Images are processed for use with computing machines, such as a print apparatus. A print apparatus, for example, may use control data based on processed image data to reproduce a physical representation of an image by operating a print fluid ejection system according to the control data. Components of a print apparatus, such as a fluid ejection device, may be serviced to improve print quality and/or the life of the component, for example. Some print apparatus include a mechanism, such as a service station, to perform various service routines.
In the following description and figures, some example implementations of print apparatus, service station systems, and/or methods of operating blades of a wiper system. In examples described herein, a “print apparatus” may be a device to print content on a physical medium (e.g., paper, textile, a layer of powder-based build material, etc.) with a print material (e.g., ink or toner). For example, the print apparatus may be a wide-format print apparatus that prints latex-based print fluid on a print medium, such as a print medium that is size A2 or larger. The physical medium may printed on from sheets or a web roll. In the case of printing on a layer of powder-based build material, the print apparatus may utilize the deposition of print materials in a layer-wise additive manufacturing process. A print apparatus may utilize suitable print consumables, such as ink, toner, fluids or powders, or other raw materials for printing. In some examples, a print apparatus may be a three-dimensional (3D) print apparatus. An example of fluid print material is a water-based latex ink ejectable from a print head, such as a piezoelectric print head or a thermal inkjet print head. Other examples of print fluid may include dye-based color inks, pigment-based inks, solvents, gloss enhancers, fixer agents, and the like.
A print apparatus may include a service station to perform service routines on a component of the print apparatus. For example, a service station may include a wiping system and/or scraping system to remove excess print fluid from the fluid ejection device of the print apparatus. A service station may include a web material to use for wiping the fluid ejection device. The web material may be a consumable that moves used web material out of the way and moves unused web material to use for the subsequent service routine. The web material may be a textile, such as cloth, or made of other material appropriate for wiping a component of the print apparatus. Example textile web material of the service station may be woven fabric, non-woven fabric, fabric with synthetic layers, and the like. The cloth may be impregnated with a cleaning liquid or substantially dry (e.g., without liquid impregnated into the cloth).
The surface of a print head may have different types of serviceable issues. For example, excess print fluid may be wiped from the nozzle plate easier than solidified print substance (e.g., crusting). Various examples described below relate to providing different wiping operations that focus on performing characteristically different issues. A plurality of wipers are implemented on the service station to provide different amounts of force and/or other wiping characteristics. In this manner, the amount of force on the cloth may be adjusted to take care of different types of vice issues using a wiper system, for example.
The terms “include,” “have,” and variations thereof, as used herein, mean the same as the term “comprise” or appropriate variation thereof. Furthermore, the term “based on,” as used herein, means “based at least in part on.” Thus, a feature that is described as based on some stimulus may be based only on the stimulus or a combination of stimuli including the stimulus.
The first wiper blade and the second wiper blade may be made of different materials with different compression attributes. For example, the first wiper blade 2 may be made of a silicone rubber composite and the second wiper blade 4 may be made of a plastic. The first wiper blade and the second wiper blade may a combination of shape, thickness, and material that produces linear deformation. For example, the blade may have a diamond shape with walls of a certain thickness of flexible material to allow for distributed compression along the length of the blade. Example compression amounts may be 2.5 mm when applying 12 newtons or 4 mm when applying 20 newtons, for example. The blade may be extruded with reference to the length of the blade to assist in substantial linear deformation upon receiving a compression force on the blade. The length of the blade may span substantially across the width of the cloth and may be substantially the same length of the cloth width.
