Wire grid polarizer with side region

Information

  • Patent Grant
  • 9632223
  • Patent Number
    9,632,223
  • Date Filed
    Wednesday, August 27, 2014
    10 years ago
  • Date Issued
    Tuesday, April 25, 2017
    7 years ago
Abstract
Structures and methods of making wire grid polarizers having multiple regions, including side bars, strips, and/or side ribs along sides of a central region. The central region can include a single region or multiple regions. Each region can have a different function for improving polarizer performance. The various regions can support each other for improved wire grid polarizer durability.
Description
FIELD OF THE INVENTION

The present application is related generally to wire grid polarizers.


BACKGROUND

Wire grid polarizers may be used for polarizing light, by allowing one polarization of light to pass through the polarizer, and reflecting or absorbing an opposite polarization of light. For simplicity, the polarization that primarily passes through the polarizer will be referred to as p-polarized light and the polarization that primarily is reflected or absorbed will be referred to as s-polarized light. Goals of wire grid polarizer design include increasing transmission of p-polarized light, decreasing transmission of s-polarized light, and increasing reflection or absorption of s-polarized light. Different applications have different requirements.


The goals of increasing transmission of p-polarized light and decreasing transmission of s-polarized light are common to most or all applications. There can be a trade-off between these two. In other words, certain designs that may increase transmission of p-polarized light may also undesirably increase transmission of s-polarized light. Other designs that decrease transmission of s-polarized light may also undesirably decrease transmission of p-polarized light.


For some applications, it is desirable to reflect as much s-polarized light as possible. For example, if s-polarized light is primarily reflected, then the optical system can effectively utilize both the transmitted p-polarized light and the reflected s-polarized light. It can be important in such designs to increase reflection of s-polarized light without reducing transmission of p-polarized light. Sometimes there is a trade-off in a particular design between increasing transmission of p-polarized light and increasing reflection of s-polarized light.


For other applications, absorption of s-polarized light may be preferred. Absorption of s-polarized light may be preferred if the reflection of light can disrupt the image or other intended use. For example, in a transmissive panel image projection system, reflected light may go back into the LCD imager causing image degradation, or stray light can reach the screen, degrading contrast. An ideal selectively absorptive wire grid polarizer will transmit all p-polarized light and selectively absorb all s-polarized light. In reality, some s-polarized light is transmitted and some reflected and some p-polarized light is absorbed and some reflected. Sometimes there is a trade-off in a particular design between increasing transmission of p-polarized light and increasing absorption of s-polarized light.


The effectiveness of a wire grid polarizer can thus be quantified by (1) high transmission of p-polarized light; (2) high absorption or reflection of s-polarized light, depending on the design; and (3) high contrast. Contrast is equal to percent of p-polarized light transmitted (Tp) divided by percent of s-polarized light transmitted (Ts): Contrast=Tp/Ts.


It can be important in wire grid polarizers for infrared, visible, and ultraviolet light to have small wires with small pitch, such as nanometer or micrometer size and pitch, for effective polarization. Typically, a pitch of less than half of the wavelength of light to be polarized is needed for effective polarization. Smaller pitches may improve the contrast. Thus, small pitch can be an important feature of wire grid polarizers. Manufacture of wire grid polarizers with sufficiently small pitch is challenging, and is a goal of research in this field.


Small wires can be damaged by handling and by environmental conditions. Protection of the wires can be important in wire grid polarizers. Durability of wire grid polarizers is thus another important feature.


For example, see U.S. Pat. Nos. 5,991,075, 6,288,840, 6,665,119, 7,630,133, 7,692,860, 7,800,823, 7,961,393, and 8,426,121; U.S. Patent Publication Numbers US 2008/0055723, US 2009/0041971, and US 2009/0053655; U.S. patent application Ser. No. 13/326,566, filed on Dec. 15, 2011; “Application of 100 Å linewidth structures fabricated by shadowing techniques” by D. C. Flanders in J. Vac. Sci. Technol., 19(4), November/December 1981; and “Submicron periodicity gratings as artificial anisotropic dielectrics” by Dale C. Flanders in Appl. Phys. Lett. 42 (6), 15 Mar. 1983, pp. 492-494.


SUMMARY

It has been recognized that it would be advantageous to provide a durable wire grid polarizer with high transmission of p-polarized light, high contrast, and small pitch. High absorption or high reflection of s-polarized light, depending on the design, can also be important. The present invention is directed to various embodiments of wire grid polarizers having multiple regions, which can include a central region and side region(s), and methods of making wire grid polarizers, which satisfy these needs. Each of the various embodiments may satisfy one or more of these needs.


In one embodiment, the wire grid polarizer can comprise a substrate that is substantially transmissive to incoming light with an array of parallel, elongated first lower ribs disposed over the substrate. The first lower ribs can have a bottom attached to the substrate, a top surface opposite the bottom, and two opposite sides. An array of parallel, elongated, first upper ribs can be disposed over the top surface of the first lower ribs such that each first lower rib is paired with a corresponding first upper rib to define an array of center ribs or a central region. The wire grid polarizer can also comprise an array of elongated side bars including a side bar disposed along each side of each of the center ribs. A side region can include the side bars. There can be a gap between a side bar and corresponding center rib and an adjacent side bar and corresponding center rib.


At least one of the first lower ribs, first upper ribs, and side bars can be reflective of incoming light


A first method of making a wire grid polarizer can comprise:

  • 1. providing a substrate:
    • a. that is substantially transmissive to incoming light; and
    • b. having a continuous thin film of material over a surface of the substrate;
  • 2. etching the substrate and the thin film to form:
    • a. an array of parallel, elongated center ribs disposed over the substrate, the center ribs comprising lower first lower ribs and first upper ribs; and
    • b. solid-material-free gaps between the ribs;
  • 3. conformal coating the substrate and the center ribs with a layer of material while maintaining solid-material-free gaps between the ribs; and
  • 4. etching the layer of material to remove horizontal segments and leaving vertical side bars along sides of the center ribs.


A second method of making a wire grid polarizer can comprise

  • 1. providing a substrate, that is substantially transmissive to incoming light, and an array of parallel, elongated first lower ribs disposed over the substrate;
  • 2. conformal coating the substrate and the first lower ribs with a layer of material while maintaining solid-material-free first gaps between the first lower ribs;
  • 3. etching the layer of material to remove horizontal segments and leaving vertical side bars along sides of the first lower ribs;
  • 4. backfilling the first gaps and continuing to fill above the first lower ribs and the side bars with fill material, the fill material having similar etch properties with the first lower ribs;
  • 5. etching the fill material and the first lower ribs below a top of the side bars forming solid-material-free second gaps between tops of the side bars and forming second lower ribs between the side bars on a same plane as the first lower ribs; and
  • 6. backfilling the second gaps and continuing to fill above the side bars with upper material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional side view of a wire grid polarizer 10 including (1) center ribs 14 comprising first lower ribs 12 and first upper ribs 13 and (2) side bars 15 disposed along each side of each of the center ribs 14, in accordance with an embodiment of the present invention;



FIG. 2 is a schematic cross-sectional side view of a wire grid polarizer 20, similar to the wire grid polarizer 10 of FIG. 1, with side ribs 24 substantially filling gaps 16 between the combined center rib 14—side bar 15 structure, and also illustrating a step in the first method for making a wire grid polarizer, in accordance with embodiments of the present invention;



FIG. 3 is a schematic cross-sectional side view of a wire grid polarizer 30, similar to the wire grid polarizer 20 of FIG. 2, but also including dielectric material 32 extending from the gaps 16 above and over tops of the center ribs 14 and the side bars 15, and also illustrating a step in the first method for making a wire grid polarizer, in accordance with embodiments of the present invention;



FIG. 4 is a schematic cross-sectional side view of a wire grid polarizer 40, similar to the wire grid polarizer 20 of FIG. 2, wherein the side ribs 24 comprise second lower ribs 42 and second upper ribs 43 and the side bars 15 separate the first lower ribs 12 from the second lower ribs 42 and the first upper ribs 13 from the second upper ribs 43, in accordance with an embodiment of the present invention;



FIG. 5 is a schematic cross-sectional side view of a of step in a first method for making a wire grid polarizer—providing a substrate 11 that is substantially transmissive to incoming light and applying a continuous thin film of material 53 over a surface of the substrate 11—in accordance with an embodiment of the present invention;



FIG. 6 is a schematic cross-sectional side view of a of step in the first method for making a wire grid polarizer—etching the substrate 11 and the thin film 53 to form (a) an array of parallel, elongated center ribs 14 disposed over the substrate 11 and (b) solid-material-free gaps 16 between the center ribs 14—in accordance with an embodiment of the present invention;



FIG. 7 is a schematic cross-sectional side view of step 3 of the first method for making a wire grid polarizer—conformal coating the substrate 11 and the center ribs 14 with a layer of material 75 while maintaining solid-material-free gaps 16 between the center ribs 14—in accordance with an embodiment of the present invention;



FIG. 8 is a schematic cross-sectional side view of a of step in the first method for making a wire grid polarizer—etching the layer of material 75 to remove horizontal segments 71 and leaving vertical side bars 15 along sides 14s of the center ribs 14—in accordance with an embodiment of the present invention;



FIG. 9 is a schematic cross-sectional side view of a of step in a second method for making a wire grid polarizer—providing a substrate 11 having an array of parallel, elongated first lower ribs 12 disposed over the substrate 11—in accordance with an embodiment of the present invention;



FIG. 10 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—conformal coating the substrate 11 and the first lower ribs 12 with a layer of material 75 while maintaining solid-material-free first gaps 96 between the first lower ribs 12—in accordance with an embodiment of the present invention;



FIG. 11 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—etching the layer of material 75 to remove horizontal segments 71 and leaving vertical side bars 15 along sides 12s of the first lower ribs 12—in accordance with an embodiment of the present invention;



FIG. 12 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—backfilling the first gaps 96 and continuing to fill above the first lower ribs 12 and the side bars 15 with fill material 122, the fill material 122 having similar etch properties with the first lower ribs 12—in accordance with an embodiment of the present invention;



FIG. 13 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—etching the fill material 122 and the first lower ribs 12 below a top 15t of the side bars 15 forming solid-material-free second gaps 136 at a top region 15tr of the side bars 15 and forming second lower ribs 42 between the side bars 15 on a same plane as the first lower ribs 12 (at a bottom region 15br of the side bars 15)—in accordance with an embodiment of the present invention;



FIG. 14 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—backfilling the second gaps 136 and continuing to fill above tops 15t of the side bars 15 with upper material 143—in accordance with an embodiment of the present invention;



