1. Field of the Invention
The present invention relates to spring making machine technology and more particularly, to a wire-forming mechanism for spring making machine, which uses two reversely arranged wire-forming assemblies for carrying two tools in L-shaped tool mounts at tool panels thereof selectively at different locations and angles, so that when one tool is moved back, the other tool is fed into the workpiece, accelerating the tool feeding and retracting speed.
2. Description of the Related Art
Many advanced spring making machines are known. For example, U.S. Pat. No. 8,166,786 B2 discloses a wire-forming machine, which comprises a machine frame, a wire feeder and a wire guide for transporting wire to a working area of the machine where the wire is processed by one or more tools. The tools are affixed on a tool plate on the machine frame and around a recess formed in the plate. A wire is fed through the recess to the working area of the machine. The tool plate is fitted on a second plate and is displaceable along a first direction (x) relative to the second plate, while the second plate is displaceable along a second direction (y) relative to the machine plate. Both directions (x, y) have an inclination of 45° each to the vertical normal axis of the wire-forming machine and are perpendicular to each other. According to this prior art design, all tools are affixed on the tool plate. When changing the operating tool, the originally used tool must be retracted prior to feeding of another tool, preventing the originally used tool from impacting the wire guide. Thus, the tool moving stroke is prolonged. Further, the space for tool replacement is limited, complicating the tool replacement operation.
The present invention has been accomplished under the circumstances in view. It is therefore the main object of the present invention to provide a wire-forming mechanism for spring making machine, which uses two reversely arranged wire-forming assemblies for carrying two tools in tool panels thereof, so that when one tool is moved back, the other tool is fed into the workpiece, accelerating the tool feeding and retracting speed.
It is another object of the present invention to provide a wire-forming mechanism for spring making machine, which has the two L-shaped tool mounts at the two tool panels of the two wire-forming assemblies arranged reversed to each other so that one L-shaped tool mount exhibits an L shape and the other L-shaped tool mount exhibits an inverted L shape, and the tools can be selectively mounted in the L-shaped tool mounts at different locations and angles.
It is still another object of the present invention to provide a wire-forming mechanism for spring making machine, which has the two L-shaped tool mounts of the two wire-forming assemblies thereof so arranged with the respective L-shaped interior angles of the two L-shaped tool mounts facing toward each other in an oblique manner so that a large accommodation space is defined between the tool mounts for the mounting of tools in a conveniently replaceable manner.
To achieve these and other objects of the present invention, a wire-forming mechanism for spring making machine comprises a base frame and two independently operable wire-forming assemblies. Each wire-forming assembly comprises a movable base panel, a tool panel, at least one tool and two driving mechanisms. The movable base panel is slidably mounted on one respective first sliding rail set of the base frame, comprising a second sliding rail set located at an outer side thereof. The second sliding rail set extends in a perpendicular relationship with the first sliding rail sets of the base frame. The movable base panel is connected to one driving mechanism and controlled by the respective driving mechanism to move along the respective first sliding rail set. The tool panel is slidably mounted on the second sliding rail set, comprising an L-shaped tool mount for holding the at least one tool. The tool panel is connected to the other driving mechanism and controlled by the respective driving mechanism to move along the second sliding rail set of the movable base panel.
Further, the L-shaped tool mounts of the tool panels of the two wire-forming assemblies are arranged reversed to each other, respectively exhibiting an L shape and an inverted L shape. The two L-shaped tool mounts are so arranged with respective L-shaped interior angles thereof facing toward each other in an oblique manner.
Referring to
Referring to
The base frame 1 comprises two first sliding rail sets 11,11′ located at an outer side thereof. The two opposing wire-forming assemblies 2,2′ are respectively mounted on the first sliding rail sets 11,11′ of the base frame 1. Each wire-forming assembly 2,2′ comprises a movable base panel 21,21′, a tool panel 22,22′, at least one tool 23,23′ and two driving mechanisms 24,25,24′,25′. The two movable base panels 21,21′ are respectively slidably mounted on the first sliding rail sets 11,11′ of the base frame 1. Each movable base panel 21,21′ comprises a second sliding rail set 211,211′ located at an outer side thereof. The second sliding rail sets 211,211′ extend in a perpendicular relationship with the first sliding rail sets 11,11′ Further, the movable base panels 21,21′ are respectively coupled to the driving mechanisms 24,24′, and controlled by the respective driving mechanisms 24,24′ to move along the respective first sliding rail sets 11,11′ of the base frame 1. As illustrated in
As illustrated in
Referring to
Further, as illustrated, the tool panel 22,22′ furthert comprises a plurality of screw holes located in the tool mount 221,221′ and the oblique side block 2211,2211′ for the fastening of screws to affix different tools 23,23′. In the application examples shown in
Referring to
Referring to