The invention relates to a connector for contacting an electrical conductor and a circuit board.
Connectors are used to separate and connect lines, which in particular are designed to convey electrical current. Connectors of this type usually have an insulating body with contact elements received therein. Here, the insulating bodies are designed in such a way that they have a connection side for the connection of electrical lines and an insertion side for coupling to an electrical component or a further connector.
The present invention relates to connectors which are provided in order to connect an electrical line to a PC board or what is known as a PCB (printed circuit board). These special connectors are required in order to electrically conductively contact a line and a PC board. Here, the contact elements received in the connector ensure the electrical connection of in each case a core of the electrical line and at least one, preferably two contact tracks provided n the PC board.
Connectors of this type previously had some disadvantages that were not insignificant. Connectors of the described type are primarily very laborious in terms of their assembly. The line to be connected must be prepared for contact with the connector. For this purpose, the insulated line cores usually have to be exposed. These are then to be connected individually to the contact elements of the connector in order to ensure an electrically conductive connection thereto. Once the line cores have been connected to the contact elements, these must be introduced into the insulating body and locked in place therein. The components of the connector which enable contact between electrical line and the connector are generally very complex.
A further disadvantage of the solution previously known from the prior art is constituted by the fact that connectors of this type usually require a mating connector in order to be connected to a circuit board. The mating connector must be soldered on or pressed onto the PC board at the appropriate point. The connector can be connected to the mating connector following prior assembly as described above. This is an additional component which has to be produced and assembled and additionally increases the cost of a plug-in connection accordingly.
In addition, the plug-in connection is made very large by the use of a further connector. The additional mating connector requires additional space. Particularly in very small assemblies, this may lead to problems in terms of the space for example for the cable guide.
The object of the invention is therefore to overcome or to mitigate at least one of the above-mentioned problems, and in particular a connector is to be provided which has very small dimensions and can be contacted with a PC board without a mating connector.
The invention relates to an electrical connector for electrically contacting an electrical conductor and an electrical PC board, or what is known as a PCB (printed circuit board). Connectors of this type are required in order to contact the electrical cores of the electrical conductor guiding signals and/or current with contact points on the PCB.
For this purpose, the connector consists substantially of an insulating housing which is formed by an insulating body. The insulating body has a number of cavities, which are provided in order to receive electrical contact elements. The contact elements are provided here in order to directly contact the individual cores of the conductor with the contact points of the PCB.
The insulating body consisting of a T-shaped component extruded into the space forms an insertion side, which is provided for insertion onto the board edge of a PCB, and a contact side, which is suitable for contacting the electrical conductor. The insertion side has a slot, into which the PCB can be inserted.
In a preferred embodiment detent shapings are formed on the inner side of the slot and enable the insulating body to be latched to the PCB. For this purpose, the detent shapings are wedge-shaped or dome-like. These detent shapings can engage with bores or similar recesses in the PCB and can thus position the connector on the PCB and prevent said connector from shifting.
The PCB is for this purpose expediently provided with continuous bores, blind bores, or also rectangular or triangular recesses or recesses of a different shape. The detent shapings of the connector can engage with these recesses.
The contact side of the insulating body in a preferred embodiment has at least one cable-receiving channel. The cable-receiving channel formed as a bore is provided in order to receive an insulated stranded wire or core of the electrical conductor. A cable-receiving channel is preferably provided for each core of the electrical conductor.
In a particularly preferred embodiment the electrical conductor is formed as what is known as a flat ribbon cable. This is characterized in that all cores of the conductor are arranged side by side. A flat cable or what is known as a flat ribbon cable is produced as a result of a common insulation of the cores.
Due to the special arrangement of the cable-receiving channels side by side, such that these overlap one another in regions, the flat ribbon cable can be introduced into the cable-receiving channels such that precisely one core of the flat ribbon cable is received in each channel.
The cavities provided in the insulating body expediently extend both into the insertion side and into the contact side of the insulating body. In the insertion side the cavities each form an insertion region, and in the contact side they each form a contact region.