FIG. 15 is a schematic cross-sectional side view of a of step in the second method for making a wire grid polarizer—etching the upper material 143 at least down to tops 15t of the side bars 15 forming an array of parallel, elongated, upper ribs 13 and 43 above the lower ribs 12 and 42, with first upper ribs 13 over the first lower ribs 12 and second upper ribs 43 over the second lower ribs 42, and the side bars 15 separating the first lower ribs 12 from the second lower ribs 42 and the first upper ribs 13 from the second upper ribs 43—in accordance with an embodiment of the present invention;



FIG. 16 is a schematic cross-sectional side view of a wire grid polarizer 160 including elongated strips 161 disposed along each side 12s of first lower ribs 12, the strips 161 comprising lower wires 163 and upper wires 165, in accordance with an embodiment of the present invention;



FIG. 17 is a schematic cross-sectional side view of a wire grid polarizer 170, similar to wire grid polarizer 160 of FIG. 16, with side ribs 24 substantially filling gaps 166 between the first lower rib 12—strip 161 structures, in accordance with an embodiment of the present invention;



FIG. 18 is a schematic cross-sectional side view of a wire grid polarizer 180, similar to wire grid polarizer 170 of FIG. 17, but also including dielectric material 32 extending from the gaps 16 above and over tops 12t of the first lower ribs 12 and the strips 161, in accordance with an embodiment of the present invention; and



FIG. 19 is a schematic cross-sectional side view of a wire grid polarizer 190 including side-by-side first lower ribs 12, side bars 15, and side ribs 24 with a side bar 15 between each first lower rib 12 and each side rib 24, in accordance with an embodiment of the present invention.





REFERENCE NUMBERS IN THE DRAWINGS




  • 10 wire grid polarizer


  • 11 substrate


  • 12 first lower rib


  • 12
    b bottom of the first lower rib 12


  • 12
    t top surface of the first lower rib 12


  • 12
    s side of the first lower rib 12


  • 13 first upper rib


  • 13
    t top of the first upper rib 13


  • 14 center rib


  • 14
    s side 14s of the center rib 14


  • 15 side bar


  • 15
    br bottom region of the side bar 15


  • 15
    t top the side bar 15


  • 15
    tr top region of the side bar 15


  • 16 gap between each side bar 15 and corresponding center rib 14 and an adjacent side bar 15 and corresponding center rib 15


  • 20 wire grid polarizer


  • 24 side rib


  • 30 wire grid polarizer


  • 32 dielectric material


  • 40 wire grid polarizer


  • 42 second lower rib


  • 43 second upper rib


  • 53 thin film


  • 71 horizontal segment


  • 75 layer of material


  • 96 first gap


  • 122 fill material


  • 136 second gap


  • 143 upper material


  • 160 wire grid polarizer


  • 161 strip


  • 161
    t top of the strip 161


  • 163 lower wire


  • 165 upper wire


  • 166 gaps between the strips 161


  • 170 wire grid polarizer


  • 180 wire grid polarizer


  • 190 wire grid polarizer


  • 194 central group

  • d depth of etch below a top 15t of the side bars 15

  • H height

  • Th13 upper rib 13 and 43 thickness

  • Th15 side bar 15 thickness

  • Th161 strip 161 thickness

  • W15 side bar 15 width

  • W75 layer of material 75 width

  • W161 strip 161 width



DEFINITION



  • Many materials used in optical structures absorb some amount of light, reflect some amount of light, and transmit some amount of light. The following definitions are intended to distinguish between materials or structures that are primarily absorptive, primarily reflective, or primarily transmissive.

  • 1. As used herein, the term “absorptive” means substantially absorptive of light in the wavelength of interest.
    • a. Whether a material is “absorptive” is relative to other materials used in the polarizer. Thus, an absorptive structure will absorb substantially more than a reflective or a transmissive structure.
    • b. Whether a material is “absorptive” is dependent on the wavelength of interest. A material can be absorptive in one wavelength range but not in another.
    • c. In one aspect, an absorptive structure can absorb greater than 40% and reflect less than 60% of light in the wavelength of interest (assuming the absorptive structure is an optically thick film—i.e. greater than the skin depth thickness).
    • d. Absorptive ribs can be used for selectively absorbing one polarization of light.

  • 2. As used herein, the term “reflective” means substantially reflective of light in the wavelength of interest.
    • a. Whether a material is “reflective” is relative to other materials used in the polarizer. Thus, a reflective structure will reflect substantially more than an absorptive or a transmissive structure.
    • b. Whether a material is “reflective” is dependent on the wavelength of interest. A material can be reflective in one wavelength range but not in another. Some wavelength ranges can effectively utilize highly reflective materials. At other wavelength ranges, especially lower wavelengths where material degradation is more likely to occur, the choice of materials may be more limited and an optical designer may need to accept materials with a lower reflectance than desired.
    • c. In one aspect, a reflective structure can reflect greater than 80% and absorb less than 20% of light in the wavelength of interest (assuming the reflective structure is an optically thick film—i.e. greater than the skin depth thickness).
    • d. Metals are often used as reflective materials.
    • e. Reflective wires can be used for separating one polarization of light from an opposite polarization of light.

  • 3. As used herein, the term “transmissive” means substantially transmissive to light in the wavelength of interest.
    • a. Whether a material is “transmissive” is relative to other materials used in the polarizer. Thus, a transmissive structure will transmit substantially more than an absorptive or a reflective structure.
    • b. Whether a material is “transmissive” is dependent on the wavelength of interest. A material can be transmissive in one wavelength range but not in another.
    • c. In one aspect, a transmissive structure can transmit greater than 90% and absorb less than 10% of light in the wavelength of interest.

  • 4. As used in these definitions, the term “material” refers to the overall material of a particular structure. Thus, a structure that is “absorptive” is made of a material that as a whole is substantially absorptive, even though the material may include some reflective or transmissive components. Thus for example, a rib made of a sufficient amount of absorptive material so that it substantially absorbs light is an absorptive rib even though the rib may include some reflective or transmissive material embedded therein.

  • 5. As used herein, the term “light” can mean light or electromagnetic radiation in the x-ray, ultraviolet, visible, and/or infrared, or other regions of the electromagnetic spectrum.

  • 6. As used herein, the term “substrate” includes a base material, such as for example a glass wafer. The term “substrate” includes a single material, and also includes multiple materials, such as for example a glass wafer with at least one thin film on a surface of the wafer used together as the base material.



DETAILED DESCRIPTION

First Structure Group (FIGS. 1-4):


As illustrated in FIG. 1, a wire grid polarizer 10 is shown comprising an array of parallel, elongated first lower ribs 12 disposed over a substrate 11. The first lower ribs 12 can have a bottom 12b attached to the substrate 12, a top surface 12t opposite the bottom 12b, and two opposite sides 12s. The first lower ribs 12 can be integral with, and can be formed of the same material as, the substrate 11. Alternatively, the first lower ribs 12 can be formed of a different material than the substrate 11. The substrate 11 can be substantially transmissive to incoming light.


The first lower ribs 12 can be substantially absorptive of incoming light, substantially reflective of incoming light, or substantially transmissive to incoming light or of a desired wavelength range of light. The first lower ribs 12 can comprise or can consist of a dielectric material, a metal, or other material. Whether the first lower ribs 12 are substantially absorptive, substantially transmissive, or substantially reflective can depend on overall polarizer structure and intended use.


An array of parallel, elongated, first upper ribs 13 can be disposed over the top surface 12t of the first lower ribs 12. The first upper ribs 13 can have sides 13s that are substantially parallel with sides 12s of the first lower ribs 12. The first lower ribs 12 and/or the first upper ribs 13 can be called or can be part of a central region. Each first lower rib 12 can be paired with a corresponding first upper rib 13 to define an array of center ribs 14.


The first upper ribs 13 can comprise or can consist of a dielectric material, a metal, or other material. The first upper ribs 13 can be substantially absorptive, substantially reflective, or substantially transmissive of incoming light or of a desired wavelength range of light. Whether the first upper ribs 13 are substantially absorptive, substantially transmissive, or substantially reflective can depend on overall polarizer structure and intended use.


The wire grid polarizer 10 can further comprise an array of elongated side bars 15, including a side bar 15 disposed along each side 14s of each of the center ribs 14. Thus, a pair of side bars 15 can sandwich and can adjoin a center rib disposed between the pair. The side bars 15 can extend along each side 14s of the center ribs 14 substantially from the bottom 12b of the first lower ribs 12 to a top 13t of the first upper ribs 13. The side bars 15 can be substantially absorptive, substantially transmissive, or substantially reflective to incoming light. The side bars 15 can comprise or can consist of a dielectric material, a metal, or other material. Whether the side bars 15 are substantially absorptive, substantially transmissive, or substantially reflective can depend on overall polarizer structure and intended use.


There can be a gap 16 between each side bar 15 and corresponding center rib 14 and an adjacent side bar 15 and corresponding center rib 14. The gaps 16 can allow each side bar 15 to act individually and thus to affect one light polarization (e.g. s-polarization) differently than another light polarization (e.g. p-polarization). Having solid-material-free gaps can improve transmission of p-polarized light (increase Tp) in some designs.


At least one of the first lower ribs 12, first upper ribs 13, and side bars 15 can be substantially reflective of incoming light. At least one of the first lower ribs 12, first upper ribs 13, and side bars 15 can be substantially absorptive to incoming light. At least one of the first lower ribs 12, first upper ribs 13, and side bars 15 can be substantially transmissive of incoming light.


As shown on wire grid polarizer 20 in FIG. 2, side ribs 24 can be disposed in the gaps 16. The side ribs 24 can substantially fill the gaps 16. A side region can include the side ribs 24 and/or the side bars 15.


The side ribs 24 can be formed by spinning on a liquid that can harden upon evaporation of an included solvent. For example, spin-on a liquid glass in a solvent, then bake out the solvent. Another method is applying multiple layers by use of atomic layer deposition (ALD). Then, the material that was added, such as by ALD or spin on, can be etched down to form separate side ribs 24 in each gap 16.


At least one of the first lower ribs 12, first upper ribs 13, side bars 15, and side ribs 24 can be substantially reflective of incoming light. At least one of the first lower ribs 12, first upper ribs 13, side bars 15, and side ribs 24 can be substantially absorptive to incoming light. At least one of the first lower ribs 12, first upper ribs 13, side bars 15, and side ribs 24 can be substantially transmissive of incoming light.


