Wire guide for electronically controlled fuel injection systems

Information

  • Patent Grant
  • 6584949
  • Patent Number
    6,584,949
  • Date Filed
    Tuesday, November 14, 2000
    23 years ago
  • Date Issued
    Tuesday, July 1, 2003
    21 years ago
Abstract
There is provided a wire guide for guiding and protecting wires from moving parts underneath the valve cover in a diesel engine. The wire guide has a channel portion connected to a base for securing the wire guide to the cylinder head. The base may be comprised of a retaining clip having two prongs that form an assembly that “snaps-on” to an injector clamp holder to secure the wire guide to the cylinder head. The channel portion is configured to cross a rocker arm when the wire guide is mounted on the cylinder head. The channel portion creates a conduit for holding the wires. The conduit is partially closed on at least one side and has an open side with intermittently spaced retaining tabs. The retaining tabs may be intermittently spaced as a series of pair tabs or alternating opposing singular tabs.
Description




FIELD OF THE INVENTION




This invention relates generally to wiring systems for internal combustion engines. More particularly, this invention relates to wire guides for electronically controlled fuel injection systems in diesel engines.




BACKGROUND OF THE INVENTION




Many diesel engines have hydraulically-activated electronically-controlled unit injection (HEUI) fuel systems. In these systems, each injector has a solenoid for activating a poppet valve. The poppet valve regulates the flow of high pressure oil in the injector. The high pressure oil controls the fuel injection into the cylinder.




The engine's electronic control module transmits electrical signals to the solenoid via a connector in the valve cover. The connector also may be in the valve cover gasket, a valve fence, or part of the cylinder head. Under the valve cover, wires usually complete the circuit for transmitting signals from the electronic control module to the solenoids.




Generally, a pair of wires runs from the connector to each fuel injector. The pair of wires usually has a plug or a wire pigtail for connecting to the solenoid. The wires are positioned under the valve cover to avoid interference or entanglements with the rocker arms, valve rotators, and other moving parts. There may also be more than one pair of wires running from the connector to each fuel injector. Also, multiple connectors may be used to properly position the wires.




In a typical configuration, the connector is positioned between two fuel injectors. The connector may be placed on either the inboard or outboard side of the valve cover. From the connectors, wires run somewhat parallel to the valve cover before making almost perpendicular turns toward the fuel injectors to connect with the solenoids. In this manner, the wires avoid the rocker arms and other moving parts.




As alternatives to having wires under the valve cover, the wires or other types of conductors may be incorporated into the cylinder head, valve cover, or other parts. In one approach, the injectors are connected to electronics in or along the fuel rail. In a second approach, the wires are integral with the valve cover. The wires emerge underneath the valve cover at specific points for connecting to a particular injector. The wires emerge outside the valve cover to connect with the electronic control module. In a third approach, the wires lie along the inside surface of the valve cover. These wires have plugs at appropriate positions for connecting to the injectors when the valve cover is installed.




In other alternatives, the wires may be kept separated from the other parts underneath the valve cover. In one approach, wires are enclosed in a box or channel mounted on the fuel injection assembly. In a second approach, conductors are mounted in a connector block, which is mounted above the injectors. In a third approach, the wires are suspended on clips to keep the wiring above the injectors and other engine parts.




While these alternatives may provide suitable connections from the electronic control module to the injectors, they increase manufacturing costs and the assembly time of the engine. For example, incorporating the wires with the valve cover, fuel rail, or other engine parts increases the cost of those parts. It also increases the adverse impact of part failures. If the wire inside the valve cover or fuel rail does not operate, the valve cover or fuel rail must be replaced. This problem also increases maintenance costs because a new valve cover or fuel rail would be needed rather than replacement of a troublesome wire.




These alternatives also make assembly of the engine difficult. The plugs or connections on a valve cover or fuel rail must be aligned with the injectors before the cover or rail is secured in place. In some cases, it may be impossible to make the connections unless the wires have sufficient length. This “extra” length would be stored under the valve cover.




In addition, separating wires from other parts increases the space required under the valve cover. The height and width of the cylinder head and valve cover have to increase to accommodate a box or channel for the wires. Alternatively, a valve fence could be used, but it would increase the number of parts required. The height also has to increase for wires suspended on a clip above the injectors.




