This invention generally relates to thermal spraying and, more particularly, to an improved wire for and method of wire-arc spraying of zinc-nickel protective coatings on surfaces subject to corrosion and erosion.
Currently various components of aircraft and wind and water power generating units, as well as components of other devices used in corrosive environments are coated with a protective coating by electroplating. For example, aircraft surfaces may be electroplated with cadmium or cadmium-titanium coatings. However, increased restrictions on processes that utilize hazardous materials, such as cyanide solutions, has led to increased prices for producing components employing such hazardous materials and a constantly reduced number of parties who wish to and/or have the capabilities to properly handle and dispose of such hazardous materials. Furthermore, when producing known components having a zinc-nickel coating thereon by electroplating, a post plate processing such as a hydrogen embrittlement bake must be performed, adding to the time to produce and cost thereof.
It has recently been found that wire-arc spraying of zinc-nickel protective coatings on aircraft components may be satisfactorily performed, without producing or using hazardous materials, if the correct mixture of zinc-nickel is use in the arc wires.
In known two wire electric arc spray systems (also known as twin-wire, arc spray or wire-arc spray), a direct-current (d.c.) electric arc is struck between two consumable electrodes (wires) resulting in the direct melting of the electrodes. Since the wires become molten due to the electric arc, the efficiencies of the process are considerably greater than those of other thermal spray processes. Atomizing gas, such as air or nitrogen, located behind the point where the two wires meet, is used to strip the continuously formed molten material from the melting wires that are fed at a fixed rate into the arc and melted. The velocity of the atomizing gas typically ranges from 30 to 90 SCFM. The physical effects associated with the atomizing gas are twofold; namely, 1) the production of finer molten particles and 2) the acceleration of the produced particles toward a substrate being coated.
As with any thermal process, heat is generated during a thermal spray process. In a two wire electric arc spray system the wire itself results in the least transfer of heat due to the fact that the only heat generated comes from the melting of the two wires in the electric arc. Whereas, the majority of other thermal spray processes utilize one or more fuel gases, such as hydrogen or propylene, as a part of the process to create similar molten materials. creating more heat. And, since the transfer of heat into the substrate being coated is a critical factor that affects the structural integrity of the component being coated, the heat transfer must be properly controlled. Therefore, with the two wire electric arc system, compressed air is blown on the component to maintain an acceptable temperature; while with other thermal spray processes carbon dioxide and compressed air cooling is required to maintain the temperature of the substrate within acceptable levels. This requirement to use additional cooling affects both flow time and the cost to coat components.
Additionally, material feed rates and deposit efficiencies of electric arc wire systems are typically higher than those of other thermal spray processes. In terms of the types of materials that can be sprayed through electric arc wire systems, the wires must be conductive materials that can be formed into wires; however, in some circumstances, cored wires having cermet materials as a filler core may also be used.
Since electric arc wire systems produce improved results with more controlled heating and without producing or using hazardous materials, there exists a need in the art for an improved wire for use with and an improved method for wire-arc spraying of zinc-nickel protective coatings on surfaces subject to corrosion and erosion.
It is, therefore, a general object of the present invention to provide an improved wire for use in a wire arc spray system. It is a particular object of the present invention to provide an improved method of electric arc spraying zinc-nickel wire on a substrate. It is a further particular object of the present invention to provide an improved zinc-nickel wire for use in a two wire electric arc spray system. It is yet another particular object of the present invention to provide an improved zinc-nickel wire for use in a two wire electric arc spray system having a composition of from about 8 to 20 percent nickel and about 80 to 92 percent zinc. It is a still further particular object of the present invention to provide an improved zinc-nickel wire for use in a two wire electric arc spray system utilizing between about 24 to 36 volts, about 80 to 200 amperes and an atomizing pressure of from about 80 to 120 psig. It is yet another particular object of the present invention to provide an improved method of electric arc spraying a zinc-nickel wire having from about 8 to 20 percent nickel and about 80 to 92 percent zinc onto a substrate. And, it is yet another particular object of the present invention to provide an improved method of electric arc spraying a zinc-nickel wire in a system utilizing between about 24 to 36 volts, about 80 to 200 amperes and an atomizing pressure of from about 80 to 120 psig.
These and other objects and advantages of the present invention are achieved by forming a zinc-nickel wire from between about 8 to 20 percent nickel and about 80 to 92 percent zinc. This formed wire is used in an improved method of spraying a zinc-nickel substrate on a component by means of a two wire electric arc spray system within a given range of machine parameters.
The objects and features of the present invention, which are believed to be novel, are set forth with particularity in the appended claims. The present invention, both as to its organization and manner of operation, together with further objects and advantages, may best be understood by reference to the following description, taken in connection with the accompanying drawings, in which:
a -2c are schematic cross-sectional views of various zinc-nickel wires of the present invention.
The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventors of carrying out their invention. Various modifications, however, will remain readily apparent to those skilled in the art, since the generic principles of the present invention have been defined herein specifically to describe an improved zinc-nickel wire and a method of spraying a zinc-nickel coating onto a component, such as an aircraft part, by use of an electrical twin wire arc system operated at predetermined parameters, with the improved zinc-nickel wire.
Turning now to the drawings,
In one aspect of the present invention, the zinc-nickel wire used in the two wire electric arc spray system is fabricated as shown in
In accordance with another aspect of the present invention, the zinc-nickel wire used in the two wire electric arc spray system is fabricated as shown in
In accordance with still another aspect of the present invention, the zinc-nickel wire used in the two wire electric arc spray system is fabricated as shown in
The preferred composition of the zinc-nickel wire for use as consumable electrodes in the two wire electric arc spray system or gun was arrived at by utilizing the following parameters: corrosion resistance, plating adhesion. paint adhesion, condensing humidity, torque tension test, filiform corrosion, microstructure analysis, coating compositions and residual stress.
Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiments may be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
This application is a continuation of application Ser. No. 11/006,415, filed on Dec. 7, 2004, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11006415 | Dec 2004 | US |
Child | 12493968 | US |