The present application is directed to simple, one- and two-part shelf extensions by which the depth of wire shelving, particularly mounted wire shelving, most especially wall mounted wire shelving, is easily and readily expanded.
Typical mountable wire shelving is comprised of two sets of a multitude of parallel wires, one set transverse, generally perpendicular, to and overlaying the other. The first set of wires is the structural or support wires which form the framework for the shelf, providing rigidity and torsional strength to the shelf. The second set of wires is the stringer wires which are transverse to and bonded/welded to the support wires, typically in a perpendicular orientation. The stringer wires form the upper surface of the shelves and serve as the support surface upon which items are placed in use. Typically, the support wires are of a greater diameter or width than the stringer wires, generally having a diameter or width of 150% to 400% or more of the diameter of the stringer wires.
Wire shelving is produced in continuous lengths of defined widths or depth of 12, 16, 18 and 20 inches. As a consumer product, wire shelving is typically sold as stock items of predefined lengths, e.g., 6 or 12 feet, which the installer then cuts to size. Wire shelving may be planar or have an “L” shaped cross-section along its width. Planar shelves have a linear cross-section and are characterized as having a plurality of support wires which run the length of the shelf, parallel to the mounting surface with a first support wire defining the front edge of the shelf, a second support wire defining the back edge of the shelf, and, optionally, though typically, one or more intermediate support wires there between. For example, a planar shelf having a 6 inch depth will typically comprise just the first and second support wires without an intermediate support wire whereas a planar shelf having a 12 inch depth or more will typically have one or more intermediate support wires which may be at or near the mid-point between the two edge support wires and/or aligned closer to the front edge support to provide additional torsional stability to the shelf under load. The stringer wires are likewise evenly spaced, perpendicular to the support wires and bonded or welded thereto, in either a loose mesh format, typically a 1 inch or so separation, or in a tight mesh format, typically a ½ inch or so spacing.
The more common wire shelving has an “L” shape cross-section where the back of the “L” corresponds to the shelf support surface whose length defines the depth of the shelf and whose construction mimics that of the planar shelf, as described above. The foot of the “L” corresponds to a front edge portion which is typically perpendicular to the shelf support surface and defined by the first or front edge support wire of the planar surface and another support wire parallel to and spaced from said first support wire, the spaced support wire. The front edge portion will typically have a height, i.e., the distance between the first support wire and the spaced support wire, of 3 inches or less, more commonly 2 inches or less. In some embodiments, the first and spaced support wires are connected by spaced rods or wires or equivalent elements which overlay the two or lie in the same plane as the two support wires. Alternatively, the stringer wires of the surface of the shelf are simply extended beyond and bent over the front support wire ending at the spaced support wire. The stringer wires of the “L” shaped shelves, like those of the planar shelf, are also of a loose or tight mesh construction. Finally, while the first, second and intermediate support wires of the planar support portion of the shelf may be in the same configuration as in the planar shelf itself, alternate configurations are also used depending upon the intended end-use of the shelving. Specifically, in addition to or in substitution for the support wires in the midpoint or mid-section of the planar shelf portion, one or more additional coplanar support wires are added parallel to and spaced from, but near, the front edge or second support wire. These wires add additional support and integrity to the shelf near the front edge of the shelf which is important for shelves with anticipated heavy loads, especially heavy loads towards the front of the shelf.
Owing to their simplicity and low cost, wire shelving has been a staple of consumers in installing shelving to pantries, closets, storage areas, etc. Along with the adoption of such shelving, a number of modifications and advances have been made for improved mounting and for allowing adjustments in the placement and size of the wire shelving. For example, Bertam (U.S. Pat. No. 4,624,376) discloses wire shelves wherein the vertical distance between shelves can be adjusted through the use of shelf supports secured to a wall or vertical mounting surface, which supports have a plurality of spaced slots for receiving tabs of a plurality of brackets which, in turn, support the shelf. Mastroclioasa (U.S. Pat. No. 4,669,692) employs support brackets that incorporate a slide element such that the shelf supported by the brackets may be extended and retracted to make items on the shelf more accessible.
While much of the art for adjustable shelves is directed to options for designing the shelf orientation and/or facilitating access to items on the shelf, several developers have addressed the need for adjusting shelf space. For example, Metcalf (U.S. Pat. No. 7,182,210) provides for adjustable shelving wherein the length of the shelf is extended through the use of retractable extension shelf units which pull out from the ends of the shelf. Lee (U.S. Pat. No. 46,446,658) increases the depth of the shelf through the combined use of slidable bracket supports and accordion-like hinged surface panels. Here, as one extends the shelf along the brackets, the accordion-like segments lie flat and provide additional shelf space. In reverse, as one retracts the shelf or pushes the shelf back along the slide, the accordion-like segments fold up. While effective, the shelving of Lee is complex and expensive with limited expansion capability.
Finally, Merl (U.S. Pat. No. 5,133,463) provides a two-piece shelf/bin assembly wherein the two pieces interconnect, with several connection points, to allow one to adjust the depth of the shelf/bin. Unfortunately, the design and construction as taught in Merl does not provide a planar shelf surface: thus, items placed on the shelf can tip over. Additionally, Merl requires that the shelf be emptied prior to making adjustments in the depth. Most critically, the number of possible configurations, hence depth adjustments, of the Merl shelf is limited by the number of intermediate support wires. If only one, then the shelf has just two configurations, that with and that without the extension. In this regard, Merl offers no or very limited versatility, especially if it is to be used with generally available wire shelving.
Thus, while improvements and advancements have been made towards making wire shelving more versatile to accommodate individual needs, especially in closet and pantry design, etc., there is still a need for more versatile and self-supporting shelf extensions for wire shelving.
Similarly, there is still a need for shelf depth extensions that provide and allow for a coplanar or substantially coplanar surface with the existing shelving.
There is a need for shelf depth extensions that can be adjusted to multiple depths: most especially where the adjustment can be made without the need to remove the contents from the shelf.
Furthermore, there is still a need for low-cost, simple shelving having adjustable depths: most preferably extension shelving of one piece and two-piece design which do not require tools for installation and which can be installed by individuals of even the most primitive of DIY skill sets.
Finally, there is a need for universal shelf extensions that are suitable for use with wire shelving of all or most all manufacturers and designs.
The present teaching provides for simple one- and two-piece wire shelf extensions comprising support wires and stringer wires, similar to or the same as those used in the construction of the wire shelving to which the extension is to be attached. The present teaching also provides for connector elements or brackets by which standard commercial stock shelving is added to existing shelving to extend the shelf depth without the need for additional support, e.g., braces, wall mounts, etc.