In comparison to the alternatives, wires routed in the available spaces underneath the valve cover make an engine easier to manufacture and cost less. However, using wires underneath the valve cover is difficult in a new HEUI fuel system. Improvements in HEUI fuel systems use fuel injectors with multiple solenoids. Usually, there are two solenoids on opposite sides of the injector. The solenoids control a spool valve in the injector. Each solenoid requires its own pair of wires (or a single wire if an alternate ground connection is used).




As opposed to facing the rocker arms, the fuel injectors are installed with one solenoid facing the side of the valve cover or fence. The other solenoid faces the valve rotators. One pair of wires runs somewhat parallel to the valve cover before making an almost perpendicular turn toward the fuel injector to connect with the solenoid. The wires have a straightforward run between the rocker arms. However, to reach the solenoid on the other side of the injector, the other pair of wires must cross the rocker arms or curve dangerously around the valve rotators. In either position, these wires interfere with or become entangled in the moving parts.




Going over the injector top is not an option. The high pressure oil rail sits upon and spans the top of the injectors. While wires may be routed on top or along the oil rail, they need to be secured in some manner so as not to move during engine operation. Tie bands and other securing means may be used. However, they increase manufacturing time and may not keep the wires from moving along the oil rail as the engine vibrates.




Accordingly, there is a need for guiding wires underneath the valve cover of a diesel engine so the wires do not interfere or become entangled with moving parts.




SUMMARY OF THE INVENTION




The present invention provides a wire guide for guiding and protecting wires from moving parts underneath the valve cover in a diesel engine. The wire guide has a channel portion connected to a base. The channel portion is configured to cross a rocker arm when the wire guide is mounted on the cylinder head.




The base has a main support connected to a side support and a foot section. A pedestal extends from the foot section to assist mounting on the cylinder head. The foot section and pedestal form a bore for securing the wire guide to the cylinder head with a bolt.




The channel portion creates a conduit for holding the wires. The conduit is essentially closed on two sides and partially closed on the bottom side, which has alternating cross-supports and open spaces, or simply intermittently spaced cross-supports. The top side is an open side, but constrained intermittently by pairs of retaining tabs.




The retaining tabs form along the top of the channel portion. They each have a tapered face, which has an upper edge and a lower edge. The upper edge helps to form the top side of the channel portion. The lower edge helps define the conduit. In a pair of retaining taps, the distance between the lower edges is less then the distance between the upper edges. This configuration creates an inverted wedge-shaped opening between the retaining tabs. Tapered faces and a wedged-shaped opening make it easier to push and retain wires in the conduit. In an alternate embodiment, the base is comprised of a retaining clip section that extends away from a side of the channel portion to assist in mounting the channel guide to the cylinder head. The retaining clip section is comprised of two prongs forming a snap-on assembly that “snaps” onto the injector clamp that holds the injector in place. The snap-on assembly secures the wire guide to the cylinder head.




In this embodiment, the conduit may be partially or completely closed on three sides. There is an open fourth side that is constrained intermittently by alternating and opposing retaining tabs. The retaining tabs form along the open side of the channel portion in an alternating and opposing fashion creating a series of alternating retaining tabs and open spaces along the channel portion. In use, the wires from the connectors pass through the wire guide. The wire guide crosses the rocker arms thereby keeping the wires from interfering and becoming entangled in the rocker arms and other moving parts.




The following drawings and description set forth additional advantages and benefits of the invention. More advantages and benefits are obvious from the description and may be learned by practice of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention may be better understood when read in connection with the accompanying drawings, of which:





FIG. 1

is a top view of a cylinder head according to the prior art;





FIG. 2

is a top view of a cylinder head with a first embodiment of the wire guide of the present invention in use;





FIG. 3

is a perspective view of the first embodiment of the wire guide of the present invention;





FIG. 4

is a top view of the first embodiment of the wire guide of the present invention;





FIG. 5

is a rear view of the first embodiment of the wire guide of the present invention;





FIG. 6

is a side view of the first embodiment of the wire guide of the present invention;





FIG. 7

is a cross-sectional view along the line A—A of the wire guide depicted in

FIG. 6

;





FIG. 8

is a perspective view of a second embodiment of the wire guide of the present invention; and





FIG. 9

is a cross-sectional view along the line B—B of the wire guide depicted in FIG.


