The subject invention relates generally to wire interconnection apparatus and methods and more particularly to a method of more simply and economically establishing an electrical connection between adjacent conductors, as well as a “clam shell” harness retainer for adjacent interconnected pairs of wires.
Procedures are known in the art for interconnecting adjacent bare portions of metal conductors. Such procedures have been recognized by the inventors to involve time-consuming stripping of insulation and interconnections which exhibit less than ideal electrical characteristics.
A smaller conductor having an uninsulated portion and an insulated portion is placed adjacent a larger conductor such that an insulated portion of the larger conductor is positioned adjacent the uninsulated portion of the smaller conductor. A discontinuous metal band having respective ends is then attached around the two conductors such that it makes electrical contact with the uninsulated portion of the smaller conductor and such that the respective ends of the metal band pierce the insulated portion of the larger conductor and make electrical contact with the conductive portion of the larger conductor which lies within the insulation.
According to an illustrative embodiment, a larger electrical conductor 118, for example, a 16 gauge wire, is joined to a smaller electrical conductor 14, for example, a 26 or 18 gauge wire, using a metal connecting band 111, which may be, for example, a thin brass strip.
The smaller electrical conductor 114 has a short portion of its outer plastic insulation 116 removed at one end thereof for a length of, for example, approximately ⅛ inch. The exposed metal conductor wire 115 is then placed adjacent to the larger electrical conductor 118 such that the exposed metal wire 115 of the smaller conductor 114 makes physical contact with the plastic insulation 117 of the larger conductor 118.
The metal band 111 is then placed on top of these two conductors 114, 118 and then is wrapped down and around both sides of the conductors 114, 118, holding them firmly in place and establishing metal to metal contact between the band 111 and the exposed metal wire 115 portion of the small conductor 114.
The metal band 111 is then made to continue down and around the bottom of the larger conductor 118 such that both ends 124, 125 of the band 111 curl up and into the bottom of the larger conductor 118. The ends 124, 125 of the metal band 111 then pierce and penetrate the plastic insulation 117 of the larger conductor 118 and proceed up and into the metal electrical conducting wire 119 (
The connection resulting from the just described process is shown in more detail in
The opposite side of the metal band 111 engages the insulation 117 of the larger conductor 118 generally at 120, then bends downwardly at 127, and then upwardly at 123 to pierce the insulation 117 and enter into conductive engagement with the current-carrying conductor portion 119 of the larger conductor 118. As may be seen, the respective ends, 124, 125 of the metal band are preferably pointed or otherwise shaped to assist in penetrating the insulation 118.
The formation of a wire interconnection as illustrated in
In order to form an interconnection as shown in
In order to facilitate formation of a wire harness including several adjacent wire interconnections of the type shown in
As illustrated in
In operation, the individual wire assemblies are laid out side-by-side in the bottom half 149 of the clamshell 151. Each wire (with its metal crimp) rests in an individual track shaped such that there is no movement or contact with adjacent wire assemblies. The mating top half 150 drops over the bottom half 149 and entraps the wire assemblies inside. The top and bottom halves 149, 150 snap fittingly “lock” or are otherwise arranged, e.g. by gluing, to stay fixed in place with respect to one another.
The overall assembly preferably has a very low profile height after it is assembled and an overall width which is preferably no more than is necessary to hold the wires in place. While pivotally interconnected halves 149, 150 are illustrated in the drawings, they could be separate disconnected pieces; which snap together or employ other interlocking mechanisms.
In various embodiments, the retainer 151 provides the advantage of holding the interconnections together, providing strain relief for the interconnections, and preventing one metal band from contacting an adjacent band, thereby preventing short circuits. Protection from corrosion and external elements is also provided.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/033,346, filed Mar. 3, 2008, entitled “Wire Harness Interconnection and Retention Method and Apparatus,” the contents of which are incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3875947 | Jula et al. | Apr 1975 | A |
4062613 | Tritenne | Dec 1977 | A |
4082402 | Kinkaid et al. | Apr 1978 | A |
4429352 | Griffin | Jan 1984 | A |
4480460 | Bush et al. | Nov 1984 | A |
4578545 | Phillipson | Mar 1986 | A |
4776809 | Hall | Oct 1988 | A |
4829146 | Duve | May 1989 | A |
5158477 | Testa et al. | Oct 1992 | A |
5611709 | McAnulty | Mar 1997 | A |
5989058 | Norgaard | Nov 1999 | A |
6394836 | Nagai | May 2002 | B2 |
6402543 | Abe et al. | Jun 2002 | B1 |
6565377 | Sawayanagi et al. | May 2003 | B2 |
6652310 | Onuma | Nov 2003 | B2 |
6657127 | Saito | Dec 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20090221175 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61033346 | Mar 2008 | US |