Another controller 80 may operate movement of a print head 30 used to eject print fluid on media passing along a platen 40. The print head scans or is otherwise moveable between a print zone 50 of the print apparatus and a service zone 60. The print zone 50 includes the area where media is printed on between the platen and lateral scanning positions of the print head 30 over the platen 30. The service zone 60 includes the area between the service station 20 and the lateral scanning positions of the print head 30 over the service station 20. As discussed further herein, in particular with reference to
In the example of
The cams 106 and 116 are shaped to generate movement of the blades 102 and 104 via the plates 122, 124, 126, and 128. In the example of
As the cams 106 and 116 rotate (as shown by directional arrow 107), plates 122, 124, 126, and 128 may shift the positions of the wiper blades 102 and 104. For example, a first set of plates coupled to the first wiper blade move the first wiper blade to the first wiper position when the cam is rotated to an angle corresponding to the first cam position and a second set of plates move the second wiper blade to the second wiper position when the cam is rotated to an angle corresponding to the second cam position. The amount of lift of a blade may have a linear relationship with an angle of the cam 106. Examples of cam positions are shown in
Referring to
Referring to
Referring to
Referring to
The positions of the blades in example states 8-11 and example service operations discussed herein may be operated by a controller. Referring to
A processor resource is any appropriate circuitry capable of processing (e.g., computing) instructions, such as one or multiple processing elements capable of retrieving instructions from a memory resource and executing those instructions. For example, the processor resource 222 may be a central processing unit (CPU) that enables positioning of blades of a wiper system by fetching, decoding, and executing the blade module 202. Example processor resources include at least one CPU, a semiconductor-based microprocessor, a programmable logic device (PLD), and the like. Example PLDs include an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a programmable array logic (PAL), a complex programmable logic device (CPLD), and an erasable programmable logic device (EPLD). A processor resource may include multiple processing elements that are integrated in a single device or distributed across devices. A processor resource may process the instructions serially, concurrently, or in partial concurrence.
A memory resource represents a medium to store data utilized and/or produced by the system 200. The medium is any non-transitory medium or combination of non-transitory media able to electronically store data, such as modules of the system and/or data used by the system. For example, the medium may be a storage medium, which is distinct from a transitory transmission medium, such as a signal. The medium may be machine-readable, such as computer-readable. The medium may be an electronic, magnetic, optical, or other physical storage device that is capable of containing (i.e., storing) executable instructions. A memory resource may be said to store program instructions that when executed by a processor resource cause the processor resource to implement functionality of the wiper systems described herein. A memory resource may be integrated in the same device as a processor resource or it may be separate but accessible to that device and the processor resource. A memory resource may be distributed across devices.
The controller 200 may be circuitry or a combination of circuitry and executable instructions. Such components may be implemented in a number of fashions. Looking at
In some examples, the controller 200 may include the executable instructions that may be part of an installation package that when installed may be executed by a processor resource to perform operations of the controller 200, such as methods described with regards to
At block 1302 of
At block 1304, the first wiper blade is moved to a rest position when the print head carriage is moving towards the print zone. For example, after the print head carriage passes the first wiper blade (e.g., the first wiper blade performs a service operation on the print head), the print head carriage may pause and then reciprocate back over the service zone at block 1306 and the first wiper blade may drop down to a rest position after the service is performed by the first wiper blade and before the print head carriage is wiped by the second wiper blade in the service position (e.g., at block 1306).
At block 1306, a second wiper blade is moved to a service position when the print head carriage is moving towards the print zone. The second wiper blade may be caused to move into the service position before the print head carriage begins moving toward the print zone.
At block 1402, blade pressures are selected for the first wiper blade and the second wiper blade. For example, a controller may determine an amount of pressure a blade should place on an area of wiping cloth based on the type of service operation to be performed by the particular wiper blade. The blade pressure may be represented as a height of the blade with respect to the print head surface to be cleaned. The blade pressures among the plurality of blades may be different and independent of each other and/or independent of the pass of the print head carriage. For example, the blade pressure placed on the cloth when the print head carriage moves to the right may be different than the blade pressure place on the cloth when the print head carriage moves to the left. For another example, a controller may cause a blade to service with additional or less force than average force of the blade on the cloth based on a pattern (or randomly). In that example, the change in force may enhance the servicing performed on the print head, such as adding additional 0.5 mm height every fifth pass to service crusted nozzles that may have been stuck on after an average wiper height of 2 mm.
In another example, the blade pressures may be identified and selected based on a diagnostics operations. For example, a controller may calibrate force applied by the first wiper blade and the second wiper blade via a diagnostics operation executed by the controller to compare a realized force to a threshold force for each wiper blade. In this manner, the blade pressure may be adjusted to maintain servicing even when the servicing environment changes such as by wear on a wiper blade or changes in the print head to platen spacing when replacing a part.