8


.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a cylinder head


110


with the valve cover (not shown) removed according to the prior art. The cylinder head


110


has a gasket


160


for joining to the valve cover. Within the cylinder head


110


, fuel injectors


140


are positioned to inject fuel into the cylinders (not shown). Rocker arms


115


are mounted on pedestals


135


adjacent to the fuel injectors


140


. Push rods (not shown) engage the rocker arms


140


at valve lashes


165


. The push rods rotate the rocker arms


140


to depress the intake valve rotators


125


and exhaust valve rotators


130


at the appropriate times. The valve rotators


125


,


130


actuate the engine valves (not shown).




The gasket


160


has connectors


145


for passing electrical contacts (not shown) through the gasket


160


. The connectors


145


are shown located in the outboard side of the engine. Outside the valve cover, the connectors


145


connect to the engine's electronic control module (not shown). Inside the valve cover, pairs of wires run from the connectors


145


to the fuel injectors


140


. For each fuel injector


140


, a pair of wires


150


, or more than one pair of wires in some cases, run essentially parallel to the valve cover


110


before turning perpendicular to run between the rocker arms


115


for connection with the solenoid (not shown) on the fuel injector


140


. The pair of wires


150


may have a plug (not shown) for attaching to the solenoid.





FIG. 2

shows a cylinder head


210


with the valve cover (not shown) removed according to the present invention. The cylinder head


210


has a gasket


260


for joining to the valve cover. Within the cylinder head


210


, fuel injectors


240


are positioned to inject fuel into the cylinders (not shown). Each fuel injector


240


has a first solenoid (not shown) and a second solenoid (not shown). Rocker arms


215


are mounted on pedestals


235


adjacent to the fuel injectors


240


. Push rods (not shown) engage the rocker arms


240


at valve lashes


265


. The push rods rotate the rocker arms


215


to depress intake valve rotators


225


and exhaust valve rotators


230


at the appropriate times. The valve rotators


225


,


230


actuate the engine valves (not shown).




The gasket


260


has connectors


245


for passing electrical contacts (not shown) through the gasket


260


. Although the connectors


245


are shown passing through the gasket


260


, the connectors


245


may be in the valve cover, a valve fence, or another part of the cylinder head


210


. For example, the connectors


245


shown in

FIG. 2

are physically located on the outboard side of the engine or cylinder head


210


. But, the connector may be placed on either the inboard or outboard side of the valve cover. While multiple connectors


245


are shown, any number of connectors


245


including a single connector


245


may be used.




Outside the valve cover, the connectors


245


connect to the engine's electronic control module (not shown). Inside the valve cover, at least one pair of wires


250


,


252


runs from the connectors


245


to the fuel injectors


240


.

FIG. 2

shows each fuel injector


240


is connected to the connectors


245


by a first pair of wires


250


and a second pair of wires


252


. However, there may be more or less pairs of wires


250


and


252


connecting the connector


245


and fuel injectors


240


. While the wires are described as pairs, single or multiple wires may be used for additional control of the solenoids. A single wire also may also be used if another grounding means is provided. In addition, each pair of wires


250


,


252


may have a plug (not shown) for attaching to the solenoids.




The first pair of wires


250


runs essentially parallel to the valve cover


210


before turning perpendicular to run parallel to rocker arm


215


on the side opposite the fuel injector


240


. As the first pair of wires


250


nears the valve rotators


225


,


230


, the first pair of wires


250


enters a wire guide


270


before crossing the rocker arm


215


. After crossing the rocker arm


215


, the first pair of wires


250


exits the wire guide


270


and connects to the first solenoid on the fuel injector


240


. The wire guides


270


are preferably mounted on the cylinder head


210


by bolts


272


. However, those of skill in the art will recognize that other means, such as an adhesives, clips, and similar devices, may be used to mount the wire guides


270


to the cylinder head


210


.




The second pair of wires


252


runs between the rocker arms


215


for connection with the second solenoid in the fuel injector


240


. In the embodiment of

FIG. 2

, the connectors


245


are positioned for the second pairs of wires


252


to have essentially unobstructed runs to the fuel injectors


240


. If the connectors


245


were in different positions or different in number, one or more of the second pairs of wires


252


would run parallel to the valve cover before turning perpendicular to run between the rocker arms


215


.