According to a first embodiment of the present teaching, the shelf extensions are self-supporting, single-unit shelf elements comprising a plurality of support and stringer wires, again with the stringer wires overlaying the support wires and forming the support surface of the shelf extension, wherein the stringer wires extend from one support wire, the front edge extension support wire, to a second extension support wire, the back extension support wire, with or without additional intermediate extension support wires, provided that at least two of the extension stringer wires have extended segments that a) extend past the second extension support wire a distance that is the same as the width of the shelf to which it is to be attached or, if the shelf contains one or more intermediate support wires, a distance that is at least as great as the distance from the front support wire to the nearest intermediate support wire and b) optionally, though preferably, have at least one “U” or “V” shaped cup or recess at the end thereof and/or along the length thereof that are intended to accept a support wire of the wire shelving to which it is to be attached.
According to this first embodiment, the extension is attached by sliding the stringer wire extended segments over the first or front edge support wire and between the stringer wires of the existing shelf until the cup or recess or one of the cups or recesses, as appropriate, engages and accepts that intermediate support that coincides with the added depth of shelf desired. Where the length of the extended segments of the extension stringer wires allow, one can readily adjust the extent to which the width of the shelf in increased by simply tipping the extension to disengage the support wire from the extended segment or, if present, the cup or recess of the extended segment while advancing and/or retracting the shelf extension until the desired depth of shelf is attained or, again if present, the cup or, if multiple cups or recesses, at least one of the cups or recesses corresponds in location to the same or another support wire that provides for the newly desired shelf depth.
According to a second embodiment of the present teaching there is provided a two-piece shelf extension comprising a shelf extension element as provided in the first embodiment in combination with a separate rod or wire element, which may be of the same length and diameter as the extension support elements provided, however, that the “U” or “V” shaped cups or recesses must be present in the stringer wire extended segments. Here the diameter of the separate rod is such that it is capable of being accepted by the cup(s) and/or recess(es) in the stringer wire extended segments and of a length to capture a sufficient number of stringer wire extended segments to provide a stable shelf extension.
According to this second embodiment, the shelf extension is installed in the same manner as is the shelf extension of the first embodiment, but here the separate rod or wire is inserted into the cup or recess after the extension stringer wire extended segments are inserted between the stringer wires of the shelf and below the plane of the shelf so that the separate rod is held between the stringer wire extended segments and the underside of the stringer wires of the shelf. The shelf depth may simply be adjusted to the desired total depth by further inserting or retracting the shelf extension along the plane of the shelf. At most a slight tipping may be necessary if, in making the adjustment, the separate wire or rod is impeded by a support wire of the shelf in which case one merely tips the extension upward so that the wire or rod is able to pass the impeding support wire.
According to a third embodiment of the present teaching there is provided a one-piece extension to be used with an “L” cross-sectioned wired shelf. Though this allows for the construction of a stepped shelf where the shelf extension sits higher than the shelf surface of the existing shelf, most preferably, the shelf extension of this third embodiment is used with “L” cross-sectioned wire shelving where the foot of the “L” extends downward towards the floor such that there is no front edge portion of the shelf extending above the plane of the shelf defined by stringer wires. In this embodiment the shelf extension is similar to that of the first embodiment, at least with respect to its fore end; however, in this instance the stringer wire extended segments extend past the second extension support wire and then bend at a right angle and continue to extend a distance that is that same as or slightly greater than the distance between the front edge support wire and the spaced support wire of the front edge portion of the shelf to which the shelf extension is to be connected. The bend in the stringer wire extended segment is at least as far removed from the second extension support wire as will allow the front edge support wire of the existing shelf to fit between the bent stringer wire extended segment at the point of the bend and the second or back extension support wire. Preferably the bend is at a point that is at least one-half inch, more preferably about one inch from the second extension support wire. Optionally, though preferably, the free end of the stringer wire extended segment is bent to provide a “J” shape to the bent portion where the foot of the “J” is positioned so that it will allow the spaced support wire of the foot of the existing shelf to sit in curve of the “J”. Preferably, especially to allow for universal use with the product of multiple manufactures, the length of the bent portion of the stringer wire extended segment is of a length that matches the largest spacing between the front edge support and the spaced support of commercial product. As an option, the upper surface of the bent portion of the extended segment may have a plurality of “U” or “V” shaped cups or recesses that coincide with the spacing of the first and spaced support wires of other commercial products. As with the first embodiment, it is not necessary that all extension stringer wires of the shelf extension have the extended segment. Rather, it is only necessary that a sufficient number of the extension stringer wires have an extended segment as will provide sufficient strength to hold up and provide stability to the shelf extension, especially in consideration of the added weight of whatever is to be placed on the shelf. Alternatively or in addition, again as with the first embodiment, some or all of those stringer wires of the extension that have the extended segment may be of a larger diameter wire than the other stringer wires so as to ensure adequate support and strength.
The shelf extension of this embodiment is applied by inserting the stringer wire extended segments between the stringer wires of the planar surface of the wire shelf behind the front edge support wire of the shelf and lowering the extension at an angle so that the stringer wire extended segments fall in front of the spaced support wire. Once the shelf extension is inserted sufficiently so that the front support wire of the existing shelf falls in the bend of the extended segment, the front edge of the shelf extension is then lowered so that the upper surface of the free end of the extended segment rests against the outer surface of the spaced support wire.
According to a fourth and a fifth embodiment of the present teaching there are provided shelf extension brackets, generally a single piece, having an aft section and a fore section wherein the aft section mimics the design and ultimately the purpose of the stringer wire extended segments of the first and third embodiments, respectively, and the fore section defines a seat for a wire shelf segment: the seat, in use, extending across the width of the shelf segment. The brackets of the fourth and fifth embodiments may be made of a composite material, a molded plastic or a formed metal strip or rod/wire. Preferably, the brackets are formed of a metal rod of the same or a similar diameter to the support wires of the wire shelf and have a diameter or thickness that is at least as great as the thickness or diameter of the support wires of the wire shelf segments, preferably 1× to 3× or more the thickness or diameter of the wire shelf segments.
