The present invention relates to a wiper system using two wipers.
Different types of wipe areas and driving devices are known for cleaning windshields of motor vehicles. With respect to wipe areas, distinctions are mainly made between single-arm wipe areas and dual-arm wipe areas. In dual-arm wipe areas, the wiper arms of the wipers may be operated in tandem or in opposition.
Even in the case of two wipers, the drive device generally uses only one wiper motor whose rotary drive movement of its driven shaft is translated into an oscillating swivel motion of the drive shafts of the wipers via a spatial crank drive. Newer wiper motors are provided with electronics which regulate a reversing drive movement of the driven shaft. The electronics also allow a control of the wipe angle including a dynamic, load-dependent wipe-angle correction and wiping-speed regulation, thereby producing a larger nominal wiped area on the windshield. Furthermore, the electronic system allows different wipe functions and positions, such as an extended parking position, a service position for changing a wiper blade, an interval parking position and an alternating parking position for relieving the load on the wiper blades.
The wiper motors having an electronic system are provided with a control device including sensors for regulating the position and speed of the driven shaft and a micro-controller for detecting the position of the driven shaft. This leads to higher expenditures for the control device and requires additional space in the hood.
Wiper systems using opposed wipers are often used for wiping larger windshields. If these systems are driven by a wiper motor, a large size in accordance with the vehicle width results and a large space in the center of the vehicle. Also, the kinematic design with or without intermediate bearing is complicated and necessitates a large, high-capacity wiper motor. The many individual mechanical components produce large static wipe-angle tolerances in addition to dynamic wipe-angle tolerances which are caused by elasticities of the mechanical components and of the components of the support and fastening elements.
In order to obtain a less complex kinematic design and, thus, smaller wiping-angle tolerances, wiper systems using two wiper motors are utilized, which are located in the area of the wiper bearings and, therefore, do not require space in the center region of the windshield. Two synchronously running wiper motors having electronic communication are used for the driving. To satisfy the high demands placed on the wiper system in connection with synchronous running, safety and reliability, collision freedom, and also the security concept and emergency function, each wiper motor is provided with a full electronic system. Wiper motors are preferably regulated in reversing operating so as to obtain the advantages associated therewith.
According to an example embodiment of the present invention, the second wiper motor is designed as a rotary motor and has only one sensory system for detecting the absolute and relative rotational position of its driven shaft. The sensory system generates corresponding signals for the control unit of the first wiper motor to which it is connected via a communication interface. From these signals, the control unit advantageously forms a setpoint value for regulating the rotational position and rotational speed of the first wiper motor, so that it is regulated as a function of the rotational position and the rotational speed of the driven shaft of the second wiper motor. The first wiper motor, which works as a so-called “master”, is expediently, but not necessarily, positioned on the driver side of the vehicle and is preferably operated in reversible operation. Accordingly, the second wiper motor, also known as a “slave”, is mounted on the passenger side.
These measures according to the present invention keep the cost and complexity associated with the entire wiper system having two wiper motors very low. Moreover, the second wiper motor requires less space since it has no separate electronic control unit, especially no micro-controller. Nevertheless, the complete function of the reversing motor is available on the driver side, such as a wipe-angle correction, extended parking position etc. Lastly, a security concept is possible by which the collision of the wipers is avoided, among others. To communicate and control the output of the second wiper motor, the first wiper motor has an interface, or direct wiring, via which the signals of the sensory system of the second wiper motor may be transmitted as well.
A power switch, which is controlled by the control unit of the first wiper motor, may be advantageously provided for the wiping speeds of the second wiper motor. The second wiper motor advantageously may be a permanently energized three-brush direct-current motor having one gear step, the wiping speeds of the second wiper motor being switched via the power supply to the brush. The sensory system for detecting the position of the rotational speed of the driven shaft of the second wiper motor has segmented permanent magnets with associated Hall sensors which generate digitally encoded signals. In this case, the parking position of the wiper, which is characterized by the position of a segment of a permanent magnet, is detected by a Hall sensor, whereas the instantaneous angle position of the wiper results from the addition of incremental values, which are derived from counting pulses of an additional Hall sensor in connection with permanent magnets located on a periphery of a rotating component.
Alternatively to the signal transmitter for the parking-position signal, the sensory system may have an absolute transmitter, preferably an AMR sensor (anisotropic magneto-resistive).