As shown on wire grid polarizer 30 in FIG. 3, a dielectric material 32 can extend above and over tops 14t of the center ribs 14 and over tops 15t the side bars 15. The dielectric material 32 can be the same material as that of the side ribs 24 and thus can extend from the gaps 16 over tops 14t of the center ribs 14 and over tops 15t the side bars 15. The dielectric material 32 can be formed during the same manufacturing step as that of formation of the side ribs 24 or the dielectric material 32 can be added above the side ribs 24 after their formation, such as by chemical or physical vapor deposition. If dielectric material 32 is the same material as that of the side ribs 24, then this dielectric material 32 can be added, such as by spin-on or ALD for example, but not etched down to form separate side ribs 24.


As shown on wire grid polarizer 40 in FIG. 4, the side ribs 24 can comprise second upper ribs 43 disposed over the second lower ribs 42. The second lower ribs 42 can be disposed adjacent to the substrate 11. The side bars 15 can separate the first lower ribs 12 from the second lower ribs 42 and the first upper ribs 13 from the second upper ribs 43.


The second upper ribs 43 can be substantially absorptive, substantially reflective, or substantially transmissive to incoming light. The second upper ribs 43 can comprise or can consist of a dielectric material, a metal, or other material. Whether the second upper ribs 43 are substantially absorptive, substantially transmissive, or substantially reflective can depend on overall polarizer structure and intended use.


In one embodiment, one of the second lower ribs 42 or second upper ribs 43 can be substantially transmissive to incoming light and the other can be substantially absorptive of incoming light. In another embodiment, one of the second lower ribs 42 or second upper ribs 43 can be substantially reflective and the other can be substantially transmissive or substantially absorptive of incoming light.


First Method—Applicable to the First Structure Group (FIGS. 1-4):


The wire grid polarizers 10, 20, 30, and 40 shown in FIGS. 1-4 can be made by some or all of the following steps in this First Method:

  • 1. Providing a substrate 11 (see FIG. 5):
    • a. The substrate can be substantially transmissive to incoming light. In methods of making described herein, the term “substrate” can be a single material or can be multiple layers of materials, such as for example a glass wafer with at least one thin film on a surface of the wafer.
    • b. The substrate can have a continuous thin film 53 of material over a surface of the substrate. The film may be applied by various methods including chemical vapor deposition or physical vapor deposition. The thin film 53 can be a dielectric material, a metal, or other material. The thin film 53 can be substantially transmissive, substantially reflective, or substantially absorptive of incoming light depending on desired use of the polarizer, other materials of polarizer construction, and overall polarizer design.
  • 2. Etching the substrate 11 and the thin film 53 to form (see FIG. 6):
    • a. an array of parallel, elongated center ribs 14 disposed over the substrate 11, the center ribs 14 comprising first upper ribs 13 disposed over first lower ribs 12; and
    • b. solid-material-free gaps 16 between the ribs 14.


The first lower ribs 12 in FIG. 6 can be a different material than the substrate 11 in FIG. 6 if the original substrate shown in FIG. 5 was a substrate with a layer of material on top and the first lower ribs 12 were etched into this top layer. For example, if the substrate 11 originally was silicon dioxide with a layer of titanium dioxide, and the etch went through the titanium dioxide layer, then the remaining substrate 11 could be silicon dioxide and the first lower ribs 12 could be only titanium dioxide or an upper titanium dioxide region and a lower silicon dioxide region.

  • 3. Conformal coating (e.g. atomic layer deposition) the substrate 11 and the center ribs 14 with a layer of material 75 while maintaining the solid-material-free gaps 16 between the ribs 14 (see FIG. 7). Note that “maintaining the solid-material-free gaps 16” means that there can remain a solid-material-free region between the first lower ribs 12, but of course the gaps 16 will be reduced in size by the added layer of material 75. The layer of material 75 can be the desired material of the final side bars 15 described in step 4.
  • 4. Etching the layer of material 75 to remove horizontal segments 71 and leaving vertical side bars 15 along sides of the center ribs 14 (see FIGS. 7-8). The etch can be an anisotropic etch in order to remove horizontal segments 71 while leaving the vertical side bars 15.
  • The following steps 5-6 can be done for improved wire grid polarizer durability or to otherwise affect polarizer performance.
  • 5. Backfilling the gaps 16 forming side ribs 24 (see FIG. 2).
    • a. Backfilling can be done by spinning on a liquid that can harden upon evaporation of an included solvent. For example, spin on a liquid glass in a solvent, then bake out the solvent. Other backfilling methods may be used, such as for example applying multiple layers by use of atomic layer deposition (ALD).
    • b. The structure of FIG. 2 may be formed by backfilling above the center ribs 14 and side bars 15 with desired material of the side ribs 24 then etching down to tops of the center ribs 14 and side bars 15, thus forming the separate side ribs 24.
  • 6. Backfilling above the center ribs 14 and side bars 15 with dielectric material 32 (see FIG. 3).
    • a. The dielectric material 32 can be the same material as, or different from, that of the side ribs 24.
    • b. If the dielectric material 32 is the same material as that of the side ribs 24, then it can be applied in the same manufacturing step as filling the gaps 16. For example, a liquid material can both fill the gaps 16 and above the center ribs 14, then the liquid may be heated to cure and harden.
    • c. If the dielectric material 32 is a different material than the side ribs 24, then chemical vapor deposition or physical vapor deposition can be used for applying this layer of dielectric material 32 above the center ribs 14 and the side ribs 24.
    • d. If the dielectric material 32 will be part of the final polarizer, then it may be preferred to use a transmissive dielectric material because a continuous layer of absorptive dielectric material can undesirably increase absorption of p-polarized light.


In one aspect, the above steps can be performed in the order shown. All steps may not be required. For example, the process could end at the end of step 4 if side ribs 24 and dielectric material 32 are not desired.


Second Method—Applicable to the First Structure Group (FIGS. 1-4):


The wire grid polarizers 10, 20, 30, and 40 shown in FIGS. 1-4 can be made by some or all of the following steps in this Second Method:

  • 1. Providing a substrate 11 having an array of parallel, elongated first lower ribs 12 disposed over the substrate 11 (see FIG. 9). There can be solid-material-free first gaps 96 between the first lower ribs 12. The substrate 11 and first lower ribs 12 can have properties as described in other sections herein. The substrate 11 itself, or a layer of material on top of the substrate 11, can be patterned and etched to form the first lower ribs 12.
  • 2. Conformal coating the substrate and the first lower ribs 12 with a layer of material 75 while maintaining the first gaps 96 between the first lower ribs 12 (see FIG. 10). Note that “maintaining the first gaps 96” means that there can remain a solid-material-free region between the first lower ribs 12, but of course the first gaps 96 will be reduced in size by the added layer of material 75. The layer of material 75 can be the desired material of the final side bars 15 described in step 3.
  • 3. Etching the layer of material 75 to remove horizontal segments 71 and leaving vertical side bars 15 along sides of the first lower ribs 12 (see FIG. 11). The etch can be an anisotropic etch in order to remove horizontal segments 71 while leaving the vertical side bars 15.


At this point, the wire grid polarizer may be usable. The following steps can be added to create a selectively absorptive wire grid polarizer, to embed the polarizer, and/or to modify other characteristics of the polarizer.

  • 4. Backfilling the first gaps 96 and continuing to fill above the first lower ribs 12 and the side bars 15 with fill material 122 (see FIG. 12). The fill material 122 can have similar etch properties with the first lower ribs 12. Backfilling with the fill material 122 can be done by spinning on a liquid that can harden upon evaporation of an included solvent. For example, spin on a liquid glass in a solvent, then bake out the solvent. Other backfilling methods may be used, such as for example applying multiple layers by use of atomic layer deposition (ALD).
  • 5. Etching the fill material 122 and the first lower ribs 12 below a top 15t of the side bars 15 forming solid-material-free second gaps 136 at a top region 15tr of the side bars 15 and forming second lower ribs 42 between the side bars 15 and the first lower ribs 12 on a same plane as the first lower ribs 12 (at a bottom region 15br of the side bars 15) (see FIG. 13).
    • a. An etch may be selected to preferentially etch the fill material 122 and the first lower ribs 12 with minimal etch of the side bars 15.
    • b. The second lower ribs 42 can be formed in locations of the previous solid-material-free first gaps 96.
    • c. The first lower ribs 12 and the second lower ribs 42 can be etched to approximately the same height H due to similar etch characteristics of the fill material 122 compared to the first lower ribs 12.
    • d. The depth d of the etch below a top 15t of the side bars 15 can be approximately equivalent to a thickness Th13 of upper ribs 13 and 43 described in the next steps. For example, the depth d of the etch below a top 15t of the side bars 15, a thickness Th13 of the first upper ribs 13, and/or a thickness Th13 of the second upper ribs 43 can be at least 5 nm in one aspect, at least 10 nm in another aspect, at least 25 nm in another aspect, or at least 75 nm in another aspect.
    • e. The fill material 122 and the second lower ribs 42 can be a material that is substantially transmissive, substantially reflective, or substantially absorptive of incoming light.
  • 6. Backfilling the second gaps 136 and continuing to fill above the tops 15t of the side bars 15 with upper material 143 (see FIG. 14). Backfilling can be done by a similar method as described in step 4 above.
  • 7. Etching the upper material 143 at least down to the tops 15t of the side bars 15 forming an array of parallel, elongated, upper ribs 13 and 43 above the first lower ribs 12 and above the second lower ribs 42 (see FIG. 15). First upper ribs 13 can be disposed over the first lower ribs 12 and second upper ribs 43 over the second lower ribs 42. The side bars 15 can separate the first lower ribs 12 from the second lower ribs 42 and can separate the first upper ribs 13 from the second upper ribs 43.


In the second method, at least one of the first lower ribs 12, the second lower ribs 42, the first upper ribs 13, the second upper ribs 43, and the side bars 15 can be substantially transmissive, substantially absorptive, or substantially reflective of incoming light.


In one aspect, the above steps can be performed in the order shown. All steps may not be required. For example, the process could end at the end of step 6 if the upper material 143 need not be separated into first upper ribs 13 and second upper ribs 43.


Comparison of the First and Second Methods:


The choice of method 1 or method 2 can depend on the desired final structure, available manufacturing tools, complexity of manufacturing, and manufacturing cost.


Method 1 can provide a partially embedded wire grid polarizer, as shown in FIG. 8, without any backfilling step. Backfilling under method 1 may only be needed for fully embedding this structure. Method 1 can result in a structure with upper ribs that are alternating transmissive and absorptive in an upper region 15tr of the side bars 15 (as shown in FIG. 2 if one of side ribs 24 or first upper ribs 13 are transmissive and the other is absorptive).


Two backfilling steps can be used in Method 2. Method 2 can result in a structure with upper ribs 13 and 43 that both are made of a single material in an upper region 15tr of the side bars 15.