In the fourth embodiment, the aft section of the shelf extension bracket may have the shape, length, design and elements of any of the stringer wire extended segments of the first embodiment. Typically, because the extension brackets are used with wire shelf segments of standard shelving, where recesses or cups are present in the aft portion, only one or at most two cups or recesses for accepting a support wire of a wire shelf are present, one at its free end and the other, if present, along the length thereof. Here the placement of the cups or recesses and the length of the aft portion of the shelf bracket are selected to allow the fore section of the shelf extension bracket to accept wire shelf segments having a depth of either a 6 inches or 12 inches. The design could also be set to allow for acceptance of a wire shelf segment having a depth of 16 inches; however, it is believed that wire shelf segments of greater than 12 inches in depth may lead to instability, particularly if the weight of the items to be placed on the shelf is significant. Added stability may be provided by shaping the aft end of the bracket to allow for two or more shelf supports wires to be engaged simultaneously by the aft section of the bracket, i.e., the aft end of the bracket in use lies below two or more support wires provided that the front edge wire support lies below the bracket. Alternatively, the system may employ other supports that connect the wire shelf segments to a wall or other mounting surface.
In the fifth embodiment, the aft section of the shelf extension bracket will be substantially of the same shape, design, length and elements as any of the extended segments of the third embodiment discussed above.
In contrast to the marked difference in the aft portions of the extension brackets of the fourth and fifth embodiments, the shape, design, length, and elements of the fore section of the brackets of the fourth and fifth embodiments are the same. As noted, the fore section of the bracket serves as a seat for a wire shelf segment. According to a first option, the fore section has the shape of the cross-section of a tray wherein the tray has a length that coincides with the width of the wire shelf segment to be inserted therein and the depth of the tray is such that when the wire shelf segment is placed therein the stringer wires of the wire shelf segment are coplanar or essentially coplanar with the uppermost surface of the extension bracket. Most preferably, when the wire shelf segment is placed in the tray, its surface is coplanar with the existing wire shelf to which it is attached. In these embodiments, the length of the tray may be sized to accept the largest wire shelf segment contemplated for the extension bracket making it suitable for all sizes. Alternatively, multiple extension brackets may be produced, each having a tray length that coincides with the width of the wire shelf segment to be used. Here, the wire shelf segment is held in place by the walls of the tray or may be held in place by recesses and/or stops along the upper surface of the extension bracket in the tray: most notably, the length corresponds to the distance between the front and back edge support wires of the wire shelf segment to be placed therein and, as noted above, the height of the walls of the tray (the depth of the tray) is such that when a wire shelf segment is placed in the tray, the surface thereof is substantially coplanar with the shelf to which it is attached.
Alternatively, the fore section may have a plurality of “U” shape cups or recesses in the upper surface of the extension bracket, one at or near the free end of the extension bracket for accepting the front support wire of the wire shelf segment and the others placed along the upper surface of the fore section of the extension bracket so that they correspond to the back edge support wire and/or intermediate support wires of the wire shelf segments to be seated. The extent of the depth of the “U” shaped cups or recesses, as in all embodiments, are the same and are preferably set to accept the support wires while maintaining a coplanar of substantially coplanar surface between the existing shelf and the wire shelf segment. This particular extension bracket design has the added benefit of being able to accept wire shelf segments of different depths/widths. When using narrow width wire shelf segments they may be placed in the recesses so that a gap exists in the overall shelf surface or such that no gap exists in the overall shelf surface and the fore section of the extension brackets present arms from which additional items may be hung. Alternatively, to maintain a continuous shelf top, when inserting the extended segments through the stringer wires of the existing shelf one or more of the cups or recesses may also be passed through the plane of the shelf so that when the extension bracket is lowered and rests on the upper surface of the first support wire of the existing shelf, that first support wire lies between two cups or recesses in the fore section of the extension bracket. Indeed, depending upon its positioning and the design of the shelf to which it is attached, the positioning of the recess aft of the first support wire may coincide with an intermediate support wire of the shelf in which case it now serves and acts as a part of the aft section of the extension bracket.
In use, the brackets of the fourth and fifth embodiments are employed in pairs or, more preferably, multiples, spaced along the existing shelf. Each is inserted as in the case of the first and third embodiments, respectively, except that once the brackets are in place, the wire shelf segment is then added to the fore section of the brackets.
Additional variations and alterations are possible. For instance, in each of the foregoing embodiments, some or all of the “U” shapes cups or recesses may be sized to provide a slight interference fit with the support wires they engage. Additionally, where the stringer wire extended segments and/or extension brackets have a diameter that is greater than the stringer wires of the shelf, those stringer wire extended segments and shelf extension brackets may have one or more recesses formed into their lower surface at the point(s) where they will ride over the front edge support wire and any other intermediate support wires The presence of these recesses allows the shelf extension or bracket, as appropriate, to sit lower on the support wires of the existing shelf. However, the depth of these recesses should be less than half, preferably no more than one-third, the diameter or width of the stringer wire extended segment or extension bracket to avoid disrupting or compromising the integrity of the stringer wire extended segment or extension bracket, as appropriate.
Though defined in the background, for clarity and simplicity sake the following are the definitions of the primary components of the structural elements of the present teaching.
As used herein the terms “depth” and “width” in reference to a shelf or shelf extension are used interchangeably and refer to the distance from the front of a shelf to the back of the shelf. The “length” of a shelf is the distance a shelf extends along the wall or other mounting surface.
The term “self-supporting” when used in relation to a shelf extension means that the shelf extension is able to be supported by the existing shelf to which it is attached: though a user may opt to add additional support to connect the shelf extension to a wall or other mounting surface using conventional support/connector elements. The latter may be especially desirable and preferred where a shelf extension is to have a heavy load and/or the shelf extension if greater than 12 inches wide. Generally speaking, all of the embodiments are capable of being self-supporting if extended segments and/or brackets proper diameter or thickness and/or strength are employed in sufficient number: all of which is a matter of common sense and/or is easily found through simple testing.
“Wire” refers to a rod or rod-like element, most preferably having a circular cross-section, which may be made of a composite, plastic or metal, preferably metal, with or without a plastic coating, whose diameters are consistent with those used in the wire shelf industry. Generally, the diameters are such that a reasonable length will self-support, i.e., will stand on end without collapsing over. If a plastic or rubber-like coating is present, it is typically applied after assembly of the units, i.e., the shelf extension, extension bracket, wire shelf segments, etc., would be coated as a whole, as is conventional in the art.
An “upwardly facing” cup or recess is one that is formed in the surface of the stringer wire that is opposite that which is bonded to the support wire.
For purposes of further clarification and understanding, as used herein the terms “may”, “can be”, and “is” are used interchangeably. Specifically, the term “may” is intended to mean that the feature is or can be present or is an option that is contemplated and enabled, not that it is merely a possibility of unknown result. In this regard, e.g., unless contrary to the context of the discussion, the term “may have” means that it “will have”, “can have”, or “is”, though other options exist.
