Not applicable.
Traditional bulk-material baling machines incorporate a tying system for wrapping and/or securing the baled material, such as a wire tying system. In forming bales of compressible materials, it is important to surround the baled material with a wire having sufficient strength to maintain the form of the compressed bale for shipping and/or storage. At the same time, the wire used to secure a bale must be adequately tensioned by the tying system, as well as securely knotted and/or tied around the bale. In some instances, a wire tying system requires one or more features to securely position at least one end of a wire during knotting/tying, which enables tensioning of the wire and tightening of the strap around the bale. However, traditional hydraulic wire release mechanisms may cause mechanical complications during tensioning of the wire, as well as add to the expense of the overall wire tying system.
In some of the embodiments the present invention relates to a wire release mechanism on a strapping machine for securing at least one end of a wire applied to a baled material.
Some embodiments or the present invention introduce technology for resolving the above-mentioned issues conventionally experienced when securing a wire strap applied with a bulk-material baling system. Accordingly, some embodiments of a wire release mechanism for securing at least one end of a wire during a wire tying cycle of a wire tying assembly may include a wire release portion having an engaging surface. The wire release portion may be affixed to the wire tying assembly such that the wire release portion can move between 1) an open position where the engaging surface is disengaged from, and a first distance away from, at least one end of a wire, and 2) a closed position where the engaging surface may engage, and is a second distance away from, at least one end of a wire during the wire tying cycle. In some embodiments, the wire tying cycle comprises the steps of moving the wire release portion to the closed position, advancing a wire, gripping at least one end of a wire by pressing the wire against the engaging, surface with a retractable surface of the wire tying assembly, tying the wire, and moving the wire release portion to the open position to release at least one end of a wire.
In another embodiment, the wire release mechanism may include a wire release portion and a gripping arm. In some embodiments, the retractable surface may be included on the gripping arm. The gripping arm may be affixed to the wire tying assembly such that the gripping arm is configured to move between a first position where the retractable surface is disengaged from the wire and a second position where the retractable surface may engage the wire during the wire tying cycle. In this embodiment, the wire tying cycle comprises the steps of moving the gripping arm to the first position, moving the wire release portion to the closed position, advancing a wire, moving the gripping arm to the second position to grip at least one end of a wire by pressing the wire against the engaging surface with the retractable surface, tying the wire, and moving the wire release portion to the open position to release at least one end of a wire.
In yet another embodiment, the wire release mechanism may include the wire release portion and gripping arm, and a base. In this embodiment, the wire release portion is affixed to the base such that the wire release portion can move between the open position and the closed position during the wire tying cycle. In turn, the base is affixed to the wire tying assembly.
In some embodiments, the wire release portion may further include a first portion. In one embodiment the engaging surface is located on the first portion. In other embodiments, the first portion may include a lip projecting therefrom and away from a second portion positioned opposite the first portion. The lip may include a first wire flange guide for directing the wire past the engaging surface and may further include the engaging surface. In one embodiment, the lip includes an offset such that the first wire flange guide projects farther from the second portion than does the engaging surface. The offset may include a binding feature (e.g., a corner).
In other embodiments, a wire receiving surface may be located on the base or on the wire tying assembly. The wire receiving surface may include a wire channel that may be positioned on the wire receiving surface such that the engaging surface is located adjacent to the wire channel when the wire release portion is in the closed position. In another aspect, the lip may be positioned adjacent to the wire channel when the wire release portion is in the closed position.
In some embodiments, the wire receiving surface may also include a second wire guide flange. In this aspect, the second wire guide flange may be located opposite of, and across the wire channel from, the first wire guide flange when the wire release portion is in the closed position.
In one embodiment, the wire release portion may be hingedly affixed at the second portion to a pivot yoke. The pivot yoke may be affixed to the base, integrated within the base, and/or integrated within the wire tying assembly. In this embodiment, the gripper block may rotate around the pivot yoke from the open position to the closed position. In other embodiments, the wire tying assembly includes a rotating arm that may couple to the wire release portion and actuate the wire release portion between the closed position and the open position. In this embodiment, the rotating arm moves between a forward arm position and a rearward arm position.
In another embodiment, the gripping arm is actuated between the first position and the second position by a hydraulic arm. The hydraulic arm may be coupled to the hydraulic system of the wire tying assembly. The hydraulic arm may be supplied hydraulic fluid by a common hydraulic circuit corresponding to at least a portion of the wire tying assembly that applies a tying force to the wire. In some embodiments, the retractable surface may be located on an end of the hydraulic arm. In other embodiments, the gripping arm may be rotatably affixed to the wire tying assembly at a pin.
Additional objects, advantages, and novel features of the invention will be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
The present invention is described in detail below with reference to the attached drawing figures, wherein:
One or more illustrative embodiments incorporating the invention disclosed herein are presented below. Applicant has created a revolutionary wire release mechanism.
In the following description, certain details are set forth such as specific quantities, sizes, etc. so as to provide a thorough understanding of the present embodiments disclosed herein. However, it will be evident to those of ordinary skill in the art that the present disclosure may be practiced without such specific details. In many cases, details concerning such considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present disclosure and are within the skills of persons of ordinary skill in the relevant art.
Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing particular embodiments of the disclosure and are not intended to be limiting thereto. Drawings are not necessarily to scale and arrangements of specific units in the drawings can vary.