Second Structure Group (FIGS. 16-18):


As illustrated in FIG. 16, a wire grid polarizer 160 is shown comprising an array of parallel, elongated first lower ribs 12 disposed over a substrate 11. The first lower ribs 12 can have a bottom 12b attached to the substrate 12, a top surface 12t opposite the bottom 12b, and two opposite sides 12s. The first lower ribs 12 can be integral with, and can be formed of the same material as, the substrate 11. Alternatively, the first lower ribs 12 can be formed of a different material than the substrate 11. The substrate 11 can be substantially transmissive to incoming light.


An elongated strip 161 can be disposed along each side 12s of the first lower ribs 12. Thus, a pair of strips 161 can sandwich and can adjoin a first lower rib 12 disposed between the pair. There can be a gap 166 between each strip 161 and corresponding first lower rib 12 and an adjacent strip 161 and corresponding first lower rib 12. The strips 161 can comprise lower wires 163 and upper wires 165.


As shown on wire grid polarizer 170 of FIG. 17, side ribs 24 can substantially fill the gaps 16. As shown on wire grid polarizer 180 of FIG. 18, dielectric material 32, which can be the same material as the side ribs 24, can extend from the gaps 166 above and over tops 12t of the first lower ribs 12 and over tops 161t of the strips 161. Alternatively, the dielectric material 32 can be a different material than the side ribs 24 and can be deposited above the side ribs 24, first lower ribs 12, and strips 161. The dielectric material 32 can have properties as described above in reference to FIGS. 2 and 3.


At least one of the upper wires 165, the lower wires 163, the side ribs 24, the first lower ribs 12, and the dielectric material 32 can comprise or can consist of a material that is substantially absorptive, substantially reflective, or substantially transmissive of incoming light. For example, in one embodiment of a polarizer for visible light, the lower wires 163 could be aluminum for polarization of incoming light, the upper wires 165 could be silicon for absorption of incoming light, and the first lower ribs 12 and the side ribs 24 could be silicon dioxide and be substantially transmissive of incoming light.


The first lower ribs 12 can define a central region. The strips 161 and/or the side ribs 24 can define side regions.


Comparison of the First Structure Group (FIGS. 1-4) to the Second Structure Group (FIGS. 16-18):


Selection of the wire grid polarizers shown in FIGS. 1-4 or the wire grid polarizers shown in FIGS. 16-18 can be made based on desired width or thickness of different regions (side bar 15 or strip 161 thickness), and manufacturability considerations. Note that the side bars 15 in FIGS. 1-4 are taller than the first lower ribs 12 in FIGS. 1-4. In comparison, the strips 161 in FIGS. 16-18 can be about the same height as the first lower ribs 12 in FIGS. 16-18, and thus the upper wires 165 and the lower wires 163 can each be shorter than the first lower ribs 12. Different applications may find one or the other of these designs to be optimal. Each design has different manufacture requirements, and thus one design may be preferable over another due to manufacturability considerations.


Third Method—Applicable to the Second Structure Group (FIGS. 16-18):


The wire grid polarizers 160, 170, and 180 shown in FIGS. 16-18 can be made by some or all of the following steps:

  • 1. Providing a substrate 11 having an array of parallel, elongated first lower ribs 12 disposed over the substrate 11. See FIG. 9.
  • 2. Conformal coating (such as with atomic layer deposition for example) the substrate 11 and the first lower ribs 12 with a first material while maintaining the solid-material-free first gaps 96 between the first lower ribs 12. This step is similar to the manufacturing step shown in FIG. 10.
  • 3. Etching the first material to remove horizontal segments and leaving lower wires 163 along sides of the center ribs 14. Continuing to etch the lower wires 163 below tops 12t of the first lower ribs 12.
  • 4. Applying a resist. Patterning to provide openings above the lower wires 163.
  • 5. Applying a second material.
  • 6. Etching the second material to remove horizontal segments and leaving the upper wires 165 along sides of the first lower ribs 12 and above the lower wires 163.
  • 7. Removing the resist.


The above seven steps can be used to make the wire grid polarizer shown in FIG. 16. The side ribs 24 and the dielectric material 32 may be applied as described above under the First Method section to make one of the polarizers 170 or 180 shown in FIGS. 17-18.


Third Structure (FIG. 19):


As shown in FIG. 19, a wire grid polarizer 190 can include side-by-side first lower ribs 12, side bars 15, and side ribs 24, with a side bar 15 between each first lower rib 12 and side rib 24, and all disposed over a substrate 11 that is substantially transmissive to incoming light. In other words, an array of parallel, elongated first lower ribs 12 can be disposed over the substrate 11. The first lower ribs 12 can have two opposite sides 12s. An array of elongated side bars 15 can be disposed over the substrate 11 and can include a side bar 15 disposed along and adjoined to each side 12s of each of the first lower ribs 12. Each first lower rib 12 and accompanying pair of side bars 15 can define or can be called a central group 194. An array of elongated side ribs 24 can be disposed over the substrate 11 with a side rib 24 disposed between and adjoined to adjacent central groups 194.


At least one of the first lower ribs 12, side bars 15, and side ribs 24 can be substantially reflective, substantially absorptive, or substantially transmissive to incoming light.


Wire grid polarizer 190 can be made by steps 1-4 of the Second Method described above, then etching the fill material 122 down to tops 15t of the side bars 15 such that the side bars 15 separate first lower ribs 12 from adjacent side ribs 24.


An advantage of this wire grid polarizer 190 may be a simplified manufacturing process compared to some of the other designs described previously. A disadvantage may be fewer regions. In some designs, the additional regions may be important for wire grid polarizer function.


General Information for All Embodiments and Methods:


U.S. patent application Ser. No. 13/326,566, filed on Dec. 15, 2011, and U.S. Pat. Nos. 7,570,424 and 7,961,393, incorporated herein by reference in their entirety, provide examples of possible substrate materials, dielectric materials including absorptive dielectric materials and transmissive dielectric materials, and reflective materials. The reflective materials can also be made of a semiconductor material doped to achieve a desired level of conductivity, other types of conductors such as certain forms of carbon, or other suitable materials.


The meaning of a material being substantially absorptive, substantially reflective, or substantially transmissive of incoming light means that the material can absorb, reflect, or transmit respectively specified, desired wavelengths, or a desired wavelength range. A material can be absorptive of one wavelength range and transmissive of another wavelength range. The actual absorption, reflection, or transmission can be dependent on ionic, crystalline, and stoichiometric state of the material as well as on the overall wire grid polarizer structure.


Modeling has shown that the wire grid polarizer designs described herein can have relatively high transmission of p-polarized light and high contrast, and also can have high absorption or reflection of s-polarized light. Disposing side bars 15 or strips 161 on both sides 12s of the first lower ribs 12, can provide relatively small pitch, even with limitations of present manufacturing technology. The wire grid polarizer designs described herein also can have an advantage of at least partially embedding the side bars 15 or strips 161 (e.g. wire grid polarizers 10 and 160) or substantially or fully embedding the side bars 15 or strips 161 (e.g. wire grid polarizers 20, 30, 40, 170, 180, and 190).


Partially embedding the side bars 15 or strips 161 means that the side bars 15 or strips 161 are supported on one side, such as by the center rib 14 or first lower rib 12, but not on both sides. Thus, in a partially embedded structure, one side of the side bar 15 or strip 161 can be attached to and can be supported by the center rib 14 or first lower rib 12 and the other side can face air and not be supported. Embedding the side bars 15 and strips 161, whether fully or partially, can increase wire grid polarizer durability. The choice of a fully or partially embedded wire grid polarizer can depend on overall performance requirements of the polarizer, polarizer durability requirements (including both chemical resistance and resistance to damage by handling), and materials used.


Although embedding reflective wires of a wire grid polarizer can increase wire grid polarizer durability, embedding the reflective wires can also adversely affect wire grid polarizer performance, especially by decreasing transmission of p-polarized light (decrease Tp). Therefore, embedded wire grid polarizers have often not been implemented in practice for applications requiring high polarizer performance, such as for example in computer projectors or semiconductor analysis equipment. Modeling has shown that the specific designs described herein, although partially or completely embedded, especially combined with proper selection of side bar 15 or strip 161 aspect ratio, can provide good wire grid polarizer performance in spite of embedded, protected side bars 15 or strips 161.


For example, some embodiments of the polarizers described herein can transmit at least 90% of p-polarized light, or transmit at least 95% of p-polarized light; and can absorb at least 90% of s-polarized light, or can absorb at least 95% of s-polarized light at a selected wavelength of light (if there is at least one region with light absorbing properties). As another example, some embodiments of the polarizers described herein can transmit at least 85% of p-polarized light, or transmit at least 90% of p-polarized light; and can absorb at least 80% of s-polarized light, or can absorb at least 85% of s-polarized light at all light wavelengths from 400 nm through 700 nm (if there is at least one region with light absorbing properties).


The wire grid polarizers described herein can be made with a relatively high side bar 15 or strip 161 aspect ratio (Th15/W15 or Th161/W161). This can be done by formation of relatively tall center ribs 14 or first lower ribs 12 in relation to a width W75 of the conformal layer of material 75 (which may approximate eventual side bar width W15 or strip width W161). Modeling has shown good polarization characteristics with side bar 15 or strip 161 aspect ratios of between 8 and 60. Modeling has shown good polarization characteristics in the visible spectrum with side bars 15 or strips 161 that have a width W15 or W161 respectively of between 5 nm and 20 nm and a thickness Th15 of between 150 nm and 300 nm.