Similarly, the term “coplanar” as used herein, especially with respect to the shelf extension and the pre-existing shelf, is to be understood as contemplating both actual coplanar relationship as well as planes that are parallel to but slightly removed from one another, preferably no more than ⅛th inch, more preferably no more than 1/16th inch, and/or planes that are at a slight angle relative to one another, preferably no more than a 10° angle, more preferably no more than a 5° angle.
Finally, while the cups and recesses are most often characterized herein as being “U or V” shaped, it is to be understood that such term includes any shape recess or indentation which cradles or acts as a seat for the support wire. For example, the cup or shape may be of a partial “U” or “V”, especially where one side is shorter than the other or missing altogether, or have a shape similar to the tail of a “J”. The characterization as “U” and/or “V” shape is merely for ease of visualization of the cup or recess while reading the specification.
The present teachings provide for simple one- and two-piece wire shelf extensions as well as wire shelf extension brackets by which standard commercial, stock shelving may be added to existing shelving to extend the shelf depth without the need for additional support, e.g., braces, wall mounts, etc.
According to the first embodiment of the present teaching, the shelf extensions are self-supporting, single-unit shelf elements comprising a plurality of support and stringer wires, again with the stringer wires overlaying the support wires and forming the support surface of the shelf extension, wherein the stringer wires extend from one support wire, the front edge extension support wire, to a second extension support wire, the back extension support wire, with or without additional intermediate extension support wires, provided that at least two of the extension stringer wires have extended segments that a) extend past the second extension support wire a distance that is the same as the width of the shelf to which it is to be attached or, if the shelf contains one or more intermediate support wires, a distance that is at least as great as the distance from the front support wire to the nearest intermediate support wire and b) optionally, though preferably, have at least one “U” or “V” shaped cup or recess at the end thereof and/or along the length thereof that are intended to accept a support wire of the wire shelving to which it is to be attached.
The shelf extensions of the present teaching are of varying widths, but are most typically from about 2 to about 16 inches, preferably from about 6 to about 12 inches, excluding the extended segment. In general this represents the width of the shelf portion of the shelf extension and it generally measured from the front edge extension support to the back extension support. Shelf extensions of greater than 16 inches in width are possible, though not advised since that will create instability and, most likely, require additional support such mounting, directly or indirectly to a wall or other mounting or support surface or element. Shelf extension of 12 inches or more in width will preferably have at least one intermediate shelf extension support wire, most typically at the midpoint of the width of the shelf.
The extension stringer wires will extend from the front extension support to the back extension support provided, as noted previously, that at least two of the extension stringer wires have an extended segment that extends past the second extension support wire a distance that is the same as width of the shelf to which it is to be attached or, if the shelf contains one or more intermediate support wires, a distance that is at least as great as the distance from the front support wire to the nearest intermediate support wire. Typically, the extended segments have a length of at least 1 to 2 inches up to 12 inches, preferably a length of 2 to 10 inches, more preferably 4 to 8 inches. Generally speaking, all of the extension stringer wires are of the same diameter or thickness, typically the same as or similar to that of the shelf to which the shelf extension is to be attached, and have the extended segments. However, such is not necessary depending upon the load to be borne by the shelf extension and/or the diameter or thickness of the stringer wires having the extended segment, most especially their strength and resistance to bending under load. For example, from a cost perspective and ease of use perspective, it may be more desirable to stagger the extension stringer wires having the extended segment whereby the extended segment is present on every other, every third, every fourth, etc. extension stringer wire. Most preferably, especially where the extension stringer wires are in a loose arrangement, e.g., spaced every inch or so, an extended segment will be present on every fourth or sixth stringer wire. This generally corresponds to a shelf extension where an extended segment is located every four or six inches along the length of the shelf extension: though 12 inch spacing is also possible. Most preferably, especially when the spacing between extended segments is large, especially on shelving intended to carry a heavy load, and/or when fewer than all of the extension stringer wires have the extended segment, the extension stringer wires with the extended segment will have a diameter or thickness that is greater than the other extension stringer wires: typically 1× to 3× or more the thickness or diameter of the extension stringer wires without the extended segments.
Optionally, though preferably, the extended segments of the extension stringer wires will have one or more upwardly facing “U” or “V” shaped cups or recesses at the end thereof and/or along the length thereof that are intended to accept a support wire of the wire shelving to which it is to be attached. The presence of the “U” or “V” shaped cups or recesses, particularly at the ends of the extended segments prevents the shelf extension from unintentionally or unexpectedly disengaging from the support against which it is cantilevered as may happen if the extended segment ends at or just past the support wire to which it is biased and the shelf is accidently pulled or moved. Where the cup or recess is at the end of the extension stringer wire extended segment, the height of the aft wall of the cup or recess is preferably at least one quarter the thickness of the support wire to which it is to be attached, more preferably at least one half the thickness of the support wire to which it is to be attached, most preferably the same thickness as the support wire to which is it to be attached. In this regard, the cup or recess may have more of a “J” shape, with or without the upturned end, though most preferably with an upturned end so that there is a minimal lip portion to the aft wall of the cup or recess. Specifically, because the shelf extension is held in place through a cantilever set up, the combined action of the upward force of the extended segment against the support wire and the lip on the end of the extended segment serve to lock the shelf extension in place, particularly where a full or mostly full “U” shaped cup or recess is present. Finally, while the aft wall of the cup or recess could be greater in height than the thickness or diameter of the support wire, most preferably is it no more than the combined width of the support wire and the stringer wire of the shelf to which the extension is to be attached. If greater, then one risks the ends of the extended segments catching on the items to be placed on the shelf.
The width and depth of the “U” or “V” shaped cups or recesses along the length of the extended segment, and as noted in the previous paragraph, at the end of the extended segment, are sized to serve as a seat for the support wires wherein at least one-quarter, preferably at least one-third, more preferably at least about one-half the diameter or thickness of the support wire is able to be situated in the cup or recess. Most preferably, the depth of the recess is the same as the thickness or diameter of the support wire to be situated therein unless the extension has another bend or angle to it, so that the shelf extension will lie flat in a coplanar relationship with the shelf to which it is to be attached. Similarly, the width of the cup or recess is at least sufficient to allow the support to sit in the bottom of the cup or recess. Such fit may be a loose fit or there may be a slight interference fit so that the two cannot become disengaged without some deliberate effort.