While most of the terms used herein will be recognizable to those of ordinary skill in the art, it should be understood, however, that when not explicitly defined, terms should be interpreted as adopting a meaning presently accepted by those of ordinary skill in the art. In cases where the construction of a term would render it meaningless or essentially meaningless, the definition should be taken from Webster's Dictionary, 11th Edition, 2008. Definitions and/or interpretations should not be incorporated from other patent applications, patents, or publications, related or not, unless specifically stated in this specification or if the incorporation is necessary for maintaining validity.
Certain terms are used in the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different persons may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. The drawing figures are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat schematic form, and some details of conventional elements may not be shown, all in the interest of clarity and conciseness.
Although several preferred embodiments of the present invention have been described in detail herein, the invention is not limited hereto. It will be appreciated by those having ordinary skill in the art that various modifications can be made without materially departing from the novel and advantageous teachings of the invention. Accordingly, the embodiments disclosed herein are by way of example. It is to be understood that the scope of the invention is not to be limited thereby.
The present invention generally relates to a wire release mechanism 100 on a strapping machine. More particularly, some embodiments of the present invention relate to a wire release mechanism 100 coupled to a wire tying system of a strapping machine, for securing and ejecting at least one end of a wire applied to a baled material. For example, the wire release mechanism 100 may be used to secure a wire around a bale of recycled material during knotting of the wire and eject the wire after knotting is complete. As such, embodiments of the wire release mechanism are coupled to and/or adjacent to a wire tying system of a strapping machine for baling bulk material.
Referring initially to
In one embodiment, the illustrated wire release mechanism 100 includes a wire release portion 102 hingedly affixed to a base 116 at a pivot yoke 118 and a gripping arm 126. The base 116 may be affixed to a wire tying assembly (not shown). The wire release portion 102 may rotate about the pivot yoke 118 between the open position (see
In one embodiment, the illustrated second portion 114 of the wire release portion 102 may be affixed to the base 116 at the pivot yoke 118. As understood from the bottom view perspective, the wire release portion 102 may be rotatably affixed via the pivot yoke 118 such that when not physically retained against the base 116, the wire release portion 102 drops (i.e., via gravity) into an open position. A coupling mechanism 117 (e.g., a pin structure or a hinge assembly) may secure the wire release portion 102 to the base 116, in some aspects, such that rotation at the moveably coupled pivot yoke 118 and second portion 114 permits opening and closing of the wire release mechanism 100.
In several embodiments, the exemplary base 116 further comprises a wire channel 122 set inside and/or extending along a wire receiving surface 120. As the loop of wire 30 is drawn around the baling apparatus (as described below and as depicted in
In several embodiments, the illustrated base 116 further includes a second wire guide flange 124 positioned adjacent to the wire channel 122. In one embodiment of the invention, the second wire guide flange 124 directs at least one end of a wire to the point adjacent to the engaging surface 106. In some embodiments, the second wire guide flange 124 is positioned across the wire channel 122 from the first wire guide flange 110.
In one embodiment, the gripping arm 126 may be coupled to the wire tying assembly by a pin 132 and hydraulically actuated by a hydraulic arm 130 that may rotate the gripping arm 126 around the pin 132 between the first position (e.g.,
Embodiments of the wire release mechanism 100 may be configured for use with a wire tying assembly for tying a wire strap around a baled material. The wire tying assembly may be, but is not limited to, the knotter assembly described in one or more of the following patents: U.S. Pat. Nos. 8,397,632; 9,045,245; and 8,757,055.
Additionally, the wire tying assembly used with wire release mechanism 100 may include a control system coupled directly or indirectly to the wire tying assembly. For example, a strapping machine of a wire tying system may include a common control system configured to control at least a portion of the wire tying mechanism and/or related components, such as the control system described in U.S. Application No. 61/873,662, filed Sep. 4, 2013, entitled “Control User Interface For Tying System”, the disclosure of which his hereby incorporated by reference in its entirety.
As shown in the exemplary side view of
As shown in the embodiment illustrated in
In further embodiments illustrated in
In some embodiments, the rotating arm 70 may be moved between the rearward arm position (as illustrated in
In some embodiments, the positioning of the wire release mechanism 100 during an exemplary wire tying cycle is described in reference to
In further aspects of the wire tying cycle, a wire 30 provided through the track 52 of a wire tying apparatus is carried along the track 52 (as depicted in
In further aspects of the wire tying cycle, the gripping arm 126 is moved to the second position, as illustrated in
In further aspects of the wire tying cycle, and as further illustrated in the example of
As described above, in some embodiments, several of the components included herein, such as the base 116, the gripping arm 126, the retractable surface 128, and the hydraulic arm 130, may be integrated within, or associated with, one or more features of a wire tying assembly 48. In such embodiments, wire tying cycles similar to the exemplary wire tying cycle described above are contemplated where the non-integrated components of the wire release mechanism 100 work in concert with the integrated components in the wire tying assembly.
From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth, together with other advantages, which are obvious and inherent to the structure, it will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
This application claims priority to U.S. provisional patent application 62/319,139, filed Apr. 6, 2016, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1939746 | Whitman | Dec 1933 | A |
8397632 | Millett et al. | Mar 2013 | B2 |
8757055 | Millett et al. | Jun 2014 | B2 |
9045245 | Giett | Jun 2015 | B2 |
20130247515 | Actis | Sep 2013 | A1 |
20150066214 | Vaughn | Mar 2015 | A1 |
20150251788 | Vaughn | Sep 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170320604 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62319139 | Apr 2016 | US |