Information
-
Patent Grant
-
6598955
-
Patent Number
6,598,955
-
Date Filed
Thursday, April 25, 200222 years ago
-
Date Issued
Tuesday, July 29, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 347 33
- 347 32
- 347 29
- 347 30
- 347 35
- 015 250361
- 015 2565
-
International Classifications
-
Abstract
A method for wiping a printhead of an inkjet printing mechanism is provided. The printhead surface defines a printhead plane. In the method, firstly a wiper is moved substantially parallel to the printhead plane for wiping a first portion of the printhead surface. After the first portion of printhead surface is wiped, the wiper is moved away from the printhead plane for wiping a second portion of the printhead surface.
Description
BACKGROUND
This invention relates generally to inkjet printing mechanisms, and in particular to techniques for maintaining inkjet printhead at its optimal conditions.
Inkjet printing mechanisms use pens which shoot drops of liquid colorant, referred to generally herein as “ink,” onto a media sheet. Each pen has a printhead formed with very small nozzles through which the ink drops are fired. To print an image, the printhead is propelled back and forth across the media sheet, shooting drops of ink in a desired pattern as it moves. The particular ink ejection mechanism within the printhead may take on a variety of different forms known to those skilled in the art, such as those using piezoelectric or thermal printhead technology.
To clean and protect the printhead, typically a “wiper assembly” mechanism is mounted within the housing of the printing mechanism so the printhead can be moved over the assembly for maintenance, specifically for wiping off ink residue as well as any paper dust or other debris that has collected on the printhead.
During the wiping process, there are risks that due to the wiping force, inks removed from the printhead may splash onto a pen-interconnect area where the printhead is electrically connected to the electrical components of the printing mechanism through conventional interconnects. The splash of ink onto the pen-interconnect area may cause an electrical short between the printhead and the interconnects and consequently a failure of the printhead.
Therefore, there is a need for an improved printhead wiping mechanism which reduces the risk of splashing ink onto undesired areas during a wiping process.
SUMMARY
According to an aspect of the present invention, a method for wiping a printhead of an inkjet printing mechanism is provided. The printhead surface defines a printhead plane. In the method, firstly a wiper is moved substantially parallel to the printhead plane for wiping a first portion of the printhead surface. After the first portion of printhead surface is wiped, the wiper is moved away from the printhead plane for wiping a second portion of the printhead surface.
According to a second aspect of the invention, a wiper assembly is provided for wiping a printhead of an inkjet printing mechanism having a chassis, with the printhead on a carriage supported by the chassis for moving to a wiping position, and with the printhead surface defining a printhead plane. The wiper assembly has a frame which defines a first and second guide tracks connected thereto. The first track extends substantially parallel to the printhead plane, while the second track extends away from the printhead plane. The wiper assembly also has a platform movable along the tracks and a wiper mounted on the platform for wiping the printhead when the printhead is in the wiping position.
According to a further aspect of the invention, an inkjet printing mechanism includes a chassis and a printhead on a carriage supported by the chassis for moving to a wiping position. The printhead surface defines a printhead plane. The inkjet printing mechanism further includes a wiper assembly that has a frame which defines a first and second guide tracks connected thereto. The first track extends substantially parallel to the printhead plane, while the second track extends away from the printhead plane. The wiper assembly also has a platform movable along the tracks and a wiper mounted on the platform for wiping the printhead when it is in the wiping position.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which description illustrates by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a fragmented, partially schematic, perspective view of one form of an inkjet printing mechanism in the prior art;
FIG. 2
is a perspective view illustrating an exemplary embodiment of the present invention of a wiper assembly that can be used in the printing mechanism of
FIG. 1
; and
FIG. 3
is a perspective view illustrating in detail a portion of the wiper assembly of FIG.
2
.
DETAILED DESCRIPTION
For convenience, the concepts of the present invention are illustrated in the environment of an inkjet printer
20
, while it is understood that the present invention as illustrated by the exemplary embodiment can also be used in other inkjet printing mechanisms such as facsimile machines and copiers.