As noted, a cup or recess may be at the end of the extended segment or one or more cups or recesses may be along the upward surface of the extended segment or both. By adding a plurality of cups or recesses, especially if there is only one support wire to which it can connect, one is able to add adjustability to the depth of the shelf extension. Where there are multiple support wires to which it can connect, a single cup or recess at the end of the extended segment will suffice since one is able to make adjustments to the shelf depth by selection of the support wire to which the extended segment is to be connected. Still, a plurality of cups or recesses and a plurality of support wires provide even greater versatility in use enabling the user to custom size the depth of the shelf extension to meet their needs.
As noted, the extent to which the shelf may be extended is dependent upon the number and location of the support wires in the wire shelving to which the extended segment can be attached and the length of the extended segment and/or the number and spacing of the cups or recesses in the stringer wire extended segments. At a minimum, the length of the stringer wire extended segments is such that when the back extension support wire lies next to the outer face of the front edge of the wire shelf, the cup or recess on the extension stringer wire extended segment is able to accept the first of the intermediate supports nearest the first or front support wire of the shelf or, if none, the back or second support wire of the shelf. The maximum length of the extension stringer wire extended segment is the width of the shelf to which it is to be attached. However; since most wire shelving, particularly that of at least a twelve inch width, has at least one intermediate support wire, most typically at or near the midpoint of the width of the shelf, a universal shelf extension will have extended segments whose length is or is a little more than one-half the width of the shelf to which it is to be attached. In this way, the cup or recess of the stringer wire extended segment will be capable of being received by the intermediate support wire nearest the mid-point of the shelf depth. Of course, much shorter stringer wire extended segments are suitable where there are intermediate support wires near the front edge support of the wire shelf. Typically, the stringer wire extended segment is at least about 2 inches, generally from 2 to 10, preferably from 4 to 8 inches in length.
The shelf extensions of this embodiment may be used to extend the depth of planar shelves as well as those having an “L” shaped cross-section as described in the Background above. And, like the shelf to which the extension is to be attached, the shelf extension may be planar or have an “L” shaped cross-section. Again, the back of the “L” corresponds to the shelf surface of the shelf extension and the foot of the “L” to a front face of the shelf extension. Here, the foot of the “L” may either extend upward from the plane of the shelf extension, acting as a shelf lip to prevent items from falling off the shelf, or downward to provide additional structural rigidity and/or an element to hang items off of the front edge of the extended shelf. Generally speaking, the height of the front edge of the extended shelf will be from one to three inches and its construction or make-up is the same as that discussed in the Background section for the shelf itself.
According to this first embodiment, the shelf extension is attached by inserting the stringer wire extended segments at an angle, generally less than 45°, relative to the plane of the existing shelf over the first or front edge support wire and between the stringer wires of the existing shelf until the extended segment, most preferably if present, the cup or recess or one of the cups or recesses on the extended segment, engages and accepts the support wire to which it is to be connected and, if there are multiple options, that support that coincides with the added depth of shelf desired. Thereafter, the front edge of the shelf extension is lowered so that the plane of the shelf extension is coplanar with the existing shelf. At this point, the back extension support wire will be forward of the front edge support wire of the shelf. Assuming the length of the extended segments and/or the presence of intermediate support wires allow, one can readily adjust the extent to which the width of the shelf is increased by simply pulling or pushing the shelf extension along the plane of the shelf surface or, if the cups or recesses are present, by simply tipping the body of the shelf extension upward to disengage the support wire from the cup or recess of the extended segment and advancing or retracting the shelf extension until the cup or recess corresponds in location to another support wire or, if multiple cups or recesses, one of the cups or recesses corresponds in location to the same support wire or another support wire that provides for the newly desired shelf depth at which point the shelf extension is returned to its planar orientation. Notwithstanding the foregoing, if the extended segment is to be connected to a different support wire, it may be necessary to either remove the shelf extension altogether and reinsert it at the proper location. Alternatively, especially if one does not want to remove the items from the shelf, after disengaging the recess from the support wire, one may simply retract the shelf extension sufficient to have the end of the extended segment clear the support wire to which it was connected, tilt the body of the shelf extension to have the recess rise above the plane of the shelf and then either insert or retract the shelf extension so the end of the extended segment is forward of the support wire to which it is to be connected and then, tilting the body of the shelf extension upward so the recesses fall below the plane of the shelf while inserting the shelf extension until the recess aligns with the new support wire to which it is to be connected tilting the body of the shelf extension downward to allow the cup to capture the new support wire.
According to a second embodiment of the present teaching there is provided a two-piece shelf extension comprising a shelf extension element as provided in the first embodiment in combination with a separate rod or wire element, which may be of the same length and diameter as the extension support elements provided, however, that the “U” or “V” shaped cups or recesses must be present in the stringer wire extended segments. Generally speaking, the separate rod is made of metal, a molded plastic or a composite material and will have a thickness or diameter that is preferably no more than the combined width of the support wire and the stringer wire of the shelf to which the extension is to be attached. Furthermore, while it is preferable that the cup or recess have full sidewalls on both sides, i.e., a full “U” or “V” shape, such is not necessary as long as a least some piece of the aft wall is present to prevent the rod from slipping out. Preferably the height of the aft wall of the cup or recess is at least one quarter the thickness of the separate rod, more preferably at least one half the thickness of the separate rod, most preferably the same thickness as the separate rod. Additionally, the depth of the recess is such that when the shelf extension with the rod is in place, the shelf extension lies coplanar with the shelf to which it is attached. Without the lip, the separate rod could merely slip out of the cup or recess. Finally, the diameter or thickness of the separate rod is such that it is capable of being accepted by the cup(s) and/or recess(es) in the extension stringer wire extended segments and is of a length to capture a sufficient number of stringer wire extended segments to provide for a stable shelf extension.
Most preferably, in this embodiment the extension stringer wires have a single cup or recess at or near their end point of the extended segments. The extended segments themselves are of a length that is at least 1 to 2 inches but no greater that the width of the existing shelf to which it is to be attached. Preferably, the length of the extended segments is about one-half the width of the existing shelf, generally at least 1 to 2 inches up to 12 inches, preferably a length of from 2 to 10, more preferably from 4 to 8, inches. As in the first embodiment, the extended segments need not be present as part of each extension stringer wire so long as a sufficient number of extension stringer wires and/or extension stringer wires of sufficient thickness or diameter and/or strength have extended segment to secure and stabilize the shelf extension, all as discussed above.