FIG. 3

shows a perspective view of a first embodiment of the wire guide


270


according to the present invention.

FIGS. 4-6

show the top, back, and side views respectively of the first embodiment of the wire guide


270


shown in FIG.


3


. The wire guide


270


has a channel portion


310


connected to a base


340


. The channel portion


310


is configured to cross the rocker arm


215


without interfering with it once the wire guide


270


is mounted on the cylinder head


210


. While one preferred configuration of the channel portion


310


is shown in

FIGS. 3-6

, the channel portion


310


may be configured in numerous ways to cross the rocker arm


215


, including crossing underneath it.




The channel portion


310


creates a conduit


312


formed by sides


316


,


318


, bottom


320


, and top


322


. The channel portion


310


also forms a first opening


326


and a second opening


328


. The top is an open side


322


and is preferably constrained by retaining tabs


324


. The bottom side


320


is preferably partially solid having cross supports


410


and open spaces


415


, or simply intermittently spaced cross-supports. However, the bottom side


320


may also be completely solid. The sides


316


,


318


are preferably solid, but may also be partially solid or closed by having intermittently spaced cross-supports. The cross-support may also be perpendicular or angled relative to the sides they lie between.




The top open side


322


, bottom side


320


, and sides


316


,


318


are labeled relative to the orientation of the wire guide


270


shown in FIG.


3


. For example, side


316


“becomes” the top


322


due to the configuration of the wire guide


270


. Similarly, the bottom


320


“becomes” the side


316


.




The base


340


has a main support


342


connecting the channel portion


310


to a foot section


346


. A side support


344


is connected perpendicular to the main support


342


and the foot section


346


. The foot section


346


has a pedestal


350


for mounting on the cylinder head


210


. Both the foot section


346


and the pedestal


350


form a bore


348


for securing the wire guide


270


to the cylinder head


210


using bolt


272


. The pedestal


350


may form one or more prongs (not shown) to prevent the wire guide


270


from rotating on the cylinder head


210


.





FIG. 7

shows a section view along the line A—A of the wire guide shown in FIG.


6


. This is a cross-sectional view of the channel portion


310


at a pair of retaining tabs


324


. The retaining tabs


324


work in pairs and are preferably formed adjacently to each other along the top


322


at intermittent positions. Each retaining tab


324


has a face


705


, having an upper edge


710


and a lower edge


720


. The upper edge


710


helps form the top


322


of the channel portion


310


. The lower edge


720


helps define the conduit


312


. The faces


705


are preferably tapered such that distance B, the distance between the lower edges


720


, is less than distance C, the distance between the upper edges


710


. The tapered faces


705


make it easier to push wires into and retain wires in conduit


312


.





FIG. 8

shows a second embodiment of the present invention that is preferably used when the connectors


245


are located on the inboard side of the engine or cylinder head


210


(not shown). The second embodiment of the wire guide


270


preferably has a U-shaped channel portion


810


connected to a base


840


. The channel portion


810


is configured to cross the rocker arm


215


without interfering with it once the wire guide


270


is mounted on the cylinder head


210


. The channel portion


810


may also be configured in numerous ways to cross the rocker arm


215


, including crossing underneath it.




The channel portion


810


can be viewed as being comprised of a first leg


814


and a second leg


816


that together create a U-shaped wire conduit


812


. The second leg


816


is preferably longer than the first leg


814


. However, the leg


814


and


816


lengths can vary depending on the requirements of a particular engine application. The first leg


814


and second leg


816


each have three sides


818


that may be completely or partially solid. When partially solid or closed, the three sides


818


have intermittently spaced cross-supports (also shown in FIG.


3


). The cross-support may be perpendicular or angled relative to the sides


818


they lie between. The fourth side


818


of the first leg


814


and second leg


816


is an open side and preferably forms a first leg opening


820


and a second leg opening


822


respectively.




The first leg opening


820


and second leg opening


822


are constrained by intermittent retaining tabs


824


. The retaining tabs


824


are preferably placed on alternating and opposite sides of the leg openings


820


and


822


so as not to be directly across from each other. However, retaining tabs may also be arranged as intermittently spaced retaining tab pairs. For example, like the retaining tab pairs shown and discussed with reference to

FIGS. 3-7

. Thus, in this second embodiment, the retaining tabs


824


are preferably formed in an alternating and opposing arrangement along the leg openings


820


and


822


at intermittent positions.




