BACKGROUND OF THE INVENTION
The present invention relates to a wire-processing device with processing stations for processing a wire, and having at least one feeder with a guide-tube to feed the wire to the processing stations.
Usually, the processing stations of a wire-processing device are arranged in a circle, a swivel-arm feeding the wire-ends to the processing stations for processing (cutting, insulation-stripping, crimping, sleeving, etc.). The wire-ends must be fed to the processing stations accurately, both in the direction of the length of the wire and in the radial direction. Before cutting and insulation-stripping take place, the gripper of the swivel-arm grips the wire. Therefore, provided that the wire-end is guided accurately in a guide-tube of the gripper, the feeding accuracy depends only on the positioning accuracy of the swivel-arm drive. The internal diameter of the guide-tube must be adapted to the cross-section of the wire in such manner that the wire-end in the guide-tube can only move in the longitudinal axis of the wire. Depending on the cross-section of the wire which is to be processed, a corresponding guide-tube must be used, so that the wire-end cannot execute unexpected movements relative to the guide-tube.
When changing from one wire cross-section to another wire cross-section, the guide-tube of the gripper which was previously used must be removed manually, and a new guide-tube which is adapted to the new cross-section must be mounted manually.
A disadvantage of this known device is that incorrect manipulation when manually changing the guide-tube presents an accident hazard to the operator. Uncontrolled movements of the swivel-arm or gripper can cause the operator to trap and injure his fingers, at the least.
SUMMARY OF THE INVENTION
The present invention provides a solution to avoiding the disadvantages of the known device and creates a wire-processing device with short retooling times.
The advantages achieved by the present invention are that, at batch changes with different wire cross-sections, the operator need not remember, or be reminded, to change the guide-tube. Relative to manual changing of the guide-tube, automated or automatic changing of the guide-tube can be executed substantially faster, and thereby shorten the retooling times of the wire processing device, which especially in the case of small batch sizes with different cross-sections of wire, is of great economic significance.
The control system of the wire-processing device knows the data of, for example, the external diameter of the wire to be processed, and can select the optimal guide-tube automatically based on this data. With automatic changing of the guide-tube, possible confusion of guide-tubes through error of the operator when changing the guide-tube manually is ruled out. Furthermore, optimal guidance of the wire-end also results in a consistently uniform high quality of the processed wire-end.
DESCRIPTION OF THE DRAWINGS
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
FIG. 1 is a schematic perspective view of a wire-processing device according to the present invention;
FIG. 2 is a schematic perspective view a feeder with a swivel-arm, a gripper, and a guide-tube of the wire-processing device shown in FIG. 1;
FIG. 3 is an enlarged schematic exploded view of the holder for the guide-tube shown in FIG. 2;
FIG. 4 is a schematic perspective view of the assembled holder shown in FIG. 3;
FIG. 5 is a schematic perspective view of the holder with the guide-tube shown in FIG. 2;and
FIG. 6 is a fragmentary schematic perspective view of the swivel-arm shown in FIG. 2 when changing the guide-tube.
DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 shows a wire-processing device 1 with a wire-advancer executed as a belt-drive 2, the belt-drive 2 feeding a wire 3 to a swivel-arm 4 with gripper 5. The wire 3 is guided in a flexible tube 6, the advanced length of wire being measurable by means of an encoder 7 of the belt-drive 2. By means of drives 8, the swivel-arm 4 can be set into a swiveling motion symbolized by an arrow P1, and/or into a linear motion symbolized by an arrow P2. Details of the drives 8 and the swivel-arm 4 with gripper 5 are explained in European patent application EP 03405094.8, corresponding to co-pending U.S. patent application Ser. No. 10/775,607 incorporated herein by reference.
The swivel-arm 4 is shown in the neutral position on a longitudinal axis of the wire 3 in which, for example, a processing station with a cutting head 9 is arranged which cuts off the leading end, and strips the insulation, of a wire-end 3.1 (FIG. 2), the wire-end 3.1 being held by means of the gripper 5 and a guide-tube 10 arranged on the gripper 5. The internal diameter of the guide-tube 10 fits onto the external diameter of the wire 3. Further guide-tubes 10 with different internal diameters are stored in a magazine 11, the magazine 11 being arranged along the path of the swivel-arm outside the working area and outside the feeding area. Also provided along the path of the swivel-arm 4 as a threading aid in the gripper area is a stationary wire-guide 12 which can be approached by the swivel-arm 4 and serves to thread the wire 3 into the guide-tube 10 of the gripper 5.