According to this second embodiment, the shelf extension is applied in the same manner as that of the first embodiment except that after the extended segments are passed below the plane of the shelf, the separate rod is inserted into the cup or recesses of the extended segments. As one then lowers the body of the shelf extension, as described above, the separate rod engages the under surface of the shelf to secure the shelf extension. The shelf depth may simply be adjusted to the desired total depth by further inserting or retracting the shelf extension along the plane of the shelf. At most a slight tipping may be necessary if, in making the adjustment, movement of the separate is impeded by a support wire of the shelf in which case one merely tips the body of the shelf extension upward so that the separate rod is able to pass the impeding support wire.
According to a third embodiment of the present teaching there is provided a one-piece extension to be used with an “L” cross-sectioned wire shelf. Though this allows for the construction of a stepped shelf where the shelf extension sits higher than the shelf surface of the existing shelf (i.e., where the foot of the “L” extends above the plane of the shelf rather than below it), most preferably, the shelf extension of this third embodiment is used with “L” cross-sectioned wire shelving where the foot of the “L” extends downward towards the floor such that there is no front edge portion of the shelf extending above the plane of the shelf defined by stringer wires. In this embodiment the shelf extension is similar in construction and design to that of the first embodiment except that in this instance the stringer wire extended segments extend past the second extension support wire and then bend at a right angle, or nearly a right angle, below and away from the support surface of the shelf extension and continue to extend a distance that is the same as or slightly greater than the distance between the front edge support wire and the spaced support wire of the front face of the shelf to which the shelf extension is to be attached: typically 1 to 3 inches. The bend in the stringer wire extended segment is at least as far removed from the second extension support wire as will allow the front edge support wire of the existing shelf to sit in the vertex of the right angle defined by the bent extension stringer wire between the bent stringer wire extended segment at the point of the bend and the second or back extension support wire. Preferably the bend is at a point that is at least one-half inch, more preferably about 1 to 2 inches, from the second extension support wire.
Although the discussion above refers to a single right angle, or nearly so, the transition in the extended segment from that portion which is coplanar with the surface of the shelf extension to that portion which is or is essentially perpendicular to the surface of the shelf extension may have a more complicated shape, e.g., an elongated “S” like shape where the first bend is 180° or nearly so before the bend is reversed about 90° to allow the extended segment to connect with the spaced support wire while maintaining a surface of the shelf extension that is essentially coplanar with the surface of the existing shelf. With this structure, in use, the front support wire of the existing shelf will sit in the curve of the top portion of the “5”.
Optionally, though preferably, the free end of the stringer wire extended segment is bent to provide a “J” shape to the bent portion such that the foot of the “J” is positioned so that it will allow the spaced support wire of the foot of the existing shelf to sit in curve of the “J”. The extent or length of the foot of the “J” may vary from one that defines an eighth of a circle to one that is a full semi-circle, preferably one that defines a quarter of a circle to a full semi-circle. Alternatively, the foot of the “J” may resemble a “U” on its side or a backwards “C”, with the opening facing away from the shelf extension, wherein the spaced support wire sits in the trough of the “U” in use.
As noted, the bend in the extended segment is at a right angle or near right angle to the plane of the body of the shelf extension. In order to ensure that the shelf extension lies in the same plane as the shelf to which it is/is to be attached it is preferred that the overall angle of the bent portion of the extended segment be a few degrees less than 90° so as to account for the fact that the extended segment extends from the backside of the front support wire to the front side of the spaced support wire. Alternatively, or in addition, the foot of the “J” may be a formed as a cup or recess, similar to or the same as the “U” shaped cup or recess of the first embodiment or it may itself be first bent back and then forward to make a backwards “C” shape whereby the spaced support sits in the cup or recess and the extended segment is perpendicular to the surface of the shelf extension.
As another option, especially to allow for universal use with the products of multiple manufacturers and/or the addition of a hanger rod, the length of the bent portion of the stringer wire extended segment is elongated to match or be longer than the largest spacing between the front edge support and the spaced support of commercial products, respectively, with our without, though preferably with, one or more “U” or “V” shaped cups or recesses in the upper surface (i.e., the aft facing vertical surface in use) thereof. Such bent portions may be from 1 to 6, preferably from 2 to 6, more preferably from 3 to 4, inches in length, i.e., from the bend to the end of the extended segment. Where recesses are present, their placement will preferably coincide with the spacing of the spaced support wires of the various commercial products. In this embodiment, the ends of the extended segments may be in a “J” shape and the shelf extension may be used with a separate rod, as in the second embodiment, except here the rod acts as a hanger or bar. Here the “J” has a sufficiently high outer lip so that the separate rod does not inadvertently fall out of the extended segment. Alternatively, once installed the free ends of the bent portion, i.e., the vertical portion, of the extended segments may be cut to size and the ends capped or otherwise modified to shield the sharp edges formed when cutting the wires.
As with the first embodiment, it is not necessary that all stringer wires of the shelf extension have the extended segment. Rather, as discussed above, it is only necessary that a sufficient number of the extension stringer wires have the extended segment as will provide sufficient strength to hold up the shelf extension with the added weight of whatever is to be placed on the shelf. Alternatively or in addition, again as with the first embodiment, some or all of those stringer wires of the shelf extension that have the extended segment may be of a larger diameter wire than the other stringer wires so as to ensure adequate support and strength.
The shelf extension of this embodiment is applied by inserting the extension stringer wire extended segments downward through the plane of the shelf and between the stringer wires of the existing shelf behind the front edge support wire, but before any intermediate support wires, if any, and lowering the extension at an angle so that the stringer wire extended segments fall in front of the spaced support wire. The body of the shelf extension is then lowered so that the surface of the shelf extension is coplanar with the shelf and the front edge support wire of the shelf sits in the right angle bend of the stringer wire extended segment and the free end of the stringer wire extended segment rests against the outer surface of the space support wire. Alternatively, where the end of the extended segments have a “U” or backwards “C” shaped cup or recess, the extension stringer wires are inserted until the “U” or backwards “C” shaped cup or recess accepts the spaced support and then the front edge of the shelf extension is lowered while being brought forward until the shelf extension rests on the front support wire of the existing shelf.
According to a fourth and a fifth embodiment of the present teaching there are provided shelf extension brackets having an aft section and a fore section wherein the aft section mimics the design and ultimately the purpose of the stringer wire extended segments of the first and third embodiments, respectively, and the fore section defines a seat for a wire shelf segment: the seat, in use, extending across the width of the shelf segment. The brackets of the fourth and fifth embodiments may be made of a composite material, a molded plastic or a formed metal strip or rod/wire. Preferably, the brackets are formed of a metal rod whose width or diameter is from one that is the same as or a similar diameter to that of the support wires of the wire shelf to two to three times or more the diameter of the support wires.
