5348253 | Gratzer | Sep 1994 | A |
6089502 | Herrick et al. | Jul 2000 | A |
6142738 | Toulmay | Nov 2000 | A |
8083185 | Konings et al. | Dec 2011 | B2 |
20040000619 | Barriety | Jan 2004 | A1 |
20050281676 | Egolf et al. | Dec 2005 | A1 |
20070018049 | Stuhr | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
101228067 | Jul 2008 | CN |
19909190 | Sep 2000 | DE |
102005017825 | Oct 2006 | DE |
1375342 | Jan 2004 | EP |
2772715 | Jun 1999 | FR |
04176795 | Jun 1992 | JP |
2006030213 | Mar 2006 | WO |
Entry |
---|
National Aeronautics and Space Administration, Dryden Flight Research Center / Fact Sheets, www.nasa.gov/centers/dryden/about/organizations/technology/facts/TF-2004-15-DFRC.html, Jan. 24, 2005. |
Number | Date | Country | |
---|---|---|---|
20100294891 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61007015 | Dec 2007 | US |