In a further advantageous variant, to detect the position and the rotational speed of the driven shaft, the sensory system includes a segmented, three-track contact disk having sliding contacts, which is positioned at a component rotating together with the driven shaft, for instance, a worm gear. The middle contact track is used to supply the voltage via a slider, whereas an adjacent track has a contact surface which is sampled by an additional slider and generates a parking-position signal in that the electric circuit to the center slider is closed. The other adjacent track has contact surfaces evenly distributed over the circumference, which, in connection with an additional slider, similarly have counting pulses for an incremental position detection.
Further advantages result from the following description of the drawings which show exemplary embodiments of the present invention. The drawings, the specification and the claims contain numerous features in combination. One skilled in the art will examine the features not only individually, but also combine them to meaningful combinations.
Wiper system 10 includes two wipers 12, 14, which sweep over wipe areas 18, 20 on a windshield 16 of a vehicle (not shown further) in the course of a swiveling motion about their drive shafts 22, 24.
A first wiper motor 26, via its driven shaft 30, drives drive shaft 22 of wiper 12 on the driver side of the vehicle, while a second wiper motor 28, by its driven shaft 32, drives drive shaft 24 of wiper 14 on the passenger side. First wiper motor 26, which is designed as reversing motor, has an electronic control unit 34 with control elements 50 to regulate the reversing operation and rotational speed as well as the rotational position of driven shaft 30 and, thereby, of wiper 12. Control elements 50 include means for analyzing the input signals and stored characteristics maps, and a sensory system 36 for detecting the rotational position and rotational speed of driven shaft 30, such as a micro-controller, an AMR sensor etc.
Second wiper motor 28, which is designed as a conventional, permanently energized three-brush direct-current motor having one gear step and a rotary motor design, has only one sensory system 36 to detect the absolute and relative rotational position of its driven shaft 32. Wiper motors 26, 28 are connected to the vehicle electrical system via supply lines 48. Wiper system 10 is activated by an operating lever 38, sending a signal to control unit 34 via a central electronic system 40. In accordance with the signal, control unit 34 switches a first power stage 44 or a second power stage 46 of second wiper motor 28, via a power switch 42, the rotational speed expediently being implemented via the current supply to the brushes.
Sensory system 36 detects the rotational position of driven shaft 32 of second wiper motor 28, especially the rotational position corresponding to the parking position of wiper 14. It also generates counting pulses which may be used to determine an incremental position and the rotational speed. Second wiper motor 28 transmits the generated signals via signal lines 52 to control unit 34 of first wiper motor 26, which determines from these signals a setpoint value for the rotational position and rotational speed of driven shaft 30 of first wiper motor 26.
The design of sensory system 36 according to
Number | Date | Country | Kind |
---|---|---|---|
101 13 678 | Mar 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE01/04764 | 12/14/2001 | WO | 00 | 6/23/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/076796 | 10/3/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4585980 | Gille et al. | Apr 1986 | A |
4723101 | Bauer et al. | Feb 1988 | A |
4900996 | Wainwright | Feb 1990 | A |
5023467 | Uhl | Jun 1991 | A |
5256950 | Matsumoto et al. | Oct 1993 | A |
5331257 | Materne et al. | Jul 1994 | A |
5561882 | Eustache et al. | Oct 1996 | A |
5568026 | Welch | Oct 1996 | A |
6107766 | Amagasa | Aug 2000 | A |
6147466 | Stronczek | Nov 2000 | A |
6281649 | Ouellette et al. | Aug 2001 | B1 |
6288509 | Amagasa | Sep 2001 | B1 |
6400110 | Yabe et al. | Jun 2002 | B1 |
6425160 | Saito | Jul 2002 | B1 |
6867559 | Bolz et al. | Mar 2005 | B2 |
Number | Date | Country |
---|---|---|
32 08 121 | Sep 1983 | DE |
32 48 118 | Jun 1984 | DE |
41 25 268 | Jun 1992 | DE |
44 28 543 | Feb 1996 | DE |
196 34 559 | Mar 1998 | DE |
0 952 054 | Oct 1999 | EP |
2 785 246 | May 2000 | FR |
Number | Date | Country | |
---|---|---|---|
20040008000 A1 | Jan 2004 | US |