The insertion regions of the cavities are arranged such that they intersect the slot for receiving the PCB, preferably at right angles. A PCB inserted into the slot thus penetrates all insertion regions uniformly.
The contact regions of the cavities are arranged irregularly, in contrast to the insertion regions. The contact regions of the various cavities are provided here such that in each case a contact region intersects a cable-receiving channel for the line cores.
In a preferred embodiment the cavities are designed such that two cavities are always identical, but mirror-inverted relative to one another. For example, in the case of four cavities, the two outer cavities would thus be mirror-inverted relative to one another and would intersect the uppermost and lowermost cable-receiving channel respectively, and the two inner cavities would intersect the two middle cable-receiving channels.
The embodiment of in each case two identical cavities arranged in a mirrored manner serves to reduce the contact elements which must be held available in order to be received in the cavities.
The contact elements provided to be received in the cavities are preferably contacts stamped from sheet metal. These have two contact sides: a first contact side, which is arranged in the insertion region of the cavity, and a second contact side, which is arranged in the contact region of the cavity.
The first contact side of the contact element is substantially fork-shaped by two contact arms. The contact arms each form a contact point. The contact arms are also arranged in the contact region of the cavity such that the slot is guided through between the contact arms and only the contact points of the contact arms protrude into the slot.
The second contact side of the contact element is provided for insulation-penetrating contact. This can be provided either by what is known as piercing contact, or in a preferred embodiment by an insulation-displacement connector. The second contact side is arranged in the contact region of the cavity such that the second contact side protrudes into the cable-receiving channel, which intersects the contact region. Insulation-penetrating contact of a conductor disposed in the cable-receiving channel is thus possible.
The contact elements are advantageously provided in various embodiments. These differ from one another in terms of where the second contact side is provided on the first contact side. This is dependent for each contact element individually on the cavity in which the contact element is received. As already presented above, the contact region is provided in each cavity in a different position in order to intersect a different core of the electrical conductor. The contact elements are adapted accordingly.
The contact elements expediently have at least one, advantageously two detent means. These are provided on the contact elements such that they engage with an undercut, which is expediently provided, in the cavity in the insulating body. The contact element is thus prevented from falling out of the cavity of the insulating body.
The cavity in the insulating body is advantageously open in the region of the insertion side so as to be able to insert the contact element into the cavity. By inserting the contact element into the cavity, a core arranged in the cable-receiving channel is contacted in an insulation-penetrating manner by the second contact side of the contact element.
In a progressive embodiment the insulating body of the connector is formed in two parts. Here, the insulating body consists of a main body and a cable manager. The main body here comprises substantially the insertion side of the insulating body. The cable manager serves to receive the electrical conductor and forms the contact side of the insulating body.
The insertion region of the cavity is provided in the main body of the two-part insulating body. In addition, the slot intersecting the insertion region acts for receiving and being inserted onto a PCB. In contrast to a one-part insulating body, the cavity here does not have an opening in the insertion region for the insertion of the contact element into the insulating body. Due to the two parts of the insulating body, the contact element is introduced via the cutting plane of the two parts into the insulating body, preferably into the main body.
The contact region of the cavities provided in the cable manager, which forms the second part of the insulating body. In addition, the cable-receiving channels for the line to be connected are arranged in the cable manager.
Due to detent arms and detent indentations correlating to one another provided on the main body and/or cable manager, a connection of the two parts to form an insulating body is possible. Contact elements received in the main body are introduced into the contact region in the cable manager by joining together the main body and cable manager. Due to the insertion into the contact region, cores introduced into the cable-receiving channels are contacted with the second contact side of the contact element in an insulation-penetrating manner.
In a preferred embodiment the latching of main body and cable manager is performed in two stages. As the two parts of the insulating body are brought together, these latch firstly in a first latching stage. In this latching stage the main body and insulating body are not fully latched to one another. The contact elements received in the main body do not protrude fully via their second contact side into the contact region of the cavity in the cable manager.
