The present invention relates generally to a winch system for wire rope takeout to be used in conjunction with a pipe bursting application, underground utility work and overhead line installation.
Dual capstan winches are commonly used in underground construction and for overhead power line pulling. The work of pulling electrical conductors through buried conduits, pulling electrical conductors between poles or pulling and guiding pneumatic pipe bursting equipment through existing pipes is a typical application for these winches. Additional details on dual capstan winches may be found in U.S. Pat. No. 7,048,257, the contents of which are incorporated herein by reference.
During use of such a winch, the rope, most often wire rope, must be stripped from a storage drum used to feed the capstans. The capstans pull the rope from the drum feeding it through the circuitous route of the capstan grooves and paying it out of the winch to the work area. It is often a significant portion of the project to payout the rope off the storage drum, through the capstans and through the buried pipe or between poles.
The aspect of a dual capstan winch that is unique has to do with payout, the removal or stripping of rope from the storage drum. Typically, an operator stands facing a dual capstan winch with a short length of the tail end of the rope between his gloved hand and the machine. Both capstans are turning, the wire lays within all the proper grooves of the capstans, yet no wire is being stripped from the storage drum and no wire is paid from the winch allowing the operator to back away from the winch. The operator begins to walk backwards putting slight tension on the tail end of the rope emanating from the winches capstans, rope is fed out at precisely the velocity the operator is walking. The operator walks back 10 steps and stops, the wire rope stops feeding out the moment he stops and tension is relieved from the rope. During this entire example, the capstans are turning at a speed that would permit the operator to walk quickly, yet he walked slowly. The operator begins walking extremely slowly and the rope is stripped from the storage drum and fed to the operator at the velocity which causes tension to be applied to it.
With the winch only providing additional rope as ‘requested’ by tension on the rope's tail, the winch is often left running full speed with the engine at high RPM's while the job is stopped due to conditions or circumstances not related to the winch. Further, because the winch may be at great distance, even thousands of feet away from the operators, the inclination to idle the winch down or turn it off all together during these slack periods is low. For that reason the present invention allows the winch to idle the engine and stop the capstan rotation after a period of time without tension on the rope tail.
The present invention is directed to a winch system for wire rope takeout to be used in conjunction with a pipe bursting application. The invention is directed to an apparatus and method for stopping operation of a winch system comprising a capstan assembly and a sensor. The method comprises winding a rope about the capstan assembly, providing an actuator operable between a first position and a second position, detecting a position of the rope with the sensor, generating a sensor signal when the rope is at a predetermined position indicative of tension being placed on the rope by an operator, and rotating the capstan assembly in response to the sensor signal when the actuator is in the first position.
The apparatus of the present invention comprises a capstan assembly, a sheave, a tension sensor, and a controller. The capstan assembly comprises two capstans each having a friction groove to engage the wire rope. The capstan assembly is operable in a rotating and non-rotating setting. The tension sensor is disposed between the capstan assembly and the sheave for detecting a position of the rope and generating a sensor signal when the rope is in a predetermined position. The controller receives the sensor signal and places the capstan assembly in the rotating setting when the sensor signal is received and places the capstan assembly in the non-rotating setting when the sensor signal is not received.
With reference now to the Figures in general and
The winch system 12 comprises an external sheave 30 and a control panel 32. The external sheave 30 is adapted to support and direct the rope 13 of the winch system 12. As shown, the external sheave 30 is located proximate the rope exit point 22. The sheave 30 may pivot relative to the frame 10. The control panel 32 controls operations of the winch system 12. As shown, the control panel 32 is covered by a panel door 34. As shown, the control panel 32 is integral with the frame 10. One skilled in the art will appreciate that the control panel 32 may be located remotely from the frame, such as on a remote control, a separate control panel or a mobile device.
With reference now to
The reel 46 is rotated by the reel motor 50. Rotation of the reel 46 causes the rope 13 (
With reference now to
With reference row to
The capstan adjustment switch 90 allows a “course” or “Hi/Lo” speed adjustment for rotation of the capstans 60, 62. Capstan motor pressure switch 92 temporarily removes the capstan motor 54 from hydraulic power such that capstan motor pressure may be adjusted. One skilled in the art will appreciate that while the control panel 32 is shown integral with the frame 10 in
With reference now to
With reference now to
One of ordinary skill will appreciate that wire rope 13 does not instantaneously lose tension due to its tensile load. Thus, the proximity sensor 102 does not immediately send a signal to the controller upon removal of tension from the rope 13. It is only when the lack of tension causes the rope 13 to be removed from the predetermined position that the controller shuts off the capstan assembly 52.
With reference now to
Likewise,
In operation, the controller 101 determines whether rope 13 payout should be activated. When an operator is applying tension to the tail end 104 of the rope 13, the tension sensor 100 indicates that the rope is in its predetermined position and sends a sensor signal to the controller 101. If the tension sensor 100 does not indicate that the rope 13 is in the predetermined position, the engine 40 is reduced to idle speed and capstan assembly 52 rotation is stopped. If tension is detected on the rope 13, the controller 101 checks to see if the joystick 82 is in the first position. If so, the engine 40 is set to high speed and the capstan assembly 52 is rotated as dictated by the flow valve 84. Rotation continues until either the joystick is taken out of the first position or tension is no longer detected.
In this manner, the tail end 104 of the rope 13 is removed from the reel 46 and, for example, fed through a pipe (not shown). Once the rope 13 is fed through the pipe, it may be attached to any commercially known and available pipe bursting technology, and pulled back through the pipe for pipe bursting and replacement operations.
One skilled in the art could envision numerous alternative sensors for tension detection of a wire rope, control configurations, and winch configurations. For example, where joysticks are disclosed herein, other actuators would provide similar functionality without changing the scope of the present invention. These design choices are not meant to be limiting on this invention. The winch system 12 may be used to run other lengths of rope, such as overhead utility lines, underground cables for burying in open trenches, wire for fences, etc. Further, alternative controller logic is considered, such as capstan rotation upon joystick actuation or tension detection, rather than joystick actuation and tension detection.
This application claims the benefit of provisional patent application Ser. No. 61/772,378, filed on Mar. 4, 2013, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61772378 | Mar 2013 | US |