Claims
  • 1. A wire grid polarizer comprising: a) a substrate being substantially transmissive to incoming light;b) an array of parallel, elongated first lower ribs disposed over the substrate, the first lower ribs having a bottom attached to the substrate, a top surface opposite the bottom, and two opposite sides;c) an array of parallel, elongated, first upper ribs disposed over the top surface of the first lower ribs such that each first lower rib is paired with a corresponding first upper rib to define an array of center ribs;d) an array of elongated side bars including a side bar disposed along each side of each of the center ribs;e) a gap between each side bar and corresponding center rib and an adjacent side bar and corresponding center rib, each side bar is discontinuous with respect to adjacent side bars, and each side bar is not connected to adjacent side bars by material of the side bar; andf) at least one of the first lower ribs, first upper ribs, and side bars is substantially reflective of incoming light.
  • 2. The polarizer of claim 1, wherein at least one other of the first lower ribs, first upper ribs, and side bars is substantially absorptive of incoming light.
  • 3. The polarizer of claim 1, wherein at least one other of the first lower ribs, first upper ribs, and side bars is substantially transmissive of incoming light.
  • 4. The polarizer of claim 1, wherein the side bars extend along each side of the center ribs substantially from the bottom of the first lower ribs to a top of the first upper ribs.
  • 5. The polarizer of claim 1, further comprising side ribs substantially filling the gaps.
  • 6. The polarizer of claim 5, wherein the side ribs comprise a dielectric material and the dielectric material extends from the gaps above and over tops of the center ribs and the side bars.
  • 7. The polarizer of claim 5, wherein at least one other of the first lower ribs, first upper ribs, side bars, and side ribs is substantially absorptive of incoming light.
  • 8. The polarizer of claim 5, wherein: a) the side ribs comprise second upper ribs disposed over second lower ribs;b) one of the second lower ribs or second upper ribs is substantially transmissive of incoming light and the other of the second lower ribs or second upper ribs is substantially absorptive of incoming light; andc) the side bars separate the first lower ribs from the second lower ribs and the first upper ribs from the second upper ribs.
  • 9. The polarizer of claim 1, wherein the polarizer transmits 90% of one polarization of light and absorbs 80% an opposite polarization of light at light wavelengths from 400 nm through 700 nm.
  • 10. The polarizer of claim 1, wherein an aspect ratio of the side bars is between 8 and 60.
  • 11. The polarizer of claim 1, wherein the side bars have a width of between 5 nm and 20 nm and a thickness of between 150 nm and 300 nm.
  • 12. The polarizer of claim 1, wherein: a) at least one other of the first lower ribs, first upper ribs, and side bars is substantially absorptive of incoming light; andb) at least one other of the first lower ribs, first upper ribs, and side bars substantially transmissive of incoming light.
CLAIM OF PRIORITY