The base


840


is preferably a retaining clip section comprised of a first prong


845


and a second prong


850


. The retaining base clip section


840


will secure the wire guide to the cylinder head by snapping onto the injector clamp which holds the injector in place. The retaining base clip section


840


first and second prongs


845


and


850


are preferably attached to a side


818


of the second leg


816


and together extend away from the second leg


816


. The retaining clip first and second prongs


845


&


850


, comprising a first and second retaining tooth


855


respectively, cooperatively “snap-on” or clip on to the injector clamp to secure the wire guide to the cylinder head


210


.





FIG. 9

shows section view along the line B—B of the wire guide shown in FIG.


8


. This is a representative cross-sectional view of the channel portion


810


at one of the retaining tabs


824


on one side of the leg opening


820


or


822


. Each retaining tab


824


has a face


826


, having an upper edge


828


and a lower edge


830


. The upper edge


828


helps form the top of the channel portion


810


. The lower edge


830


helps define the conduit


812


. The face


826


is shown vertically flat but may also be tapered, as shown in

FIG. 7

, to make it easier to push wires into and retain wires in the wire conduit


835


.




In addition to protecting and guiding wires from moving parts, the wire guide


270


makes the assembly of the fuel injection system easier and faster. The wire guide


270


may be pre-assembled with the pair of wires


250


and other parts of the fuel injection system. For example, the connector


245


, the wire guide


270


, and the pairs of wires


250


,


252


along with plugs for connecting to the solenoids may be pre-assembled.




During assembly of the fuel injector system, each fuel injector


240


and its associated rocker arms


215


are installed as appropriate on the cylinder head


210


. The appropriate wire guide


270


is mounted on the cylinder head


210


using the securing bolt


272


or by “snapping” the wire guide securely into place on the injector hold down clamp. The appropriate wires or pair of wires


250


are plugged into a first solenoid on the fuel injector


240


. The appropriate first pair of wires


250


is then routed around the rocker arm


215


. The connector


245


is installed in the valve cover, valve fence, or other part. The appropriate second pair of wires


252


is then routed and connected to the second solenoid on fuel injector


240


.




The wire guide


270


may also be pre-assembled with other combinations of parts. The wire guide


270


may have numerous shapes and configurations as long as they are suitable for guiding and protecting the wires from moving parts in the cylinder head


210


area. The wire guide


270


may also be mounted at other locations on the cylinder head depending on where the connectors


245


are located on the cylinder head


210


.




The present invention has been described and illustrated by way of certain examples of preferred embodiments only. Additional advantages will be readily apparent to those skilled in the art, who may modify the embodiments without departing from the true spirit and scope of the invention. Therefore, this invention is not limited to the specific details, representative devices, and illustrated examples in this description. The present invention is limited only by the following claims and equivalents.