FIG. 2 shows the swivel-arm 4 with the gripper 5 and the guide-tube 10. The swivel-arm 4 with the gripper 5 and the guide-tube 10 serves as a feeder for feeding wire-ends 3.1 to processing stations. L1 designates a position of the swivel-arm 4 in which the wire-end 3.1, from which the leading end has been cut off and the insulation stripped, is fed to, for example, a sleeving station, the sleeving station mounting a sleeve on the wire-end 3.1. L2 designates a position of the swivel-arm 4 in which the wire-end 3.1 with the sleeve is fed to, for example, a crimping station, the crimping station fastening a crimped contact onto the wire-end 3.1. The magazine 11, which is arranged along the path of the swivel-arm 4 outside the working area and outside the feeding area, is shown cut open with the further guide-tubes 10. Several magazines 11 with the guide-tubes 10 can also be provided along the path of the swivel-arm.
FIG. 3 shows a holder 13 for holding the guide-tube 10 firmly on the gripper 5. The holder 13 is provided for tool-less guide-tube changing. Arranged on a pin 14 of the gripper 5 is a housing 15 which serves as support for a holding-head 16, a pair of screws 17 holding the head 16 firmly. Pressing against the housing 15 is a compression spring 18 which imparts a spring force to a pressure-piece 19. Arms 20 of the pressure-piece 19 slide in grooves 21 of the holding-head 16 and are actuated when changing the guide-tubes 10. The gripper 5 is shown with open gripper-jaws 5.1. By means of the belt-drive 2, the wire 3 is advanced through the flexible tube 6 into a pipe 5.2 arranged on the gripper 5, and from this into the guide-tube 10 (FIG. 2) clamped onto the head 16, the wire-guide 12 between the pipe 5.2 and holder 13 serving as a threading aid when the gripper-jaws 5.1 are open.
FIG. 4 shows the assembled holder 13, and FIG. 5 shows the holder 13 with the guide-tube 10 which can be inserted through an opening 22 in a side of the holding-head 16, the guide-tube 10 being held firmly in the holding-head 16 by the effect of the spring-pressure on the pressure-piece 19.
FIG. 6 shows the swivel-arm 4 when changing guide-tubes, a selected one of the guide-tubes 10 being removed from the magazine 11 which is shown cut open. A control system of the wire-processing device 1 and the swivel-arm 4 knows the position of the selected guide-tube 10 which is to be removed from the magazine 11. The swivel-arm 4 moves the opening 22 of the holding-head 16 near to a tube-head 10.1 of the selected guide-tube 10 to be removed, the arms 20 of the pressure-piece 19 being actuated by means of edges 11.3 of the magazine 11. The pressure-piece 19 is thereby pushed back against the spring-force of the compression spring 18. The swivel-arm 4 then executes a swiveling motion, whereby the tube-head 10.1 is inserted through the opening 22 into the holding-head 16. The swivel-arm 4 then executes a linear withdrawal motion, whereby the tube-head 10.1 is held firmly in the holding-head 16 by the effect of the spring-pressure on the pressure-piece 19. The withdrawal motion is continued until the guide-tube 10 is completely withdrawn from a storage-compartment 11.1 of the magazine 11. When replacing the guide-tube 10 into the storage-compartment, the steps are executed analogously in the reverse sequence. The guide-tube 10 is inserted into the cylinder-shaped storage-compartment 11.1 until the arms 20 are actuated by means of the edges 11.3, and further until a stop 10.2 of the guide-tube 10 touches the wall of the magazine, whereby the tube-head 10.1 in the holding-head 16 is released and, by means of a swiveling motion of the swivel-arm 4, removed from the holding-head 16. The guide-tube 10 is held fast in the storage-compartment 11.1 by means of, for example, an O-ring 11.2.
The magazine 11 with the guide-tubes 10 can also be arranged within the working area and within the feeding area of the swivel-arm 4, for example between two processing stations. So that no collisions can occur, in this variant embodiment the magazine 11 is, for example, movable upward and downward. When changing the guide-tubes 10, the magazine 11 is moved upward and is reachable by the swivel-arm 4. After changing the guide-tubes 10, the magazine 11 is moved downward and is then outside the swivel-arm path.
The device according to the present invention can also be provided on wire-processing devices with several swivel-arms, there being provided for each swivel-arm at least one magazine with a stock of guide-tubes and a wire guide.
The device according to the present invention can also be used, for example, on wire-processing devices with linear wire-feeding. On such devices the magazine with the guide-tubes, and the wire guide, are arranged at one end and the other end outside the working area and outside the feeding area of the device which feeds the wire-ends, the feeder being able to execute the change of guide-tubes automatically as explained above.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.