This claims priority to U.S. Provisional Patent Application Nos. 61/924,569, filed on Jan. 7, 2014, 61/924,560, filed on Jan. 7, 2014, 61/895,225, filed on Oct. 24, 2013, which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (552)
Number Name Date Kind
2224214 Brown Dec 1940 A
2237567 Land Apr 1941 A
2287598 Brown Jun 1942 A
2391451 Fischer Dec 1945 A
2403731 MacNeille Jul 1946 A
2605352 Fischer Jul 1952 A
2748659 Geffcken et al. Jun 1956 A
2813146 Glenn Nov 1957 A
2815452 Mertz Dec 1957 A
2887566 Marks May 1959 A
3046839 Bird et al. Jul 1962 A
3084590 Glenn, Jr. Apr 1963 A
3202039 Lang et al. Aug 1965 A
3213753 Rogers Oct 1965 A
3235630 Doherty et al. Feb 1966 A
3291550 Bird et al. Dec 1966 A
3291871 Francis Dec 1966 A
3293331 Doherty Dec 1966 A
3436143 Garrett Apr 1969 A
3479168 Bird et al. Nov 1969 A
3536373 Bird et al. Oct 1970 A
3566099 Makas Feb 1971 A
3627431 Komarniski Dec 1971 A
3631288 Rogers Dec 1971 A
3653741 Marks Apr 1972 A
3731986 Fergason May 1973 A
3857627 Harsch Dec 1974 A
3857628 Strong Dec 1974 A
3876285 Schwarzmüller Apr 1975 A
3877789 Marie Apr 1975 A
3912369 Kashnow Oct 1975 A
3969545 Slocum Jul 1976 A
4009933 Firester Mar 1977 A
4025164 Doriguzzi et al. May 1977 A
4025688 Nagy et al. May 1977 A
4049944 Garvin et al. Sep 1977 A
4068260 Ohneda et al. Jan 1978 A
4073571 Grinberg et al. Feb 1978 A
4104598 Abrams Aug 1978 A
4181756 Fergason Jan 1980 A
4220705 Sugibuchi et al. Sep 1980 A
4221464 Pedinoff et al. Sep 1980 A
4268127 Oshima et al. May 1981 A
4289381 Garvin et al. Sep 1981 A
4294119 Soldner Oct 1981 A
4308079 Venables et al. Dec 1981 A
4441791 Hornbeck Apr 1984 A
4456515 Krueger et al. Jun 1984 A
4466704 Schuler et al. Aug 1984 A
4492432 Kaufmann et al. Jan 1985 A
4512638 Sriram et al. Apr 1985 A
4514479 Ferrante Apr 1985 A
4515441 Wentz May 1985 A
4515443 Bly May 1985 A
4532619 Sugiyama et al. Jul 1985 A
4560599 Regen Dec 1985 A
4679910 Efron et al. Jul 1987 A
4688897 Grinberg et al. Aug 1987 A
4701028 Clerc et al. Oct 1987 A
4711530 Nakanowatari et al. Dec 1987 A
4712881 Shurtz, II et al. Dec 1987 A
4724436 Johansen et al. Feb 1988 A
4743092 Pistor May 1988 A
4743093 Oinen May 1988 A
4759611 Downey, Jr. Jul 1988 A
4759612 Nakatsuka et al. Jul 1988 A
4763972 Papuchon et al. Aug 1988 A
4795233 Chang Jan 1989 A
4799776 Yamazaki et al. Jan 1989 A
4818076 Heppke et al. Apr 1989 A
4840757 Blenkhorn Jun 1989 A
4865670 Marks Sep 1989 A
4870649 Bobeck et al. Sep 1989 A
4893905 Efron et al. Jan 1990 A
4895769 Land et al. Jan 1990 A
4904060 Grupp Feb 1990 A
4913529 Goldenberg et al. Apr 1990 A
4915463 Barbee, Jr. Apr 1990 A
4939526 Tsuda Jul 1990 A
4946231 Pistor Aug 1990 A
4966438 Mouchart et al. Oct 1990 A
4974941 Gibbons et al. Dec 1990 A
4991937 Urino Feb 1991 A
5029988 Urino Jul 1991 A
5039185 Uchida et al. Aug 1991 A
5061050 Ogura Oct 1991 A
5087985 Kitaura et al. Feb 1992 A
5092774 Milan Mar 1992 A
5113285 Franklin et al. May 1992 A
5115305 Baur May 1992 A
5122887 Mathewson Jun 1992 A
5122907 Slocum Jun 1992 A
5124841 Oishi Jun 1992 A
5139340 Okumura Aug 1992 A
5157526 Kondo et al. Oct 1992 A
5163877 Marpert et al. Nov 1992 A
5177635 Keilmann Jan 1993 A
5196926 Lee Mar 1993 A
5196953 Yeh et al. Mar 1993 A
5198921 Aoshima et al. Mar 1993 A
5204765 Mitsui et al. Apr 1993 A
5206674 Puech et al. Apr 1993 A
5216539 Boher et al. Jun 1993 A
5222907 Katabuchi et al. Jun 1993 A
5225920 Kasazumi et al. Jul 1993 A
5235443 Barnik et al. Aug 1993 A
5235449 Imazeki et al. Aug 1993 A
5239322 Takanashi et al. Aug 1993 A
5245471 Iwatsuka et al. Sep 1993 A
5267029 Kurematsu Nov 1993 A
5279689 Shvartsman Jan 1994 A
5295009 Barnik et al. Mar 1994 A
5298199 Hirose et al. Mar 1994 A
5305143 Taga et al. Apr 1994 A
5325218 Willett et al. Jun 1994 A
5333072 Willett Jul 1994 A
5349192 Mackay Sep 1994 A
5357370 Miyatake et al. Oct 1994 A
5383053 Hegg et al. Jan 1995 A
5387953 Minoura et al. Feb 1995 A
5391091 Nations Feb 1995 A
5401587 Motohiro et al. Mar 1995 A
5422756 Weber Jun 1995 A
5430573 Araujo et al. Jul 1995 A
5436761 Kamon Jul 1995 A
5455589 Huguenin et al. Oct 1995 A
5466319 Zager et al. Nov 1995 A
5477359 Okazaki Dec 1995 A
5485499 Pew et al. Jan 1996 A
5486935 Kalmanash Jan 1996 A
5486949 Schrenk et al. Jan 1996 A
5490003 Van Sprang Feb 1996 A
5499126 Abileah et al. Mar 1996 A
5504603 Winker et al. Apr 1996 A
5506704 Broer et al. Apr 1996 A
5508830 Imoto et al. Apr 1996 A
5510215 Prince et al. Apr 1996 A
5513023 Fritz et al. Apr 1996 A
5513035 Miyatake et al. Apr 1996 A
5517356 Araujo et al. May 1996 A
5535047 Hornbeck Jul 1996 A
5548427 May Aug 1996 A
5555186 Shioya Sep 1996 A
5557343 Yamagishi Sep 1996 A
5559634 Weber Sep 1996 A
5570213 Ruiz et al. Oct 1996 A
5570215 Omae et al. Oct 1996 A
5574580 Ansley Nov 1996 A
5576854 Schmidt et al. Nov 1996 A
5579138 Sannohe et al. Nov 1996 A
5594561 Blanchard Jan 1997 A
5599551 Kelly Feb 1997 A
5600383 Hornbeck Feb 1997 A
5602661 Schadt et al. Feb 1997 A
5609939 Petersen et al. Mar 1997 A
5612820 Schrenk et al. Mar 1997 A
5614035 Nadkarni Mar 1997 A
5619356 Kozo et al. Apr 1997 A
5620755 Smith, Jr. et al. Apr 1997 A
5626408 Heynderickx et al. May 1997 A
5638197 Gunning, III et al. Jun 1997 A
5652667 Kurogane Jul 1997 A
5658060 Dove Aug 1997 A
5686979 Weber et al. Nov 1997 A
5706063 Hong Jan 1998 A
5706131 Ichimura et al. Jan 1998 A
5719695 Heimbuch Feb 1998 A
5731246 Bakeman et al. Mar 1998 A
5748368 Tamada et al. May 1998 A
5748369 Yokota May 1998 A
5751388 Larson May 1998 A
5751466 Dowling et al. May 1998 A
5767827 Kobaysashi et al. Jun 1998 A
5798819 Hattori et al. Aug 1998 A
5808795 Shimomura et al. Sep 1998 A
5826959 Atsuchi Oct 1998 A
5826960 Gotoh et al. Oct 1998 A
5828489 Johnson et al. Oct 1998 A
5833360 Knox et al. Nov 1998 A
5838403 Jannson et al. Nov 1998 A
5841494 Hall Nov 1998 A
5844722 Stephens et al. Dec 1998 A
5864427 Fukano et al. Jan 1999 A
5886754 Kuo Mar 1999 A
5890095 Barbour et al. Mar 1999 A
5898521 Okada Apr 1999 A
5899551 Neijzen et al. May 1999 A
5900976 Handschy et al. May 1999 A
5907427 Scalora et al. May 1999 A
5912762 Li et al. Jun 1999 A
5914818 Tejada et al. Jun 1999 A
5917562 Woodgate et al. Jun 1999 A
5918961 Ueda Jul 1999 A
5930050 Dewald Jul 1999 A
5943171 Budd et al. Aug 1999 A
5958345 Turner et al. Sep 1999 A
5965247 Jonza et al. Oct 1999 A
5969861 Ueda et al. Oct 1999 A
5973833 Booth et al. Oct 1999 A
5978056 Shintani et al. Nov 1999 A
5982541 Li et al. Nov 1999 A
5986730 Hansen et al. Nov 1999 A
5991075 Katsuragawa et al. Nov 1999 A
5991077 Carlson et al. Nov 1999 A
6005918 Harris et al. Dec 1999 A
6008871 Okumura Dec 1999 A
6008951 Anderson Dec 1999 A
6010121 Lee Jan 2000 A
6016173 Crandall Jan 2000 A
6018841 Kelsay et al. Feb 2000 A
6046851 Katayama Apr 2000 A
6049428 Khan et al. Apr 2000 A
6053616 Fujimori et al. Apr 2000 A
6055103 Woodgate et al. Apr 2000 A
6055215 Katsuragawa Apr 2000 A
6056407 Iinuma et al. May 2000 A
6062694 Oikawa et al. May 2000 A
6075235 Chun Jun 2000 A
6081312 Aminaka et al. Jun 2000 A
6081376 Hansen et al. Jun 2000 A
6082861 Dove et al. Jul 2000 A
6089717 Iwai Jul 2000 A
6096155 Harden et al. Aug 2000 A
6096375 Ouderkirk et al. Aug 2000 A
6100928 Hata Aug 2000 A
6108131 Hansen et al. Aug 2000 A
6122103 Perkins et al. Sep 2000 A
6122403 Rhoads Sep 2000 A
6124971 Ouderkirk et al. Sep 2000 A
6141075 Ohmuro et al. Oct 2000 A
6147728 Okumura et al. Nov 2000 A
6172813 Tadic-Galeb et al. Jan 2001 B1
6172816 Tadic-Galeb et al. Jan 2001 B1
6181386 Knox Jan 2001 B1
6181458 Brazas, Jr. et al. Jan 2001 B1
6185041 TadicGaleb et al. Feb 2001 B1
6208463 Hansen et al. Mar 2001 B1
6215547 Ramanujan et al. Apr 2001 B1
6234634 Hansen et al. May 2001 B1
6243199 Hansen et al. Jun 2001 B1
6247816 Cipolla et al. Jun 2001 B1
6249378 Shimamura et al. Jun 2001 B1
6250762 Kuijper Jun 2001 B1
6251297 Komuro et al. Jun 2001 B1
6282025 Huang et al. Aug 2001 B1
6288840 Perkins et al. Sep 2001 B1
6291797 Koyama et al. Sep 2001 B1
6310345 Pittman et al. Oct 2001 B1
6339454 Knox Jan 2002 B1
6340230 Bryars et al. Jan 2002 B1
6345895 Maki et al. Feb 2002 B1
6348995 Hansen et al. Feb 2002 B1
6375330 Mihalakis Apr 2002 B1
6390626 Knox May 2002 B2
6398364 Bryars Jun 2002 B1
6406151 Fujimori Jun 2002 B1
6409525 Hoelscher et al. Jun 2002 B1
6411749 Teng et al. Jun 2002 B2
6424436 Yamanaka Jul 2002 B1
6426837 Clark et al. Jul 2002 B1
6447120 Hansen et al. Sep 2002 B1
6452724 Hansen et al. Sep 2002 B1
6460998 Watanabe Oct 2002 B1
6473236 Tadic-Galeb et al. Oct 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6490017 Huang et al. Dec 2002 B1
6496239 Seiberle Dec 2002 B2
6496287 Seiberle et al. Dec 2002 B1
6511183 Shimizu et al. Jan 2003 B2
6514674 Iwasaki Feb 2003 B1
6520645 Yamamoto et al. Feb 2003 B2
6532111 Kurtz et al. Mar 2003 B2
6547396 Svardal et al. Apr 2003 B1
6580471 Knox Jun 2003 B2
6583930 Schrenk et al. Jun 2003 B1
6585378 Kurtz et al. Jul 2003 B2
6624936 Kotchick et al. Sep 2003 B2
6643077 Magarill et al. Nov 2003 B2
6654168 Borrelli Nov 2003 B1
6661475 Stahl et al. Dec 2003 B1
6661484 Iwai et al. Dec 2003 B1
6665119 Kurtz et al. Dec 2003 B1
6666556 Hansen et al. Dec 2003 B2
6669343 Shahzad et al. Dec 2003 B2
6698891 Kato Mar 2004 B2
6704469 Xie et al. Mar 2004 B1
6710921 Hansen et al. Mar 2004 B2
6714350 Silverstein et al. Mar 2004 B2
6721096 Bruzzone et al. Apr 2004 B2
6739723 Haven et al. May 2004 B1
6746122 Knox Jun 2004 B2
6764181 Magarill et al. Jul 2004 B2
6769779 Ehrne et al. Aug 2004 B1
6781640 Huang Aug 2004 B1
6785050 Lines et al. Aug 2004 B2
6788461 Kurtz et al. Sep 2004 B2
6805445 Silverstein et al. Oct 2004 B2
6809864 Martynov et al. Oct 2004 B2
6809873 Cobb Oct 2004 B2
6811274 Olczak Nov 2004 B2
6813077 Borrelli et al. Nov 2004 B2
6816290 Mukawa Nov 2004 B2