At block 1404, the wiping cloth is advanced. The wiping cloth may be advanced to move an area of used cloth out of the servicing area and an area of clean, unused cloth into the servicing area. The wiping cloth may be advanced before the first wiper blade moves into the service position (e.g., at the beginning of a set of service operations).
The first wiper blade is caused to move to a service position at block 1406 and an amount of force is applied on the wiping cloth using the blade pressure selected for the first wiper blade at block 1408. With the first force applied on the cloth perpendicular to the print head scanning direction, a print head may make contact with the cloth to perform a first service operation. Once the service operation using the first wiper blade is performed, the first wiper blade is moved to a rest position at block 1410.
The second wiper blade is caused to move to a service position at block 1412 and an amount of force is applied on the wiping cloth using the blade pressure selected for the second wiper blade. With the second force applied on the cloth perpendicular to the print head scanning direction, a print head, may make contact with the cloth to perform a second service operation. Once the second service operation using the second wiper blade is performed, the second wiper blade may be moved to a rest position and both blades may stay in the rest position until another set of service operations are to be performed.
As mentioned with respect to block 1402, the selected blade pressures may be different. For example, an amount of force applied to the wiping cloth using the second wiper blade may be greater than an amount of force applied to the wiping cloth using the first wiper blade. Such amount of pressure may be based on the service operation designated for each wiper blade. In this manner, a print head may be serviced by a wiping system of a service station with various forces on the cloth and/or position of the cloth, which may be focused on removing different types of print fluid from the print head nozzle plate, for example.
Although the flow diagrams of
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the elements of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or elements are mutually exclusive.
The present description has been shown and described with reference to the foregoing examples. It is understood, however, that other forms, details, and examples may be made without departing from the spirit and scope of the following claims. The use of the words “first,” “second,” or related terms in the claims are not used to limit the claim elements to an order or location, but are merely used to distinguish separate claim elements.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/037217 | 6/13/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/231205 | 12/20/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5115250 | Harmon et al. | May 1992 | A |
5806994 | Coffy et al. | Sep 1998 | A |
5907335 | Johnson et al. | May 1999 | A |
6530642 | Uchitata et al. | Mar 2003 | B1 |
6601943 | Barinaga | Aug 2003 | B2 |
6655781 | Nakagawa et al. | Dec 2003 | B2 |
6679579 | Tee et al. | Jan 2004 | B1 |
6764161 | Nakagawa et al. | Jul 2004 | B1 |
6913338 | Rhoads | Jul 2005 | B2 |
7159962 | Wouters | Jan 2007 | B2 |
7993466 | Aude | Aug 2011 | B2 |
8733889 | Uemura | May 2014 | B2 |
9469112 | Berrios | Oct 2016 | B2 |
20070188545 | Miyamoto | Aug 2007 | A1 |
20080024550 | Miyazawa | Jan 2008 | A1 |
20080266342 | Steinfield et al. | Oct 2008 | A1 |
20100315463 | Escude et al. | Dec 2010 | A1 |
20110292126 | Nystrom et al. | Dec 2011 | A1 |
20110310171 | Supron et al. | Dec 2011 | A1 |
20130002756 | Kriz | Jan 2013 | A1 |
20130016158 | Ikeda | Jan 2013 | A1 |
20160101626 | Kobayashi | Apr 2016 | A1 |
20170015101 | Coma Vives et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2820541 | Sep 2006 | CN |
102259494 | Nov 2011 | CN |
102407670 | Apr 2012 | CN |
104908430 | Sep 2015 | CN |
0913262 | May 1999 | EP |
1310367 | May 2003 | EP |
10138502 | May 1998 | JP |
2000190512 | Jul 2000 | JP |
2005118672 | May 2005 | JP |
2010012739 | Jan 2010 | JP |
2011067985 | Apr 2011 | JP |
2012051132 | Mar 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20200055316 A1 | Feb 2020 | US |