While it is apparent that the printer components may vary from model to model, the typical inkjet printer
20
includes a chassis
22
surrounded by a housing or casing enclosure
24
. Sheets of print media for example paper are fed through a print zone
25
by an adaptive print media handling system
26
. The print media handling system
26
has a feed tray
28
for storing sheets of paper before printing. After printing, the sheet then lands on a pair of retractable output drying wing members
30
, shown extended to receive a printed sheet. The wings
30
momentarily hold the newly printed sheet above any previously printed sheets still drying in an output tray portion
32
before pivotally retracting to the sides, as shown by curved arrows
33
, to drop the newly printed sheet into the output tray
32
.
The printer
20
also has a printer controller, illustrated schematically as a microprocessor
36
, that receives instructions from a host device, typically a computer, such as a personal computer (not shown).
A carriage guide rod
38
is supported by the chassis
22
to slidably support an inkjet carriage
40
for travel back and forth across the print zone
25
along a scanning axis
42
defined by the guide rod
38
. To provide carriage positional feedback information to printer controller
36
, an optical encoder reader may be mounted to carriage
40
to read an encoder strip extending along the path of carriage travel.
The carriage
40
is also propelled along guide rod
38
into a servicing region, as indicated generally by arrow
44
, located within the interior of the casing
24
. The servicing region
44
houses a service station
45
, which may provide various conventional printhead servicing functions as generally understood in the art.
In the print zone
25
, the media sheet receives ink from an inkjet cartridge
50
on the carriage. The cartridge
50
is also often called a “pen” by those in the art. The illustrated pen
50
includes a reservoir for storing a supply of ink. The pen
50
also has a printhead
54
, which has an orifice plate with a plurality of nozzles formed therethrough in a manner well known to those skilled in the art. The illustrated printhead
54
is a thermal inkjet printhead, although other types of printheads may be used, such as piezoelectric printheads. The printhead
54
typically includes a substrate layer having a plurality of resistors which are associated with the nozzles. Upon energizing a selected resistor, a bubble of gas is formed to eject a droplet of ink from the nozzle and onto media in the print zone
25
. The printhead resistors are selectively energized in response to enabling or firing command control signals. The control signals may be delivered by a conventional multi-conductor strip (not shown) from the controller
36
to the printhead carriage
40
, and through conventional interconnects (partially shown as
58
in
FIG. 2
) between the carriage and the pen
50
to the printhead
54
. In particular, the area where the interconnects between the carriage
40
and the pen
50
exist is defined as a pen-interconnect area
59
(see
FIG. 2
) for the purpose of this application.
Preferably, the outer surface of the orifice plate of the printhead
54
lies in a common printhead plane. This printhead plane may be used as a reference plane for establishing a desired media-to-printhead spacing, which is one important component of print quality. Furthermore, this printhead plane may also serve as a servicing reference plane, to which the various appliances of the service station
45
may be adjusted for optimum pen servicing. Proper pen servicing not only enhances print quality, but also prolongs pen life by maintaining the health of the printhead
54
.
In the present application, only part of the pen servicing functions is discussed, namely, wiping of the printhead
54
. It is understood that a wiping mechanism can be incorporated in the service station
45
as illustrated in U.S. Pat. No. 6,132,026, assigned to the present assignee, Hewlett-Packard Company. Alternatively, as shown in the exemplary embodiment of the present invention illustrated by
FIGS. 2 and 3
, the wiping mechanism can be separated from the service station
45
and mounted on the chassis
22
alone.
In
FIG. 2
, a wiper assembly
60
is mounted on the chassis
22
and beneath the pen
50
when the pen
50
is in a wiping region, as indicated generally by arrow
46
, located within the interior of the casing
24
. The wiper assembly
60
has a pair of flexible wiper blades
74
mounted on a platform
76
for wiping the printhead
54
. The wiping occurs when a rack
72
connected to the platform
76
slides along a slot
63
defined within a base frame
62
of the wiper assembly. The rack is driven back and forth along the slot
63
by a rotatable wiper gear
90
, which engages a plurality of engaging teeth on the rack
72
. Further, the wiper gear
90
is rotated by a motor (not shown) in the printer through a gear train (not shown) therebetween as generally understood in the art. In addition, the slot
63
as well as the rack
72
extends in a direction substantially parallel to the direction in which the nozzles (not shown) of the printhead
54
are aligned as shown by arrow A in FIG.
