The invention relates to a hand tool for twisting safety wires. More particularly, the invention relates to a safety wire twisting hand tool that includes a rotating device adapted for a quick release connection with pliers having different configurations. The invention further relates to safety wire twisting hand tool that includes a latch mechanism for latching the pliers in a closed condition.
Wire twisting pliers are used to twist safety wires that are typically used by aircraft mechanics to secure safety wire bolts from accidentally loosening from vibrations, such as those caused by aircraft engines. Safety wire nuts and bolts are used in a number of other applications as well, such as auto racing and industrial equipment. Wire twisting pliers typically include a conventional pair of pliers that is fitted with a locking mechanism and a rotating device. The locking mechanism locks the pliers on the wires that are to be twisted. The rotating device is manually operable to impart rotation of the pliers to thereby twist the wire. Such devices are disclosed in U.S. Pat. Nos. 4,842,025, 5,211,209, and 5,560,402
Wire twisting pliers twist a variety of wire sizes or gages depending on the job requirements. The most common sizes are 0.012″, 0.020″, 0.025″, 0.032″, 0.041″, and 0.051″. As the wire size increases, however, excessive jaw pressure is placed on the wire in order to lock the handles, making the handles difficult to lock and causing damage to the safety wire. This damage to the wire can cause premature failure of the safety wire in its application.
Additional problems can be encountered with the use of common wire twisting pliers. For example, wire twisting pliers are often used on wire bolts that are hard to reach, which causes the user to extend his or her hand/fingers/thumb beyond limitation in an effort to access portions of the tool. Also, during use, wire ends can be left spinning loose, which allows the wires to thrash around during twisting and potentially cause damage to the work piece or injuring the user. Additionally, standard teeth on plier jaws often distort and mar the wire, causing potential failure points in the wire strength. Moreover, safety wires are typically terminated by cutting the twisted wire, folding it over, and then crimping it in a tight loop known as a “pigtail.” Pigtails are difficult to accomplish with the bulky nose of existing wire twisters. Furthermore, when cutting the wire prior to twisting, care must be exercised so that the cut-off pieces do not fall into the surrounding machinery.
The invention relates to pliers that include first and second pivotally interconnected plier arms each having a handle and a jaw. The plier handles are operable to manipulate the plier jaws. The pliers also include a latch mechanism for alternately latching the pliers in a closed condition and releasing the pliers to an open condition in response to successive applications of squeeze to the plier arms.
According to one aspect of the invention, the latch mechanism comprises a cam connected to the first plier arm and a cam receiver connected to the second plier arm. The latch mechanism has a latched condition in which the cam receiver retains the cam to latch the pliers in the closed condition. The latch mechanism has an unlatched condition in which the cam receiver releases the cam to permit placing the pliers in the open condition.
According to another aspect of the invention, the cam is adapted to enter the cam receiver upon closure of the pliers. The cam receiver is adapted to latch onto the cam to place the latch mechanism in the latched condition in response to a predetermined amount of squeeze being applied to the plier arms. The cam receiver is adapted to release the cam to place the latch mechanism in the unlatched condition in response to a subsequent application of the predetermined amount of squeeze.
According to another aspect of the invention, the cam comprises a cylindrical body mounted on the first plier arm for rotation about an axis. The cam comprises a recess on a cylindrical outer surface of the cam. The cam receiver comprises at least one member that enters the recess on the cylindrical surface of the cam. An engagement between the at least one member and portions of the cam defining the recess placing the latch mechanism in the latched condition.
According to another aspect of the invention, the portions of the cam defining the recess comprise an upper cam surface and a lower cam surface. The at least one member engages at least one of the upper cam surface and the lower cam surface to cause the cam to rotate about the axis. The at least one member engages the lower cam surface in the latched condition of the latch mechanism. The at least one member passes through an opening in the lower cam surface when transitioning from the latched condition to the unlatched condition.
According to another aspect of the invention, the pliers include a rotating device that is manually actuatable to rotate the pliers. The plier jaws can comprise a blade for cutting a wire and a wire grasper for grasping the wire cut by the blade. The plier arms are deflectable and resiliently return to their original form in response to the successive applications of squeeze. The resilient return to original form actuates the latch mechanism.