The cores of an electrical conductor to be contacted can be introduced in this first latching position into the cable-receiving channels in the cable manager. By pressing together the main body and cable manager further from the first latching position into a second latching position, these are ultimately fully latched to one another. The second contact sides of the contact elements penetrate further into the contact regions of the cavities in the cable manager. The cores located in the cable-receiving channels are contacted with the second contact sides of the contact elements. An electrical connection is established between the cores of the electrical conductor and the contact elements.
Exemplary embodiments of the invention are illustrated in the drawings and will be explained in greater detail hereinafter. In the drawings:
The figures contain partially simplified, schematic illustrations. Identical reference signs are used in part for like elements, which however might not be identical. Different views of the same elements could be scaled differently.
An electrical conductor 5 is illustrated on the contact side 12 of the connector 1 and is introduced into the insulating body 2 and guided therethrough. Detent means 35, 35′, 35″ of three contact elements 3, 3′, 3″ received in the insulating body 2 can be seen centrally between the insertion side 11 and contact side 12 of the connector 1. The detent means 35, 35′, 35″ engage with recesses in the insulating body 2 and thus ensure a secure fit of the contact elements 3, 3′, 3″ in the insulating body.
The connector 1 from
Three cable-receiving channels 25, 25′, 25″ are provided on the contact side 12 of the connector 1. The partially overlapping cable-receiving channels 25, 25′, 25″ fully penetrate the insulating body 2. An electrical conductor 5 is illustrated here, inserted into the cable-receiving channels 25, 25′, 25″. The shown electrical conductor 5 is formed as a flat ribbon cable, wherein the three cores 5′, 5″, 5″′ are arranged one in each of the cable-receiving channels 25, 25′, 25″.
The connector 1 from
In order to illustrate the mounting of the contact elements 3, 3′, 3″ in the cavities 20, 20′, 20″ in the insulating body 2, a three-dimensional sectional illustration A-A of the connector 1 from
The cavity 20 is formed from an insertion region 21 and a contact region 22. The insertion region 21 is located in the insertion-side region of the insulating body, illustrated here to the left. The contact region 22 of the cavity 20 is arranged in the contact side 12 (illustrated to the right) of the connector 1. The contact region 22 of the cavity 20 is arranged in the lower region in order to contact the lowermost core 5′ of the electrical cable 5. The further contact regions 22′, 22″ of the two further cavities 20′, 20″ are arranged accordingly in another plane in order to contact the other cores 5″, 5′″.
The contact element 3 consists of a left, first contact side 31 and a right, second contact side 32. The first contact side 31, consisting of two contact arms 33, is formed as a fork-shaped contact means. The first contact side 31 is arranged in the insertion region 21. The two contact arms 33 are received in the insulating body 2 above and below the slot 24. Merely one contact point 34 per contact arm 33 protrudes into the slot 24 such that it contacts an inserted PC board 4.
Two detent means 35 are provided in the middle region of the contact element 3. These engage with an undercut in the cavity 20 of the insulating body, such that the contact element 3 cannot fall out of the insulating body 2.
The second contact side 32 of the contact element 3 is formed as what is known as an insulation-displacement connector. Insulation-displacement contacts penetrate the insulating layer in order to be able to contact electrical cores around the core. This second contact side 32 is received in the contact region 22 of the cavity 20. Here, the insulation-displacement connector contacts the cores 5′ of the electrical conductor 5.
The further contact elements 3′, 3″ (not visible) have a second contact side 32, which contact sides are located in different planes, corresponding to the cable-receiving channels 25′, 25″. The contact regions 22 and 22″, and also the cable-receiving channels 25 and 25″, may expediently be arranged such that they can be used with the same contact element 3. This contact element must be rotated merely through 180° along the cavity 20 so that the second contact side 32 is provided once in the upper region and once in the lower region.
The main body 2a includes the insertion region 21 of the cavity 20. As in the one-part version, a slot 24 is provided from the insertion side 11, in which a PC board 4 is inserted as shown. The cavity 20 extends via its contact region 22 into the cable manager 2b. The contact element 20 can be introduced into the main body 2a via the separation plane though the two components (2a, 2b) of the insulating body 2. There is no need for any assembly of the contact element 20 via the insertion side 11 of the insulating body 2.