2
. Such a direction is substantially perpendicular to the scanning axis
42
.
A pair of frame walls
64
respectively located at two sides of the base
62
project upward in the exemplary embodiment of the present invention and extend horizontally in a direction substantially parallel to the slot
63
as well as the printhead plane. Each wall
64
has an opening or a guide track
66
formed therein, and the platform
76
has two projections (see
FIG. 3
) at two respective sides for fitting into the guide tracks
66
. In this way, the platform
76
is restricted to slide along the guide tracks
66
during the wiping process.
As shown in
FIG. 2
, the guide tracks
66
can be divided into two parts, a horizontal part
68
extending substantially parallel to the printhead plane and an incline part
70
extending away from the printhead plane. In the exemplary embodiment, the wiper assembly is located under the printhead
54
, the horizontal part extends horizontally, and the incline part extends downward at a predetermined degree to the horizontal part
68
. Such a degree is mainly determined by the requirements of the wiping force as well as by the availability of space in the casing
24
.
In the exemplary embodiment, the two parts
68
,
70
of the guide tracks are connected at a point
78
within a horizontal coverage of the printhead
54
and close to an end of the printhead adjacent to the pen-interconnect area
59
. Furthermore, a forward stroke of a wiping process in the exemplary embodiment is generated as the wiper assembly moves from a position located at an end of the printhead away from the pen-interconnect area toward the end of the printhead adjacent to the pen-interconnect area, and vice versa.
Therefore, in the exemplary embodiment, the platform
76
firstly moves substantially parallel to the printhead plane and then moves downward along the incline part
70
in the forward stroke. In the backward stroke of the wiping process, the platform
76
firstly moves upward along the incline part
70
and then moves substantially parallel to the printhead plane along the horizontal part.
It is understood that the flexible wiper blades are bent over by the printhead during the wiping processes, and the interference between the wiper blades
74
and the printhead affects the wiping force exerted on the printhead
54
. In the exemplary embodiment, when the wiper assembly moves along the horizontal part of the guide track, the wiper blades are bent to a certain extent and exert a desired wiping force on the printhead. When the platform travels along the incline part in the forward stroke, the wiper blades remain contact with the printhead for a short period for wiping the remaining part of the printhead surface. However, since the wiper blades
74
move away from the printhead plane when the platform
76
moves along the incline part
70
in the forward stroke, the interference between the wiper blades
74
and the printhead
54
is gradually reduced accordingly. As a result, the wiper blades
74
exert a reduced amount of wiping force on the remaining part of the printhead
54
as compared to when the platform moves along the horizontal part
68
. Since the incline part
70
originates from the connection point
78
within the horizontal coverage of the printhead and is distanced from the pen-interconnect area
59
, such a reduced wiping force consequently reduces the risk of splashing ink into the pen-interconnect area
59
. In addition, the wiper blades
76
moving away from the printhead plane in the forward stroke would cause the ink removed to move in a direction away from the printhead. Such a direction of the ink movements would also help to reduce the risk discussed above.
The connection point
78
is designed such that in the forward stroke, the wiper blades
74
wipe a large portion of the nozzles in the printhead
54
when the platform
76
moves along the horizontal part. When the platform moves along the incline part
70
in the forward stroke, the wiper blades
74
wipe only the last few nozzles close to the pen-interconnect area
59
. Therefore, the reduced amount of wiping force is only exerted on the last few nozzles in the forward stroke, and the diminished effect on the whole wiping is relatively negligible. Furthermore, in the backward stroke, the platform
76
climbs up the incline part of the guide track, and the wiper blades
74
wipe the orifice plate of the printhead from the beginning of its edge adjacent to the pen-interconnect area. In this way, the backward stroke of the wiping process compensates the reduced wiping force on the last few nozzles in the forward stroke as described above.