6821135 Martin Nov 2004 B1
6823093 Chang et al. Nov 2004 B2
6829090 Katsumata et al. Dec 2004 B2
6844971 Silverstein et al. Jan 2005 B2
6846089 Stevenson et al. Jan 2005 B2
6859303 Wang et al. Feb 2005 B2
6876784 Nikolov et al. Apr 2005 B2
6896371 Shimizu et al. May 2005 B2
6897926 Mi et al. May 2005 B2
6899440 Bierhuizen May 2005 B2
6900866 Kurtz et al. May 2005 B2
6909473 Mi et al. Jun 2005 B2
6920272 Wang Jul 2005 B2
6922287 Wiki et al. Jul 2005 B2
6926410 Weber et al. Aug 2005 B2
6927915 Nakai Aug 2005 B2
6934082 Allen et al. Aug 2005 B2
6943941 Flagello et al. Sep 2005 B2
6947215 Hoshi Sep 2005 B2
6954245 Mi et al. Oct 2005 B2
6972906 Hasman et al. Dec 2005 B2
6976759 Magarill et al. Dec 2005 B2
6981771 Arai et al. Jan 2006 B1
7009768 Sakamoto Mar 2006 B2
7013064 Wang Mar 2006 B2
7023512 Kurtz et al. Apr 2006 B2
7023602 Aastuen et al. Apr 2006 B2
7025464 Beeson et al. Apr 2006 B2
7026046 Edlinger et al. Apr 2006 B2
7046422 Kimura et al. May 2006 B2
7046441 Huang et al. May 2006 B2
7046442 Suganuma May 2006 B2
7050233 Nikolov et al. May 2006 B2
7050234 Gage et al. May 2006 B2
7075602 Sugiura et al. Jul 2006 B2
7075722 Nakai Jul 2006 B2
7085050 Florence Aug 2006 B2
7099068 Wang et al. Aug 2006 B2
7113335 Sales Sep 2006 B2
7116478 Momoki et al. Oct 2006 B2
7129183 Mori et al. Oct 2006 B2
7131737 Silverstein et al. Nov 2006 B2
7142363 Sato et al. Nov 2006 B2
7142375 Nikolov et al. Nov 2006 B2
7155073 Momoki et al. Dec 2006 B2
7158302 Chiu et al. Jan 2007 B2
7159987 Sakata Jan 2007 B2
7177259 Nishi et al. Feb 2007 B2
7184115 Mi et al. Feb 2007 B2
7185984 Akiyama Mar 2007 B2
7203001 Deng et al. Apr 2007 B2
7213920 Matsui et al. May 2007 B2
7220371 Suganuma May 2007 B2
7221420 Silverstein et al. May 2007 B2
7221501 Flagello et al. May 2007 B2
7227684 Wang et al. Jun 2007 B2
7230766 Rogers Jun 2007 B2
7234816 Bruzzone et al. Jun 2007 B2
7236655 Momoki et al. Jun 2007 B2
7255444 Nakashima et al. Aug 2007 B2
7256938 Barton et al. Aug 2007 B2
7268946 Wang Sep 2007 B2
7297386 Suzuki et al. Nov 2007 B2
7298475 Gandhi et al. Nov 2007 B2
7306338 Hansen et al. Dec 2007 B2
7375887 Hansen May 2008 B2
7414784 Mi et al. Aug 2008 B2
7466484 Mi et al. Dec 2008 B2
7545564 Wang Jun 2009 B2
7561332 Little et al. Jul 2009 B2
7570424 Perkins et al. Aug 2009 B2
7619816 Deng et al. Nov 2009 B2
7630133 Perkins Dec 2009 B2
7670758 Wang et al. Mar 2010 B2
7692860 Sato et al. Apr 2010 B2
7722194 Amako et al. May 2010 B2
7755718 Amako et al. Jul 2010 B2
7789515 Hansen Sep 2010 B2
7800823 Perkins Sep 2010 B2
7813039 Perkins et al. Oct 2010 B2
7944544 Amako et al. May 2011 B2
7961393 Perkins et al. Jun 2011 B2
8009355 Nakai Aug 2011 B2
8027087 Perkins et al. Sep 2011 B2
8049841 Sugita et al. Nov 2011 B2
8138534 Adkisson et al. Mar 2012 B2
8248697 Kenmochi Aug 2012 B2
8363319 Sawaki Jan 2013 B2
8416371 Kumai Apr 2013 B2
8426121 Brueck et al. Apr 2013 B2
8493658 Nishida et al. Jul 2013 B2
8506827 Wu et al. Aug 2013 B2
8611007 Davis Dec 2013 B2
8619215 Kumai Dec 2013 B2
8696131 Sawaki Apr 2014 B2
8709703 Deng et al. Apr 2014 B2
8755113 Gardner et al. Jun 2014 B2
8804241 Wu et al. Aug 2014 B2
8808972 Wang et al. Aug 2014 B2
8873144 Davis Oct 2014 B2
8913321 Davis Dec 2014 B2
9348076 Wang May 2016 B2
9354374 Wang May 2016 B2
20010066421 Parriaux Jul 2001
20010053023 Kameno et al. Dec 2001 A1
20020003661 Nakai Jan 2002 A1
20020015135 Hansen et al. Feb 2002 A1
20020040892 Koyama et al. Apr 2002 A1
20020122235 Kurtz et al. Sep 2002 A1
20020167727 Hansen et al. Nov 2002 A1
20020176166 Schuster Nov 2002 A1
20020181824 Huang et al. Dec 2002 A1
20020191286 Gale et al. Dec 2002 A1
20030058408 Magarill et al. Mar 2003 A1
20030072079 Silverstein et al. Apr 2003 A1
20030081178 Shimizu et al. May 2003 A1
20030081179 Pentico et al. May 2003 A1
20030112190 Ballarda et al. Jun 2003 A1
20030117708 Kane Jun 2003 A1
20030142400 Hansen et al. Jul 2003 A1
20030156325 Hoshi Aug 2003 A1
20030161029 Kurtz et al. Aug 2003 A1
20030193652 Pentico et al. Oct 2003 A1
20030202157 Pentico et al. Oct 2003 A1
20030218722 Tsao et al. Nov 2003 A1
20030223118 Sakamoto Dec 2003 A1
20030223670 Nikolov et al. Dec 2003 A1
20030224116 Chen et al. Dec 2003 A1
20030227678 Lines et al. Dec 2003 A1
20040008416 Okuno Jan 2004 A1
20040042101 Wang Mar 2004 A1
20040047039 Wang et al. Mar 2004 A1
20040047388 Wang et al. Mar 2004 A1
20040051928 Mi Mar 2004 A1
20040070829 Kurtz et al. Apr 2004 A1
20040071425 Wang Apr 2004 A1
20040095637 Nikolov et al. May 2004 A1
20040120041 Silverstein et al. Jun 2004 A1
20040125449 Sales Jul 2004 A1
20040141108 Tanaka et al. Jul 2004 A1
20040165126 Ooi et al. Aug 2004 A1
20040169924 Flagello et al. Sep 2004 A1
20040174596 Umeki Sep 2004 A1
20040201889 Wang et al. Oct 2004 A1
20040201890 Crosby Oct 2004 A1
20040218270 Wang Nov 2004 A1
20040227923 Flagello et al. Nov 2004 A1
20040227994 Ma et al. Nov 2004 A1
20040233362 Kashima Nov 2004 A1
20040240777 Woodgate et al. Dec 2004 A1
20040258355 Wang et al. Dec 2004 A1
20050008839 Cramer et al. Jan 2005 A1
20050018308 Cassarley et al. Jan 2005 A1
20050045799 Deng et al. Mar 2005 A1
20050046941 Satoh et al. Mar 2005 A1
20050078374 Tairo et al. Apr 2005 A1
20050084613 Wang et al. Apr 2005 A1
20050088739 Chiu et al. Apr 2005 A1
20050122587 Ouderkirk et al. Jun 2005 A1
20050128567 Wang et al. Jun 2005 A1
20050128587 Suganuma Jun 2005 A1
20050152033 Kang et al. Jul 2005 A1
20050179995 Nikolov et al. Aug 2005 A1
20050180014 Nikolov et al. Aug 2005 A1
20050181128 Nikolov et al. Aug 2005 A1
20050190445 Fukuzaki Sep 2005 A1
20050195485 Hirai et al. Sep 2005 A1
20050201656 Nikolov et al. Sep 2005 A1
20050206847 Hansen et al. Sep 2005 A1
20050213043 Nakashima et al. Sep 2005 A1
20050259324 Flagello et al. Nov 2005 A1
20050271091 Wang Dec 2005 A1
20050275944 Wang et al. Dec 2005 A1
20050277063 Wang et al. Dec 2005 A1
20060001969 Wang et al. Jan 2006 A1
20060056024 Ahn et al. Mar 2006 A1
20060061862 Mi et al. Mar 2006 A1
20060072074 Matsui et al. Apr 2006 A1
20060072194 Lee Apr 2006 A1
20060087602 Kunisada et al. Apr 2006 A1
20060092513 Momoki May 2006 A1
20060103810 Ma et al. May 2006 A1
20060113279 Little Jun 2006 A1
20060118514 Little et al. Jun 2006 A1
20060119937 Perkins Jun 2006 A1
20060127829 Deng et al. Jun 2006 A1
20060127830 Deng et al. Jun 2006 A1
20060187416 Ouchi et al. Aug 2006 A1
20060192960 Renes et al. Aug 2006 A1
20060215263 Mi et al. Sep 2006 A1
20060238715 Hirata et al. Oct 2006 A1
20060268207 Tan et al. Nov 2006 A1
20070146644 Mi et al. Jun 2007 A1
20070183035 Asakawa et al. Aug 2007 A1
20070195676 Hendriks et al. Aug 2007 A1
20070217008 Wang et al. Sep 2007 A1
20070223349 Shimada et al. Sep 2007 A1
20070242187 Yamaki et al. Oct 2007 A1
20070242228 Chen et al. Oct 2007 A1
20070242352 MacMaster Oct 2007 A1
20070297052 Wang et al. Dec 2007 A1
20080037101 Jagannathan et al. Feb 2008 A1
20080038467 Jagannathan et al. Feb 2008 A1
20080055549 Perkins Mar 2008 A1
20080055719 Perkins Mar 2008 A1
20080055720 Perkins Mar 2008 A1
20080055721 Perkins Mar 2008 A1
20080055722 Perkins Mar 2008 A1
20080055723 Gardner Mar 2008 A1
20080094547 Sugita et al. Apr 2008 A1
20080137188 Sato et al. Jun 2008 A1
20080192346 Kim et al. Aug 2008 A1
20080316599 Wang et al. Dec 2008 A1
20090009865 Nishida et al. Jan 2009 A1
20090040607 Amako et al. Feb 2009 A1
20090041971 Wang et al. Feb 2009 A1
20090053655 Deng et al. Feb 2009 A1
20090109377 Sawaki et al. Apr 2009 A1
20090231702 Wu et al. Sep 2009 A1
20100091236 Matera et al. Apr 2010 A1
20100103517 Davis et al. Apr 2010 A1
20100188747 Ammako et al. Jul 2010 A1
20100225832 Kumai Sep 2010 A1
20100238555 Amako et al. Sep 2010 A1
20100239828 Cornaby Sep 2010 A1
20100328768 Lines Dec 2010 A1
20100328769 Perkins Dec 2010 A1
20110037928 Little Feb 2011 A1
20110080640 Kaida et al. Apr 2011 A1
20110096396 Kaida et al. Apr 2011 A1
20110115991 Sawaki May 2011 A1
20110235181 Hayashibe et al. Sep 2011 A1
20120008205 Perkins et al. Jan 2012 A1
20120075699 Davis et al. Mar 2012 A1
20120086887 Lee et al. Apr 2012 A1
20120206805 Meng et al. Aug 2012 A1
20120250154 Davis Oct 2012 A1
20130043956 Salit et al. Feb 2013 A1
20130077164 Davis Mar 2013 A1
20130128358 Hanashima May 2013 A1
20130153534 Resnick et al. Jun 2013 A1
20130155516 Lines et al. Jun 2013 A1
20130201557 Davis Aug 2013 A1
20130250411 Bangerter et al. Sep 2013 A1
20130258471 Davis Oct 2013 A1
20130342794 Okada Dec 2013 A1
20140300964 Davis et al. Oct 2014 A1
20150077851 Wang et al. Mar 2015 A1
20150116824 Wang et al. Apr 2015 A1
20150116825 Wang et al. Apr 2015 A1
Foreign Referenced Citations (95)
Number Date Country
1438544 Aug 2003 CN
1692291 Nov 2005 CN
101688939 Mar 2010 CN
3707984 Sep 1988 DE
10327963 Jan 2005 DE
10341596 Apr 2005 DE
102004041222 Mar 2006 DE
300563 Jan 1989 EP
1347315 Sep 2003 EP
2270553 Jan 2011 EP
56156815 Dec 1981 JP
58-042003 Mar 1983 JP
61122626 Jun 1986 JP
1028675 Jan 1989 JP
2308106 Dec 1990 JP
3005706 Jan 1991 JP
H 03084502 Apr 1991 JP
3126910 May 1991 JP
04 366916 Jun 1991 JP
4331913 Nov 1992 JP
5134115 May 1993 JP
5288910 Nov 1993 JP
5341234 Dec 1993 JP
6138413 May 1994 JP
H06-138413 May 1994 JP
06-174907 Jun 1994 JP
6202042 Jul 1994 JP
7005316 Jan 1995 JP
7072428 Mar 1995 JP
7-146469 Jun 1995 JP
07202266 Aug 1995 JP
7294850 Nov 1995 JP
7294851 Nov 1995 JP
7318861 Dec 1995 JP
9015534 Jan 1997 JP
9090122 Apr 1997 JP
9090129 Apr 1997 JP
9178943 Jul 1997 JP
9212896 Aug 1997 JP
9288211 Nov 1997 JP
10-003078 Jan 1998 JP
10073722 Mar 1998 JP
10-153706 Jun 1998 JP
10-260403 Sep 1998 JP
10- 268301 Oct 1998 JP
11-014814 Jan 1999 JP
11-164819 Mar 1999 JP
11064794 Mar 1999 JP
11142650 May 1999 JP
11-174396 Jul 1999 JP
11237507 Aug 1999 JP
11-258603 Sep 1999 JP
11-306581 Nov 1999 JP
2000147487 May 2000 JP
