The present invention relates generally to connectors and, more particularly, to a connector for coupling a wire to a board and methods thereof.
Typically, power is delivered to a circuit board by a power cord which is permanently coupled at one end to the circuit board and which has a plug at the other end that is adapted to fit into a standard wall outlet. This type of connection provides an effective manner for delivering power to the circuit board. However, for some applications it would be desirable to be able to detachably couple power directly to one or more circuit boards or other devices.
A connector in accordance with embodiments of the present invention includes a non-conductive housing with a passage which extends through the housing, a biasing device secured in the passage in the housing, and a conductive contact positioned in the passage in the housing. The conductive contact includes a cantilever beam section, a non-linear locking section, and a tail section. The cantilever beam section is connected to the biasing device, the non-linear locking section is seated in the passage in the housing, and the tail section extends from the passage in the housing.
A method for making a connector in accordance with embodiments of the present invention securing a biasing device in a passage in a non-conductive housing and placing a conductive contact in the passage in the housing. The conductive contact includes a cantilever beam section, a non-linear locking section, and a tail section. The cantilever beam section connected to the biasing device, the non-linear locking section seated in the passage in the housing, and the tail section extends from the passage in the housing.
The present invention provides a connector for connecting a power wire or line to a printed circuit board with a quick and easy to use connect/disconnect. The connector is formed in a compact package and provides a finger-proof design for added safety. Additionally, the connector provides the option of coupling the power line to multiple printed circuit boards. Further, the connector provides the option of safely “hot plugging” of a power line to a printed circuit board.
A wire-to-board connector 10 in accordance with embodiments of the present invention is illustrated in
Referring to
The spring 16 is seated in and secured to a surface 26 of the housing 12 in the passage 14 with a securing device, although other types of biasing devices could be used and the spring 16 could be secured to the housing 12 in a variety of other manners. The spring 16 extends from one portion of the chamber 22(1), past the projection 20, and into a portion of the chamber 22(2) in the passage 14, although the spring 16 could be in other locations in the passage 14, such as just in the chamber 22(2). The spring 16 is biased in a direction away from surface 26 and towards surface 28 in the chamber 22(2) in passage 14, although the spring 16 could be secured and biased in other directions and manners.
Referring to
The trapezoid locking section 30(2) is integrally formed with the cantilever beam section 30(1) and the tail section 30(3) and is used to secure the conductive contact 18(1) inside the chamber 22(2) in the passage 14 of the housing 12, although other non-linear shaped sections and/or other securing devices could be used to secure the conductive contact 18(1) in the passage 14. In this embodiment, one side of the trapezoid locking section 30(2) is seated against the projection 20 in the passage 14 to prevent movement of the contact conductive contact 18(1) towards the opening 24(2) to the chamber 22(2) in the passage 14.
The tail section 30(3) is integrally formed with the trapezoid locking section 30(2) and is used to provide a mechanical and an electrical connection with another component, such as a printed circuit board, although the tail section 30(3) can be coupled to the trapezoid locking section 30(2) in other manners. The tail section 30(3) includes tail portions 38(1)-38(2) which extend out from the passage 14, are spaced apart and are either left straight or bent at a right angle for connection to components, such as circuit boards, although other types of and numbers of tail portions can be used in other configurations, such as those shown by way of example in
Referring to
Referring to
The conductive contact 18(2) includes a cantilever beam section 30(1), a trapezoid locking section 30(2), and a tail section 30(3), although the conductive contact 18(2) could comprise other types and numbers of sections in other configurations. The tail section 30(3) is integrally formed with the trapezoid locking section 30(2) and is used to provide a mechanical and an electrical connection with another component, such as a printed circuit board, although the tail section 30(3) can be coupled to the trapezoid locking section 30(2) in other manners. The tail section 30(3) includes a base conductor 50 which extends out from the passage 14 and for connection to components, such as a circuit board, although other types of and numbers of tail portions can be used.
The base conductor 50 includes a pair of spaced apart tail portions 38(3)-38(4) formed in an end of the base conductor 50, although base conductor 50 could have other types and numbers of base and/or tail portions. A gap 44(3) separates the tail portions 38(3)-38(4), although the base conductor 50 and tail portions 38(3)-38(4) could have other configurations. The tail section 30(3) of the conductive contact 18(1) is secured to a printed circuit board (PCB) by soldering or through the use of a conductive bolt which passes through the gap 44(3) and couples the tail portions 38(3)-38(4) to a conductor on a circuit board, although other manners for coupling the tail section 30(3) to devices can be used.
Referring to
A method of making and using a connector 10 in accordance with embodiments of the present invention will now be described with reference to
Next, a conductive contact 18(1) is positioned in the passage 14 of the housing 12. More specifically, a cantilever beam section 30(1) is positioned in a chamber 22(2), a trapezoid locking section 30(2) is positioned in chamber 22(1) and has a surface which abuts against the projection 20, and a tail section 30(3) is positioned to extend out from an opening 24(1) to the chamber 22(1), although other manners and configurations for positioning the conductive contact 18(1) in the passage 14 can be used. A bottom lip 34(2) of a bowed up nose portion 34(1) for the cantilever beam section 30(1) is secured to an end 36 of the spring 16, although the spring 16 and cantilever beam section 30(1) can be connected in other manners. The spring 16 biases the cantilever beam section 30(1) towards the opposing surface 28 in the chamber 22(2) in passage 14, although the cantilever beam section 30(1) can be biased in other directions.
Next, a conductive securing device, such as solder, is passed through the gap 44(1) or 44(2) and couples the tail portions 38(1)-38(2) to a conductor on one circuit board, although other manners for coupling the tail portions 38(1)-38(2) to devices can be used.
A power line with a mating connector is inserted in the opening 24(2) to the chamber 22(2) and engages with the cantilever beam section 30(1). As the mating connector is inserted the spring 16 biases the cantilever beam section 30(1) against the mating connector to form a snug electrical connection to couple power through the connector 10 to the device or devices coupled to the tail section 30(3). Although the connection is illustrated as being genderless, other types of mating configurations could be used. Power can also be easily and safely disconnected from the connector 10 by disconnecting the mating connector from the cantilever beam section 30(1) in the chamber 22(2).
The method for making a connector 10 with one of the other conductive connectors 18(2) is the same as described above with respect to the conductive connector 18(1) and thus will not be described again here, except that the configuration of the connection between each of the conductive portions 38(3)-38(4) to a circuit board or other device is slightly different from the conductive connector 18(1). The method and configuration of connecting each of the conductive portions 38(3)-38(4) to a circuit board or other device has been described earlier and thus will not be described again here.
Accordingly, the present invention provides a connector for connecting a power wire or line to a printed circuit board with a quick and easy to use connect/disconnect. The connector is formed in a compact package and provides a finger-proof design for added safety. Additionally, the connector provides the option of coupling the power line to multiple printed circuit boards. Further, the connector provides the option of safely “hot plugging” of a power line to a printed circuit board.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/530,377 filed Dec. 17, 2003 which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60530377 | Dec 2003 | US |