FIG. 3
illustrates in detail part of the wiper mechanism, with the wiper gear
90
removed. As shown, the rack
72
has a support
73
, which extends upward and is mounted on the rack
72
at an end away from the wiper gear
90
. A pivot arm
84
at an end of the platform
76
fits into a pivot slot
86
at an end of the support such that the platform
76
is rotatably mounted to the support
73
. Furthermore, a pair of projections
80
at the two sides of the platform
76
fit into the guide track
66
such that the movements of the projections
80
as well as the platform
76
are restricted by the guide track
66
.
When the rack
72
slides back and forth along the slot
63
, the platform
76
moves accordingly as driven by the support
73
. It is noted that the platform is rotatable in an upward or a downward direction about an axis
82
passing through the center of the pivot arm. Such a rotation of the platform about the axis
82
allows the projections
80
to move downward in the forward stroke and to move upward in the backward stroke when the projections
80
are on the incline part
70
. As a result, the platform
76
, as well as the wiper blades
74
thereon, moves away from the printhead plane when the projections
86
move along the incline part
70
of the guide track
66
in the forward stroke.
Alternatives can be made to the exemplary embodiment. For example, the incline part
70
can be in an arc shape instead of being straight as shown in
FIGS. 2 and 3
.
Claims
- 1. A method for wiping a printhead having a surface of an inkjet printing mechanism, wherein the printhead surface defines a printhead plane, the method comprising:moving a wiper substantially parallel to the printhead plane for wiping a first portion of the printhead surface; and after wiping the first portion of the printhead surface, moving the wiper at a degree to the printhead plane for wiping a second portion of the printhead surface.
- 2. A method for wiping a printhead having a surface of an inkjet printing mechanism, wherein the printhead surface defines a printhead plane, the method comprising:moving a wiper substantially parallel to the printhead plane for exerting a first amount of wiping force on the printhead to wipe a first portion of the printhead surface; and after wiping the first portion of the printhead surface, moving the wiper away from the printhead plane for exerting a reduced amount of wiping force on the printhead to wipe a second portion of the printhead surface.
- 3. The method of claim 1, further comprising:driving inks removed from the printhead in a direction away from the printhead plane.
- 4. The method of claim 1, wherein the step of moving the wiper at a degree to the printhead plane includes varying said degree during wiping of the second portion of the printhead surface.
- 5. A wiper assembly for wiping a printhead having a surface in an inkjet printing mechanism having a chassis, with the printhead on a carriage supported by the chassis for moving to a wiping position, and with the printhead surface defining a printhead plane, the assembly comprising:a frame which defines a first and second guide tracks connected thereto, wherein the first track extends substantially parallel to the printhead plane, and wherein the second track extends away from the printhead plane; a platform movable along the tracks; and a wiper mounted on the platform for wiping the printhead when the printhead is in the wiping position.
- 6. The assembly of claim 5, wherein the first and second tracks are configured such that the wiper wipes a first portion of the printhead surface as the platform moves along the first track, and wipes a second portion of the printhead surface as the platform moves along the second track.
- 7. The assembly of claim 6, wherein the first and second tracks are configured such that the wiper exerts a first wiping force on the first portion of the printhead surface and a reduced wiping force on the second portion of the printhead surface.
- 8. The assembly of claim 5, further comprising a support slidable within the printing mechanism in a direction parallel to the printhead plane, wherein the platform is rotatably mounted to the support.
- 9. An inkjet printing mechanism, comprising:a chassis; a printhead having a surface on a carriage supported by the chassis for moving to a wiping position, the printhead surface defining a printhead plane; and a wiper assembly including a frame which defines a first and a second guide tracks connected thereto, wherein the first track extends substantially parallel to the printhead plane, and wherein the second track extends away from the printhead plane; a platform movable along the tracks; and a wiper mounted on the platform for wiping the printhead when the printhead is in the wiping position.
- 10. A method for wiping a printhead having a surface of an inkjet printing mechanism, wherein the printhead surface defines a printhead plane, the method comprising:moving a wiper in a first direction substantially parallel to the printhead plane for wiping a first portion of the printhead surface; and after wiping the first portion of the printhead surface, moving the wiper in the first direction while simultaneously rotating the wiper in a second direction about an axis for wiping a second portion of the printhead surface.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
5997128 |
Lou et al. |
Dec 1999 |
A |
6132026 |
Taylor |
Oct 2000 |
A |