Claims
  • 1. A wire guide for use in an engine, the wire guide comprising:a) a channel portion having an open side with intermittently spaced retaining tabs, wherein the channel portion comprises at least two members forming at least one bend; and b) a base connected to the channel portion, the base configured such that the wire guide can be secured to a cylinder head; c) whereby wires are guided and protected from moving parts underneath a valve cover in an engine.
  • 2. The wire guide of claim 1, wherein the channel portion and the base are connected by a support section, the support section comprising:a) a main support connected to a side support; b) a foot section connected to the side support; and c) a pedestal extending away from the foot section.
  • 3. The wire guide of claim 2, wherein the foot section and pedestal form a bore for securing the wire guide to the cylinder head with a bolt.
  • 4. The wire guide of claim 1, wherein the base is secured to the cylinder head via a bolt, an adhesive, or a clip.
  • 5. The wire guide of claim 1, wherein the channel portion has at least one partially closed side comprised of intermittent cross-supports.
  • 6. The wire guide of claim 1, wherein the retaining tabs are formed as a series of tab pairs along the open side of the channel portion.
  • 7. The wire guide of claim 1, wherein the retaining tabs comprise:a) a tapered face; b) an upper edge that forms an outer edge of the channel portion; and c) a lower edge that defines a conduit.
  • 8. The wire guide of claim 7, wherein the tab pair definesa) a first distance between the upper edges of the tab pair; and b) a second distance between the lower edges of the tab pair wherein the first distance is larger than the second distance; c) whereby the tab pair results in an inverted wedge-shaped opening between the retaining tab pair.
  • 9. A wire guide for use in an engine, the wire guide comprising:a) a channel portion having an open side with intermittently spaced retaining tabs, wherein the channel portion comprises at least two members forming at least one bend; and b) a base connected to the channel portion; c) whereby the wire guide can be secured to a cylinder head such that wires are guided and protected from moving parts underneath a valve cover in an engine.
  • 10. The wire guide of claim 9, wherein the retaining tabs are formed as a series of alternating opposing tabs along the open side of the channel portion.
  • 11. The wire guide of claim 9, wherein the base is comprised of a first prong with a first retaining tooth and a second prong with a second retaining tooth whereby the base snaps-on to an injector clamp holder.
  • 12. The wire guide of claim 9, wherein the channel portion has at least one partially closed side comprised of intermittent cross-supports.
  • 13. The wire guide of claim 9, wherein the retaining tabs further comprise:a) a tapered face; b) an upper edge that forms an outer edge of the channel portion; and c) a lower edge that defines a conduit.
  • 14. The wire guide of claim 9, wherein the channel portion is configured in a u-shape with a first leg and second leg.
  • 15. The wire guide of claim 14, wherein the base extends away from the second leg.
  • 16. The wire guide of claim 9, wherein the retaining tabs are formed as a series of tab pairs along the open side of the channel portion.
  • 17. A wire guide for use in an engine, the wire guide comprising:a channel having at least one open side, wherein a first plurality of retaining tabs are intermittently spaced on a first edge of the open side and a second plurality of retaining tabs are intermittently spaced on a second edge of the open side, such that at least one wire is guided within the channel; a base connected to the channel portion; wherein the wire guide protects the at least one wire from moving parts underneath a valve cover in the engine.
  • 18. The wire guide of claim 17, wherein the base is securable to a cylinder head.
  • 19. The wire guide of claim 17, wherein the channel has at least one partially closed side comprised of intermittent cross-supports.
  • 20. The wire guide of claim 17, wherein the first and second plurality of retaining tabs comprise a plurality of tab pairs intermittently spaced along the at least one open side of the channel.
  • 21. The wire guide of claim 17, wherein at least some of the first and second plurality of retaining tabs further comprise:a tapered face; an upper edge that forms an outer edge of the channel portion; and a lower edge that defines a conduit.
  • 22. The wire guide of claim 17, wherein the channel and the base are connected by a support section, the support section comprising:a main support connected to a side support; a foot section connected to the side support; and a pedestal extending away from the foot section.
  • 23. The wire guide of claim 17, wherein the channel comprises at least two member forming at least one bend.
  • 24. The wire guide of claim 17, wherein the retaining tabs are formed as a series of alternating opposing tabs along the open side of the channel portion.
  • 25. The wire guide of claim 17, wherein the base is comprised of a first prong with a first retaining tooth and a second prong with a second retaining tooth whereby the base snaps-on to an injector clamp holder.
  • 26. The wire guide of claim 17, wherein the channel portion is configured in a U-shape with a first leg and second leg.
Parent Case Info

This patent application claims the benefit of Provisional U.S. patent application Ser. No. 60/165,821 filed on Nov. 16, 1999.

US Referenced Citations (17)
Number Name Date Kind
4029277 Bulanda Jun 1977 A
4771743 McDowell Sep 1988 A
4865280 Wollar Sep 1989 A
5035637 Mathews et al. Jul 1991 A
5168842 Brooks Dec 1992 A
5178115 Daly Jan 1993 A
5211149 DeGrace, Jr. May 1993 A
5390648 Yanase Feb 1995 A
5551150 Zielinski et al. Sep 1996 A
5567184 Sasai et al. Oct 1996 A
5597980 Weber Jan 1997 A
5607318 Wakata et al. Mar 1997 A
5642704 Gogots et al. Jul 1997 A
5709559 Fujitani et al. Jan 1998 A
5771850 Okada Jun 1998 A
5893351 Akutagawa et al. Apr 1999 A
6068048 Cude May 2000 A
Provisional Applications (1)
Number Date Country
60/165821 Nov 1999 US