2000284117 Oct 2000 JP
2001074935 Mar 2001 JP
2002116302 Apr 2002 JP
2003502708 Jan 2003 JP
2003207646 Jul 2003 JP
3486334 Jan 2004 JP
2004157159 Jun 2004 JP
2004309903 Nov 2004 JP
2005151154 Jun 2005 JP
2005195824 Jul 2005 JP
2005202104 Jul 2005 JP
2005534981 Nov 2005 JP
2006047813 Feb 2006 JP
2006133402 May 2006 JP
2006201540 Aug 2006 JP
2006330178 Dec 2006 JP
2007058100 Mar 2007 JP
2007101859 Apr 2007 JP
2011248284 Dec 2011 JP
2003-0079268 Oct 2003 KR
10-2003-0090021 Nov 2003 KR
10-2004-0046137 Jun 2004 KR
10-2005-0017871 Feb 2005 KR
10-0707083 Apr 2007 KR
10-2013-0024041 Mar 2013 KR
1781659 Dec 1992 RU
1283685 Jan 1987 SU
200528927 Jan 2010 TW
WO 9615474 May 1996 WO
WO 9959005 Nov 1999 WO
WO 0070386 Nov 2000 WO
WO 0151964 Jul 2001 WO
WO 0221205 Mar 2002 WO
WO 02077588 Oct 2002 WO
WO 03069381 Aug 2003 WO
WO 03107046 Dec 2003 WO
WO 2004013684 Feb 2004 WO
WO 2005123277 Dec 2005 WO
WO 2006014408 Feb 2006 WO
WO 2006036546 Apr 2006 WO
WO 2011056496 May 2011 WO
Non-Patent Literature Citations (64)
Entry
Auton et al.; “Grid Polarizers for Use in the Near Infrared.” Infrared Physics, 1972, vol. 12, pp. 95-100.
Auton; “Infrared Transmission Polarizers by Photolithography.” Applied Optics; Jun. 1967; vol. 6, No. 6, pp. 1023-1027.
Baur; “A new type of beam splitting polarizer cube.” Meadowlark Optics, 2005, pp. 1-9.
Bird et al.; “The Wire Grid as a Near-Infrared Polarizer.” J. Op. Soc. Am. vol. 50 No. 9 (1960).
Brummelaar et al.; “Beam combining optical components,” Chara Technical Report, Jan. 5, 1998, pp. TR61-1 to TR 61-17, No. 61.
Bruzzone et al.; “High-performance LCoS optical engine using cartesian polarizer technology;” SID 03 Digest, 2003, pp. 1-4.
Chen et al.; Novel polymer patterns formed by lithographically induced self-assembly (LISA)., American Chemical Society, Jan. 2005, pp. 818-821, vol. 21, No. 3.
Chen et al.; “Optimum film compensation modes for TN and VA LCDs.” SID 98 Digest, pp. 315-318, 1998.
Dainty et al.; “Measurements of light scattering by characterized random rough surface.” Waves in Random Media 3 (1991).
Deguzman et al.; “Stacked subwavelength gratings as circular polarization filters.” Applied Optics, Nov. 1, 2001, pp. 5731-5737, vol. 40, No. 31.
Deng et al.; “Multiscale structures for polarization control by using imprint and UV lithography.” Proc. of SPIE, 2005, pp. 1-12. vol. 6003.
Deng et al.; “Wideband antireflective polarizers based on integrated diffractive multilayer microstructures.” Optics Letters, Feb. 1, 2006, pp. 344-346, vol. 31., No. 3.
DeSanto et al.; “Rough surface scattering.” Waves in Random Media 1 (1991).
Enger et al.; “Optical elements with ultrahigh spatial-frequency surface corrugations.” Applied Optics Oct. 15, 1983, vol. 22, No. 20 pp. 3220-3228.
Flanders; “Application of 0.100 Δ linewidth structures fabricated by shadowing techniques.” J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981.
Flanders; “Submicron periodicity gratings as artificial anisotropic dielectrics.” Appl. Phys. Lett. 42 (6), Mar. 15, 1983, pp. 492-494.
Fritsch et al.; “A liquid-crystal phase modulator for large-screen projection.” IEEE, Sep. 1989, pp. 1882-1887, vol. 36, No. 9.
Glytsis et al.; “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces.” Applied Optics Aug. 1, 1992 vol. 31, No. 22 pp. 4459-4470.
Haggans et al.; “Lamellar gratings as polarization components for specularly reflected beams.” Journal of Modern Optics, 1993, vol. 40, No. 4, pp. 675-686.
Haisma et al.; “Mold-assisted nanolithography: a process for reliable pattern replication.” Journal Vac. Sci. Technology B, Nov./Dec. 1996, pp. 4124-4128, vol. 14, No. 6.
Handbook of Optics, 1978, pp. 10-68-10-77.
Hass et al.; “Sheet Infrared Transmission Polarizers.” Applied Optics Aug. 1965, vol. 4, No. 8 pp. 1027-1031.
Ho et al.; “The mechanical-optical properties of wire-grid type polarizer in projection display system.” SID 02 Digest, pp. 648-651, 2002.
Knop; “Reflection Grating Polarizer for the Infrared.” Optics Communications vol. 26, No. 3, Sep. 1978.
Kostal et al.; “Adding parts for a greater whole.” SPIE's oeMagazine, May 2003, pp. 24-26.
Kostal et al.; “MEMS Meets Nano-optics the marriage of MEMES and nano-optics promises a new and viable platform for tunable optical filters.” www.fiberoptictechnology.net, Fiber Optic Technology, Nov. 2005, pp. 8-13.
Kostal; “Nano-optic devices enable integrated fabrication.” www.laserfocuswold.com, Jun. 2004 pp. 155, 157-159.
Kostal; “Nano-optics: robust, optical devices for demanding applications.” Military & Aerospace Electronics, Jul. 2005, 6 pages.
Kostal; “Using advanced lithography to pattern nano-optic devices;” NanoTechnology; www.solid-state.com, Sep. 2005, p. 26 and 29.
Kuta et al.; “Coupled-wave analysis of lamellar metal transmission gratings for the visible and the infrared.” J. Opt. Soc. Am. A/vol. 12, No. 5 /May 1995.
Li Li et al.; “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter.” Applied Optics May 1, 1996, vol. 35, No. 13, pp. 2221-2224.
Lloyd; Manual of Advanced Undergraduate Experiments in Physics, p. 302 (1959).
Lockbihler et al.; “Diffraction from highly conducting wire gratings of arbitrary cross-section.” Journal of Modern Optics, 1993, vol. 40, No. 7, pp. 1273-1298.
Lopez et al.; “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating.” Optics Letters, vol. 23, No. 20, pp. 1627-1629, Oct. 15, 1998.
Maystre & Dainty; Modern Analysis of Scattering Phenomena Proceeding from International Workshop held at Domaine deTournon, Aix en Provence, France Sep. 5-8, 1990.
Moshier et al.; “The Corrosion and Passively of Aluminum Exposed to Dilute Sodium Sulfate Solutions.” Corrosion Science vol. 27. No. 8 pp. 785-801; (1987).
N.M. Ceglio; Invited Review “Revolution in X-Ray Optics.” J. X-Ray Science & Tech. 1; pp. 7-78 (1989).
Nordin et al.; “Micropolarizer array for infrared imaging polarimetry.” J. Op. Soc. Am. A. vol. 16 No. 5 , May 1999.
Novak et al.; “Far infrared polarizing grids for use at cryogenic temperatures.” Applied Optics, Aug. 15, 1989/vol. 28, No. 15, pp. 3425-3427.
Optics 9th Edition, pp. 338-339; (1980).
PCT Application No. PCT/US2012/043979; Filing date Jun. 25, 2012; Moxtek, Inc. et al.; International Search Report dated Feb. 1, 2013.
PCT Application No. PCT/US2014/045287; Filing date Jul. 2, 2014; Moxtek, Inc.; International Search Report mailed Nov. 7, 2014.
PCT Application No. PCT/US2008/055685; Filing date Mar. 3, 2008; Moxtek, Inc. et al.; International Search Report mailed Jun. 27, 2008.
PCT Application No. PCT/US2014/053083; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
PCT Application No. PCT/US2014/053161; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
PCT Application No. PCT/US2014/053216; Filing date Aug. 28, 2014; Moxtek, Inc.; International Search Report mailed Dec. 8, 2014.
Pentico et al.; “New, High Performance, Durable Polarizers for Projection Displays.” SID 01 Digest, 2001, pp. 1287-1289.
Richter et al.; “Design considerations of form birefringent microstructures.” Applied Optics, vol. 34, No. 14, pp. 2421-2429, May 10, 1995.
Savas et al.; “Achromatic interferometric lithography for 100-nm-period gratings and grids.” Journal Vac. Sci. Technology B, Nov./Dec. 1995, pp. 2732-2735, vol. 13, No. 6.
Scandurra et al.; “Corrosion Inhibition of Al Metal in Microelectronic Devices Assemble in Plastic Packages.” Journal of the Electrochemical Society, 148 (8) B289-B292 (2001).
Sonek et al.; “Ultraviolet grating polarizers.” J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981, pp. 921-923.
Takano et al.; “Cube polarizers by the use of metal particles in anodic alumina films.” Applied Optics, vol. 33, No. 16, 3507-3512, Jun. 1, 1994.
Tyan et al.; “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.” Optics Letters, May 15, 1996, pp. 761-763, vol. 21, No. 10.
Tyan et al.; “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter.” Optical Society of America, vol. 14, No. 7, pp. 1627-1636, Jul. 1997.
U.S. Appl. No. 13/937,433, filed Jul. 9, 2013; Paul Steven Mills.
Wang et al.; “Diffractive optics: nanoimprint lithography enables fabrication of subwavelength optics.” LaserFocusWorld, http://lfw.pennnet.com/Articles/Article—Dispaly.cf . . . Apr. 19, 2006, 6 pages.
Wang et al.; “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography.” Journal Vac. Sci. Technology B, Nov./Dec. 1999, pp. 2957-2960, vol. 17, No. 6.
Wang et al.; “High-performance large-area ultra-broadband (UV to IR) nanowire-grid polarizers and polarizing beam-splitters.” Proc. of SPIE 2005, pp. 1-12, vol. 5931.
Wang et al.; “High-performance nanowire-grid polarizers” Optical Society of America. 2005, pp. 195-197, vol. 30, No. 2.
Wang et al.; “Monolithically integrated isolators based on nanowire-grid polarizers.” IEEE, Photonics Technology Letters, Feb. 2005, pp. 396-398, vol. 17, No. 2.
Wang, et al.; “Innovative High-Performance Nanowire-Grid Polarizers and integrated Isolators,” IEEE Journal of Selected Topics in Quantum Electronics, pp. 241-253, vol. 11 No. 1 Jan./Feb. 2005.
Wang et al.; “Free-Space nano-optical devices and integration: design, fabrication, and manufacturing.” Bell Labs Technical Journal, 2005 pp. 107-127, vol. 10, No. 3.
Whitbourn et al.; “Phase shifts in transmission line models of thin periodic metal grids.” Applied Optics Aug. 15, 1989 vol. 28, No. 15, pp. 3511-3515.
Zhang et al.; “A broad-angle polarization beam splitter based on a simple dielectric periodic structure.” Optics Express, Oct. 29, 2007, 6 pages, vol. 15, No. 22.
Related Publications (1)
Number Date Country
20150131150 A1 May 2015 US
Provisional Applications (3)
Number Date Country
61924569 Jan 2014 US
61924560 Jan 2014 US
61895225 Oct 2013 US