In the fourth embodiment, the aft section of the shelf extension bracket may have the shape, length, design and elements of any of the stringer wire extended segments of the first embodiment. Typically, because the extension brackets are used with wire shelf segments of standard shelving, where recesses or cups are present in the aft portion, only one or at most two cups or recesses for accepting a support wire of a wire shelf are present, one at its free end and the other, if present, along the length thereof. Here the placement of the cups or recesses and the length of the aft portion of the shelf bracket are preferably selected to allow the fore section of the shelf extension bracket to accept wire shelf segments having a depth of either 6 inches or 12 inches. The design could also be set to allow for acceptance of a wire shelf segment having a depth of 16 inches; however, it is believed that wire shelf segments of greater than 12 inches in depth may lead to instability, particularly if the weight of the items to be placed on the shelf is significant. Added stability may be provided by shaping the aft end of the bracket to allow for two or more shelf supports wires to be engaged simultaneously by the aft section of the bracket, i.e., the aft end of the bracket in use lies below two or more support wires provided that the front edge wire support lies below the bracket. Alternatively, the system may employ other supports that connect the wire shelf segments to a wall or other mounting surface.
In the fifth embodiment, the aft section of the shelf extension bracket will be substantially of the same shape, design, length and construction as any of the extended segments of the extension stringer wires of the third embodiment. This embodiment, like the third embodiment discussed above, is directed for use with those existing shelves having an “L” shaped cross-section.
In contrast to the aft sections of the brackets of the fourth and fifth embodiments which, as noted above, are markedly different, the fore sections of the brackets of the fourth and fifth embodiments are the same. The fore section of the bracket serves as a seat or tray for a wire shelf segment. According to a first option, the fore section of the extension bracket has the shape of the cross-section of a tray wherein the tray has a length that coincides with the width of the wire segment to be inserted therein and the depth of the tray is such that when the wire shelf segment is placed therein the stringer wires of the wire shelf segment are coplanar or essentially coplanar with the uppermost surface of the extension bracket. Most preferably, when the wire shelf segment is placed in the tray, its surface is coplanar with the existing wire shelf to which it is attached. In these embodiments, the length of the tray may be sized to accept the largest wire shelf segment contemplated for the extension bracket making it suitable for all sizes. Alternatively, extension brackets of multiple tray lengths may be produced wherein the lengths coincide with the commercially available widths of wire shelving. Here, where the width of the tray coincides with the width of the wire shelf segment, the latter is held in place by the walls of the tray. Alternatively, or in addition thereto, especially if the tray is an extended tray to allow for wire shelf segments of varying widths, the tray surface may have multiple recesses and/or stops along the upper surface which coincide with the spacing of the support wires of the wire shelf segments to seat/hold the wire shelf segment in place in the tray.
In an alternative embodiment, a plurality of “U” shape cups or recesses may be present in the upper surface of the fore section, one at or near the free end of the fore section of the extension bracket for accepting the front support wire of the wire shelf segment and the others placed along the upper surface of the fore section of the extension bracket so that they correspond to the back edge support wire and/or any intermediate support wires of the wire shelf segments to be seated therein. The extent of the depth of the “U” shaped cups or recesses, as in all embodiments, are the same and are preferably set to accept the support wires while maintaining a coplanar of substantially coplanar surface between the existing shelf and the wire shelf segment.
When the fore end of the extension bracket has a plurality of recesses in addition to the one at the free end of the fore section, the shelf may be used with wire shelf segments of different widths. When using narrow width wire shelf segments they may be placed in the recesses so that a gap exists in the overall shelf surface or such that no gap exists in the overall shelf surface and the fore section of the extension brackets present arms from which additional items may be hung. Alternatively, and preferably, to maintain a continuous shelf top, the placement of the extension bracket on the existing shelf may be adjusted to accommodate the different wire shelf segment widths: inserted deeper into the existing shelf for narrower wire shelf segments and retracted from the existing shelf for wider wire shelf segments. Furthermore, the point at which the extension bracket is inserted through the plane of the existing shelf may also vary depending upon the width of the wire shelf segment to be employed and the positioning of the recesses on the extension bracket and the support wires of the existing shelf. Specifically, especially with wider wire shelf segments, the aft end of the extension bracket is inserted through the plane of the shelf between the first support wire and the first or fore intermediate support wire. With narrower wire shelf segments, depending upon the length of the extended segment and the relative position of the recess intended for the second or back edge support wire of the wide shelf segment, it may be necessary to insert the at end of the extension bracket between the fore intermediate support wire and the back or second intermediate support wires of the existing shelf unless the alignment is such that the recess intended for the back support wire of the wide shelf segment aligns with the fore intermediate support of the existing shelf, in which case it now serves as a seat for the existing shelf support wire.
In use, the brackets of the fourth and fifth embodiments are employed in pairs or, more preferably, multiples, spaced along the existing shelf. As with the previous embodiments, the spacing may be every 4, 6, 8, etc. inches depending, in part, upon the strength of the extension brackets and the load to be borne by the shelf. In any event, each of the extension brackets as in the case of the first and third embodiments, respectively, or as noted immediately above, except that once the brackets are in place, the wire shelf segment is then added to the seat or tray of the fore portion of the brackets.
Additional variations and alterations of each of the foregoing embodiments are contemplated and possible as will be readily appreciated and recognized by those skilled in the art having the knowledge and teaching hereof. For instance, in each of the foregoing embodiments, some or all of the “U” shapes cups or recesses may be sized to provide a slight interference fit with the support wires they engage. Such an interference fit will prevent the unintended or accidental disengagement of the shelf extension and/or shelf extension brackets during use. Additionally, where the stringer wire extended segments and/or brackets have a diameter that is greater than the stringer wires of the shelf to which it is to be attached, those stringer wire extended segments and shelf extension brackets may have one or more recesses formed into their lower surface at the point(s) where they will ride over the front edge support wire and any other intermediate support wires to allow the same to sit lower on those support wires: thereby bringing the plane of the shelf extension more coplanar with the existing shelf, particularly in those instances where not all of the extension stringer wires have the extended segment. However, the depth of these recesses should be less than half, preferably no more than one-third, the diameter or width of the stringer wire extended segment or extension bracket to avoid disrupting or compromising the integrity of the stringer wire extended segment or extension bracket, as appropriate. This is particularly important where the shelf is to hold a heavy load. Furthermore, where the plane of the shelf extension or the wire shelf segment sits above the plane of the shelf to which it is attached, there is concern that objects being removed from the expanded shelf may catch on the aft ends of the stringer wires that do not have extended segments. Here, this concern can be allayed by simply turning down the ends of those stringer wires so they angle away from the plane of the shelf.
