The present invention is directed to wireless control systems, and more particularly to a wireless access control system configured that accepts input based on haptic feedback or motion to interact with an intelligent door lock system.
Door lock assemblies often include deadbolts. Typically such an assembly included a latch which is depressed during closure of the door and, with substantially complete closure, extends into a recess of the door strike. Such a latch by itself is often easy to improperly depress-release by an unauthorized person, with a card-type element or even a pry bar. Also the outer knob assembly can be torqued off with a wrench to gain access to the mechanism and thereby to the room closed by the door. Deadbolts are not as susceptible to these unauthorized activities. Doors having deadbolts typically use a latch mechanism. This is because (1) the latch holds the door snug against rattling whereas the deadbolt by necessity must have clearance between it and the strike plate recess edges (but because of the clearance, the door can rattle), and (2) the latch automatically holds the door shut since it is only momentarily depressed during door closure from its normally extended condition and then extends into a door strike recess when the door is fully closed.
Except in rare devices where the deadbolt is operated by an electrical solenoid, the deadbolt, to be effective, must be manually thrown by a person inside the room or building, or if the deadbolt is actuatable by an external key, the person leaving the room or building must purposely engage the deadbolt by a key as the person leaves. However, if a person forgets to so actuate the deadbolt, either manually with an inner hand turn when inside, or by a key outside, an intruder need only inactivate the latch mechanism in order to gain unauthorized entry. Motel and hotel rooms often do not even have a key actuated deadbolt and thus are particularly susceptible to unauthorized entry and theft when the person is not in the room.
In recent years, mechanisms were developed to enable retraction, i.e. Inactivation, of the deadbolt simultaneously with the latch for quick release even under panic exit conditions. But to lock the door still required manual actuation of the deadbolt with the inner hand turn or a key on the outside.
In one door lock assembly a deadbolt is shift able between an extended lock position and a retracted position and means for shifting the deadbolt from the extended position to the retracted position which is characterized by biasing means for applying a bias on the deadbolt toward the extended lock position; restraining means for restraining the deadbolt in the retracted position against the bias of the biasing means and being actuatable to release the deadbolt to enable the biasing means to shift the deadbolt to the extended lock position; and trigger means. For actuating the restraining means to release the deadbolt and thereby allow the biasing means to shift the deadbolt to the extended lock position.
Such a door lock assembly is for use in a door frame and thus the invention extends to the door lock assembly of the present invention in cooperation with a door frame.
Some deadbolt locks are automatically actuated with closure of the door, the deadbolt being mechanically actuated to the extended lock position. The deadbolt in its retracted position is spring-biased toward the extended lock position, but is retained in a cocked condition by a deadbolt restraining and releasing device which is trigger actuatable to activate the deadbolt into its locked condition. The trigger mechanism may have a portion that protrudes from the door to engage the door strike of the door frame upon closure of the door, thereby causing the deadbolt to be released and shifted to the locked condition. The protruding portion of the trigger mechanism can also serve to hold the door snug against rattling.
In another door lock assembly for a hinged door and cooperative with a door strike of a door frame, a deadbolt is provided mounting in the door. The dead bolt is shift able between a retracted non-lock position and an extended lock position. It includes a manually operable device for shifting the deadbolt from the extended lock position to the retracted non-lock position. A biasing device applies a bias on the deadbolt toward the extended lock position. A restraining device is biased into a restraining relationship with the deadbolt in the retracted position. This restrains the deadbolt in the retracted position against the bias of the biasing device. A trigger releases a restraining means when the trigger is actuated and includes a protruding portion for engaging a door strike for actuating the trigger. A door strike includes a surface to engage and depress the trigger protruding portion for actuation of the trigger and release of the deadbolt restraining means, and includes an opening to receive the deadbolt when extended.
The use of electronic systems for the control and operation of locks is becoming increasingly common. The present invention is directed to an arrangement that permits the electronic and manual control of the lock operation to be separated to allow manual operation of the lock independently of the electronic drive system for the lock. The lock of the present invention is useful in situations where an electronic controller is temporarily unavailable, for example where a controller has been lost, misplaced or damaged.
There are currently some electronic deadbolt lock arrangements. In one device, a lock has a bolt movable between locked and unlocked conditions. The lock has a manual control device that serves to operate the lock between locked and unlocked conditions. A power drive is coupled by a transmission to the manual control device. The lock is operated between the locked and unlocked conditions in response to operation of the power drive. A transmission mechanism couples the manual control device and the power drive, whereby the lock moves between the locked and unlocked conditions. The transmission mechanism is operable to decouple the power drive from the manual control means to enable the lock to be operated by the manual control device independently of the power drive.
However, most deadbolts require that a user manually use a metal key to lock or unlock the deadbolt.
There is a need for a wireless access control system to lock or unlock a door at a dwelling.
An object of the present invention is to provide a wireless access control system that accepts input based on haptic feedback or motion to interact with an intelligent door lock system.