In order to lock the main body 2a to the cable manager 2b, detent arms 27 are provided. The detent arms 27 illustrated here and formed integrally on the cable manager 2b engage with corresponding detent means on the main body 2a. Detent arms 27 on the main body 2a that engage with detent means on the cable manager 2b would also be conceivable.
A third embodiment of the connector 1 is illustrated in
These are not formed flat in order to contact a line 5 extending parallel to the slot 24. In this embodiment the second contact sides 32, 32′ are rotated or angled through 90° to the first contact side 31. The contact regions 22 and the cable-receiving channels 25 are also adapted to the orientation rotated through 90°. As a result of this orientation, an electrical conductor 5 can be introduced into the connector 1 perpendicularly from above or below.
The connector 1 from
The particular feature of the embodiment shown here is the fact that all contact elements 3, 3′, 3″, 3′″, 3″″ are identical. As a result of the arrangement side by side and the alternating orientation of the contact elements 3, 3′, 3″, 3′″, 3″″, only one type has to be produced, which can be used in order to contact all cores 5′, 5″, 5′″, 5″″, 5′″″.
A contact element 3 of the connector 1 from
The illustrated detent means 35 on the contact element 3 are provided in order to latch in a two-part insulating body 2a, 2b. Alternatively, the shown contact element 3 can also be inserted into a one-part insulating body 2. Merely the beveled sides of the detent means 35 must be directed for this purpose in the direction of the second contact side 32 so as to enable an insertion into the insulating body 2. The illustrated orientation of the beveled sides of the detent means 35 is provided from the sectional face between main body 2a and cable manager 2b for simplified insertion of the contact element 3.
An exemplary application of the connector 1 from
With an illustrated PC board thickness of 1 mm and a height of the connectors 1, 1′, 1″ of approximately 3.75 mm, an overall height of the three PC boards 4, 4′, 4″ inclusive of connectors 1, 1′, 1″ of just 12.25 mm is possible. Here, even a distance between the connectors 1, 1′, 1″ of in each case 0.5 mm is also taken into consideration.
In
In order to assemble the connector 1, the line 5 must firstly be slid into the cable-receiving channels 25 of the insulating body 2. This is illustrated in
In
The assembly of a connector 1 having a two-part insulating body 2a, 2b from
In
The cable manager 2b is then inserted onto the main body 2a, as illustrated in
In a third step the cores 5′, 5″, 5″ of the electrical conductor 5 are introduced into the cable-receiving channels 25, 25′, 25″. In
Lastly, as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2013 110 082 | Sep 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2014/100317 | 9/3/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/035979 | 3/19/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4449767 | Weidler | May 1984 | A |
4975077 | Kato | Dec 1990 | A |
5980337 | Little | Nov 1999 | A |
6135804 | Lux | Oct 2000 | A |
6280230 | Takase | Aug 2001 | B1 |
8277262 | Busse | Oct 2012 | B2 |
20050130509 | Yang | Jun 2005 | A1 |
20080305651 | Mostoller et al. | Dec 2008 | A1 |
20100197163 | Ofenloch | Aug 2010 | A1 |
20100227489 | Yu | Sep 2010 | A1 |
20120072047 | Forwerck et al. | Mar 2012 | A1 |
20130017712 | Liu | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
202011101050 | Jun 2011 | DE |
WO 2007102983 | Sep 2007 | WO |
WO 2009052965 | Apr 2009 | WO |
Entry |
---|
DE202011101050—translation. |
English translation of International Preliminary Report on Patentability issued in corresponding PCT Patent Appln. Serial No. PCT/DE2014/100317 dated Mar. 15, 2016 (10 pages). |
International Search Report and Written Opinion issued in application No. PCT/DE2014/100317, dated Dec. 17, 2014 (13 pgs). |
Number | Date | Country | |
---|---|---|---|
20160190720 A1 | Jun 2016 | US |