Having described the venous embodiments of the present teachings in general terms, attention is now directed to the appended drawings where various iterations or each embodiment are presented, as described below. In the drawings, to help distinguish between the elements of the articles of the present teaching and those of the existing shelf to which it is attached, the latter is drawn in broken lines.
Installation of the shelf extension 91 of
The aft section 307 of the extension bracket 301 comprises an elongated body having a “U” shaped cup or a recess 319 at or near the free end of the aft portion of the extension bracket. This cup or recess, as in the previous embodiments, serves as a seat for the intermediate support wire 306. As discussed above, the aft section of the extension bracket may employ and embody any of the iterations and alterations noted above for the extended segments of the extension stringer wires of the first and second embodiment.
Although the extension bracket may have a diameter or width that is the same as the stringer wires 321 of the wire shelf segment or the stringer wires 322 of the existing shelf, preferably, as shown, they have a somewhat greater diameter or width to allow for added strength. And, although not shown, these brackets may also have a scalloped recess in the underside of the aft portion of the extension bracket which coincide with the first support wire of the existing shelf so that the bracket will sit lower along the surface of the existing shelf in use.
The aft section 407 of the extension bracket 401 otherwise mimics in all respects and iterations the extended segment of the extension stringer wires of the third embodiment and those embodiments shown in
Although the wire shelf extensions and extension bracket have been described with respect to specific embodiments and the appended drawings, it should be appreciated that the present teachings are not limited thereto and other embodiments utilizing the concepts expressed herein are intended and contemplated without departing from the scope of the present teaching as intended in the true spirit and scope of the invention. It is therefore intended that any and all modifications variations, or equivalents that fall within the spirit and scope of the underlying principles are within the scope of this invention and are covered by the appended claims.
The present patent application is a divisional application of pending U.S. patent application Ser. No. 15/226,142 filed Aug. 2, 2016 which is a divisional application of U.S. patent application Ser. No. 14/935,576 filed on Nov. 9, 2015, now U.S. Pat. No. 9,433,290 B1, which is a continuation-in-part of abandoned U.S. patent application Ser. No. 14/625,389 filed on Feb. 18, 2015.
Number | Name | Date | Kind |
---|---|---|---|
2198584 | Swably | Apr 1940 | A |
2956689 | der Togt | Oct 1960 | A |
3403789 | LaMorte | Oct 1968 | A |
3435958 | Chesley | Apr 1969 | A |
3598064 | Stempel | Aug 1971 | A |
3675781 | Chamberlin | Jul 1972 | A |
3765634 | Stempel | Oct 1973 | A |
3995744 | Metcalf | Dec 1976 | A |
4036369 | Eisenberg | Jul 1977 | A |
4077522 | Trubiano | Mar 1978 | A |
4155312 | Thorkildson | May 1979 | A |
4267931 | Belotta | May 1981 | A |
4289246 | Scott | Sep 1981 | A |
4316593 | Miner | Feb 1982 | A |
4318487 | McCarthy | Mar 1982 | A |
4374498 | Yellin | Feb 1983 | A |
4391378 | Secon | Jul 1983 | A |
4415091 | Wolff | Nov 1983 | A |
4437572 | Hoffman | Mar 1984 | A |
4501369 | Fox | Feb 1985 | A |
4553523 | Stohrer | Nov 1985 | A |
4624376 | Bertram | Nov 1986 | A |
4646658 | Lee | Mar 1987 | A |
4669692 | Mastrodicasa | Jun 1987 | A |
4732284 | Remmers | Mar 1988 | A |
4781349 | Remmers | Nov 1988 | A |
4805785 | Pfeifer | Feb 1989 | A |
4825504 | Camilleri | May 1989 | A |
5031783 | Goudreau | Jul 1991 | A |
D321804 | Wolff | Nov 1991 | S |
5104080 | Berger | Apr 1992 | A |
5133463 | Merl | Jul 1992 | A |
5170897 | Wentworth | Dec 1992 | A |
5197614 | Dalton | Mar 1993 | A |
5213221 | Raye, Sr. | May 1993 | A |
5251973 | Hazan | Oct 1993 | A |
5325973 | Reedy | Jul 1994 | A |
5398824 | Wolff | Mar 1995 | A |
5405026 | Lee | Apr 1995 | A |
5406895 | Suess | Apr 1995 | A |
5411146 | Jarecki | May 1995 | A |
5450971 | Boron | Sep 1995 | A |
5584405 | Tunzi | Dec 1996 | A |
5588543 | Finger | Dec 1996 | A |
5758851 | Remmers | Jun 1998 | A |
5769248 | Johnson | Jun 1998 | A |
5875902 | Emery | Mar 1999 | A |
D413218 | Doty | Aug 1999 | S |
6016928 | Cothran | Jan 2000 | A |
6161708 | Myler | Dec 2000 | A |
6173847 | Zellner, III | Jan 2001 | B1 |
D437515 | Remmers | Feb 2001 | S |
6273276 | Upton | Aug 2001 | B1 |
6318570 | Mueller et al. | Nov 2001 | B1 |
6341704 | Michel, Jr. | Jan 2002 | B1 |
6357609 | Van Noord | Mar 2002 | B1 |
6575315 | Zidek | Jun 2003 | B2 |
7178681 | Libman | Feb 2007 | B2 |
7182210 | Metcalf | Feb 2007 | B2 |
7246711 | Metcalf | Jul 2007 | B1 |
7293665 | Hardy | Nov 2007 | B1 |
7798341 | Richardson et al. | Sep 2010 | B2 |
8186521 | Yu | May 2012 | B2 |
9307833 | Rosen | Apr 2016 | B2 |
9433290 | Davis | Sep 2016 | B1 |
20020170870 | Callis | Nov 2002 | A1 |
20020178664 | Dykhoff | Dec 2002 | A1 |
20040045920 | Remmers | Mar 2004 | A1 |
20040149668 | Fann | Aug 2004 | A1 |
20050258117 | Drake | Nov 2005 | A1 |
20060180557 | Weinstein et al. | Aug 2006 | A1 |
20070108146 | Nawrocki | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20170027321 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15226142 | Aug 2016 | US |
Child | 15290607 | US | |
Parent | 14935576 | Nov 2015 | US |
Child | 15226142 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14625389 | Feb 2015 | US |
Child | 14935576 | US |