Another object of the present invention is to provide a wireless access control system that includes a mobile device that provides input based on haptic feedback or motion to an intelligent door lock system with an intelligent door lock system.
These and other objects of the present invention are achieved in a wireless access control system to lock or unlock a first door at a dwelling of a user. A user remote access device accepts input based on haptic feedback or motion. The user remote access device includes a vibration mode provides an alert to the user of the remote access device. The user remote access device is configured to be in communication with an intelligent door lock system at the dwelling with the first door. The intelligent door lock system includes: a drive shaft, a circuit coupled to an engine configured to cause a rotation of the drive shaft, and an energy source coupled to the drive shaft. In response to the user remote access device accepting input based on haptic feedback or motion the bolt is caused to move and the first lock is locked or unlocked. The intelligent door lock system is configured to allow controlled access to the dwelling that includes an occupant of the dwelling as well as a designated third person granted access rights by the occupant. The user remote access device is in communication with a second lock at a vehicle of the user or at an office of the user. In response to the user remote access device accepting input based on haptic feedback or motion the second lock is locked or unlocked. The remote access device has a controller for using haptic motion to lock or unlock locks.
In another embodiment of the present invention a method is provided for unlocking a first door at a dwelling of a user. Input based on haptic feedback or motion from is provided from a user remote access device. The user remote access device is used to communicate with an intelligent door lock system at the dwelling with the first door. The intelligent door lock system includes: a drive shaft a circuit coupled to an engine configured to cause a rotation of the drive shaft, and an energy source coupled to the drive shaft. In response to the user remote access device accepting input based on haptic feedback or motion, the bolt is caused to move and the first lock is locked or unlocked. The intelligent door lock system is configured to allow controlled access to the dwelling that includes an occupant of the dwelling as well as a designated third person granted access rights by the occupant. Input is accepted based on haptic feedback or motion from the user remote access device at a second lock at a vehicle of the user or at an office of the user. The haptic feedback or motion causes the second lock to lock or be unlocked. The remote access device has a controller for using haptic motion to lock or unlock locks.
As used herein, the term engine refers to software, firmware, hardware, or other component that can be used to effectuate a purpose. The engine will typically include software instructions that are stored in non-volatile memory (also referred to as secondary memory).
When the software instructions are executed, at least a subset of the software instructions can be loaded into memory (also referred to as primary memory) by a processor. The processor then executes the software instructions in memory. The processor may be a shared processor, a dedicated processor, or a combination of shared or dedicated processors. A typical program will include calls to hardware components (such as I/O devices), which typically requires the execution of drivers. The drivers may or may not be considered part of the engine, but the distinction is not critical.
As used herein, the term database is used broadly to include any known or convenient means for storing data, whether centralized or distributed, relational or otherwise.
As used herein a mobile device includes, but is not limited to, a cell phone, such as Apple's iPhone®, other portable electronic devices, such as Apple's iPod Touches®, Apple's iPads®, and mobile devices based on Google's Android® operating system, and any other portable electronic device that includes software, firmware, hardware, or a combination thereof that is capable of at least receiving the signal, decoding if needed, exchanging information with a server to verify information. Typical components of mobile device may include but are not limited to persistent memories like flash ROM, random access memory like SRAM, a camera, a battery, LCD driver, a display, a cellular antenna, a speaker, a Bluetooth® circuit, and WIFI circuitry, where the persistent memory may contain programs, applications, and/or an operating system for the mobile device. A mobile device can be a key fob. A key fob which can be a type of security token which is a small hardware device with built in authentication mechanisms. It is used to manage and secure access to network services, data, provides access, communicates with door systems to open and close doors and the like.
As used herein, the term “computer” or “mobile device or computing device” is a general purpose device that can be programmed to carry out a finite set of arithmetic or logical operations. Since a sequence of operations can be readily changed, the computer can solve more than one kind of problem. A computer can include of at least one processing element, typically a central processing unit (CPU) and some form of memory. The processing element carries out arithmetic and logic operations, and a sequencing and control unit that can change the order of operations based on stored information. Peripheral devices allow information to be retrieved from an external source, and the result of operations saved and retrieved.
As used herein, the term “Internet” is a global system of interconnected computer networks that use the standard Internet protocol suite (TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries an extensive range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support email. The communications infrastructure of the Internet consists of its hardware components and a system of software layers that control various aspects of the architecture, and can also include a mobile device network, e.g., a cellular network.