The foregoing and other features of the invention will become apparent to one skilled in the art to which the invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, in which:
The invention relates to a wire twisting tool for twisting safety wires, such as those commonly used in the aviation industry. Referring to
The pliers 20 include a first plier arm 22 and a second plier arm 32. The first plier arm 22 includes a handle portion 24 and a jaw portion 26. The second plier arm 32 includes a handle portion 34 and a jaw portion 36. The handle portions 24 and 34 define a handle 42 of the pliers 20, and the jaw portions 26 and 36 define a head 44 of the pliers. The plier arms 22 and 32 are connected to each other at a pivot joint 40 by means, such as a fastener or press pin. The pliers 20 are operable in a conventional manner to apply a wire gripping force with the plier head 44 via operation of the plier handle 42.
The rotating device 50 includes a housing 60 and a shaft 80 terminated with a knob 82. The shaft 80 is movable along the axis 12 relative to the housing 60 by pulling on the knob 82, which actuates a rotation mechanism in the housing that, in turn, imparts rotation of the housing and the pliers 20 relative to the shaft about the axis 12. The direction of spindle rotation (i.e., the direction of wire twisting) can be selected by the user via rotation selection switch/sleeve 72. To actuate the switch 72, the user rotates the sleeve relative to the housing 60, which switches the direction in which the rotation mechanism rotates the housing 60 in response to the user pulling on the knob 82. For example, rotating the sleeve 72 counterclockwise may result in counterclockwise wire twisting; and rotating the sleeve 72 clockwise may result in clockwise wire twisting.
The rotation mechanism of the rotating device 50 operates to impart rotation of the pliers 20 in a manner that is similar or identical to the manner in which other known rotating devices associated with other wire twisting tools. For example, the rotating device may be configured with a general construction and mode of operation that is similar or identical to the general construction and mode of operation of the wire twisting tools disclosed in U.S. Pat. Nos. 4,842,025, 5,211,209, and 5,560,402, individually or in combination. The disclosures of U.S. Pat. Nos. 4,842,025, 5,211,209, and 5,560,402 are hereby incorporated by reference in their entireties. In operation, the user can lock the plier head 44 onto a wire and pull on the shaft 80 via the knob 82 to effectuate rotation of the pliers 20 to thereby twist the wire.
As another feature of the invention, the head 44 of the pliers 20 is configured to permit grasping wires while at the same time helping to prevent marring or otherwise damaging the wire. To achieve this, tips 180, 182 of jaws 26, 36, respectively, are configured with waved wire grasping surfaces 184, 186. This is best shown in
Additionally, the tips 180, 182 have a tapered width configuration (shown best in
As a feature of the invention, the wire twisting tool 10 includes a latch mechanism 300 that facilitates a simple, quick, and reliable latching of the second plier arm 32 against pivoting movement relative to the first plier arm 22. The latch mechanism 300 is operable to lock the pliers 20 in a closed/clamping condition (
Referring to
The cam receiver 330 includes one or more pins 332 positioned in an opening 334 in the first plier arm 22. The cam 310 moves into the opening 334 when the pliers 20 are placed in the closed condition. When the cam 310 enters the opening 334, it engages the pin 332, which causes the cam 310 to operate in the manner described below with reference to
The cam 310 is illustrated in
Operation of the latch mechanism 300 is illustrated in
Referring to
Referring to
Referring to
In the condition illustrated in
Referring to
Referring to
Referring to
Referring to
The wire grasper 260 includes a pair of grasping elements 262, one associated with each of the plier jaws 26, 36. The grasping elements 262 are pads that are constructed of a deformable material, such as a rubber, plastic, or polymeric material. When a wire is positioned between the cutting blades 254, a portion of the wire is also positioned between the grasping elements 262. When the pliers 20 are closed, the cutting blades cut the wire, and the grasping elements 262 clamp onto the wire. The deformable nature of the material used to construct the grasping elements 262 may help facilitate this clamping action. Advantageously, if the user positions a free end of a wire between the grasping elements 262, that cut portion of wire will remain held by the grasping elements after it is cut and separated from the remainder of the wire.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/736,751, filed Dec. 13, 2012, which is hereby incorporated by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 61/736,725, filed Dec. 13, 2012, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1740392 | Donaldson | Dec 1929 | A |
2394807 | Robinson | Feb 1946 | A |
2737983 | Pray | Mar 1956 | A |
3092152 | Neff | Jun 1963 | A |
4665953 | Randall | May 1987 | A |
4842025 | Box et al. | Jun 1989 | A |
5211209 | Geibel | May 1993 | A |
5560402 | Bates | Oct 1996 | A |
9138800 | Harrison | Sep 2015 | B2 |
20140041491 | Ying | Feb 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140165793 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61736751 | Dec 2012 | US | |
61736725 | Dec 2012 | US |