As used herein, the term “extranet” is a computer network that allows controlled access from the outside. An extranet can be an extension of an organization's intranet that is extended to users outside the organization that can be partners, vendors, and suppliers, in isolation from all other Internet users. An extranet can be an intranet mapped onto the public Internet or some other transmission system not accessible to the general public, but managed by more than one company's administrator(s). Examples of extranet-style networks include but are not limited to:
LANs or WANs belonging to multiple organizations and interconnected and accessed using remote dial-up
LANs or WANs belonging to multiple organizations and interconnected and accessed using dedicated lines
Virtual private network (VPN) that is comprised of LANs or WANs belonging to multiple organizations, and that extends usage to remote users using special “tunneling” software that creates a secure, usually encrypted network connection over public lines, sometimes via an ISP
As used herein, the term “Intranet” is a network that is owned by a single organization that controls its security policies and network management. Examples of intranets include but are not limited to:
A LAN
A Wide-area network (WAN) that is comprised of a LAN that extends usage to remote employees with dial-up access
A WAN that is comprised of interconnected LANs using dedicated communication lines
A Virtual private network (VPN) that is comprised of a LAN or WAN that extends usage to remote employees or networks using special “tunneling” software that creates a secure, usually encrypted connection over public lines, sometimes via an Internet Service Provider (ISP)
For purposes of the present invention, the Internet, extranets and intranets collectively are referred to as (“Network Systems”).
For purposes of the present invention, Bluetooth LE devices and peripheral devices are Bluetooth low energy devices, marketed as Bluetooth Smart.
In one embodiment of the present invention, illustrated in
In one embodiment the computing device 13 is configured to connect Bluetooth LE devices 21 to the Network Systems.
In one embodiment the bridge 11 is coupled to the intelligent door lock system 10 via secure digital keys distributed by Cloud lock access services Lock Access Services.
In one embodiment the bridge 11 allows BLE devices in the dwelling to interact with the cloud lock access services and with other Internet-connected devices via the intermediary that is the cloud lock access services. It will be appreciated that the dwelling includes all structures besides homes.
In one embodiment the bridge determines signal strength between the bridge 11, and the Bluetooth LE device 21. In another embodiment the bridge 11 determines signal strength of between the bridge 11, the Bluetooth LE device 21 and the intelligent door lock system 10.
The retrieved signal strength information is sent to the cloud lock access services for processing. In one embodiment, as described below, a triangulation algorithm is applied between the bridge 11, the Bluetooth LE device 21 and the intelligent door lock system.
In one embodiment the bridge 11 uses detection of known Bluetooth devices and peripheral devices, hereafter collectively Bluetooth devices 21, tied to specific individual people in the interior or at an exterior of the dwelling. The bridge 11 tracks signal strength over time to: (i) determine if known or unknown people are inside or outside the dwelling, (ii) if people are approaching the dwelling, entering the dwelling, exiting the dwelling, moving away from the building and the like. In one embodiment the bridge 11 with the detection of the presence of a Bluetooth device 21 relays lock operations of the intelligent door lock system (manual or via a mobile application), door 12 movements, door 12 knocks to allow making these determinations of presence and movement with an algorithm as set forth below.
In one embodiment the bridge 11 interacts with the cloud lock access services to gather and relay data. This data can be gathered and stored locally, at the back-end 68, and in a cloud lock access services based data layer. This is then used to determine the location and movement of people in and out the dwelling.
In one embodiment the bridge 11 discovers the intelligent door lock system 10 over a Bluetooth device 21 networking. In one embodiment this is achieved by the bridge discovering lock devices 22 and their available services by scanning the Bluetooth LE 21 network for connected devices, advertising their presence and their services for obtaining lock device 22 status (secured or unsecured), communicates lock device 22 activity, communicates door 12 activity (door 12 opening and closing, door 12 knocks, and the like) and operates the lock to lock and unlock the bolt 24 to secure or unsecure the lock device 22.
In one embodiment the bridge 11 provides communication to other Bluetooth devices 21 without the use of a mobile device. As non-limiting examples, the bridge 11 allows: WiFi-enabled devices in a dwelling to interact with Bluetooth devices 21 in the dwelling; WiFi-enabled devices in a dwelling to interact with the intelligent door lock system 10 over Bluetooth; allows a Bluetooth device 21 in a dwelling to interact with Internet-based services and API's using a dwelling's home WiFi network and Network System connection; allows people to operate an intelligent door lock system and other Bluetooth devices over a Network System from anywhere outside a dwelling; extend network coverage of Bluetooth devices in a dwelling in order to understand who is in the dwelling, who is away, who is coming and who is going when doors 12 and lock devices 22 are operated and the like.
In one embodiment the bridge 11 extends Network System coverage of Bluetooth devices 21 other than lock devices 22 to perform device-specific operations, including but not limited to: gathering information about the presence of the Bluetooth device 21, the operational status of the Bluetooth device 21, the operational history of the Bluetooth device 21 and performing Bluetooth device 21 specific operations including but not limited to: turning the Bluetooth device 21 off and on, changing the mode of operations of the Bluetooth device 21, changing the operational settings of the Bluetooth device 21 and scheduling these device operations based on ad hoc, daily, weekly, monthly or other schedules.
In one embodiment the intelligent door lock system 10 trusts the bridge 11 for commands (remote status) after an intelligent door lock system owner or designee is registered at the back-end of the intelligent door lock system using a cloud lock access services-based access system that grants the bridge 11 access to the intelligent door lock system 10.
In one embodiment the intelligent door lock system 10 owners or designee grants the bridge 11 access to the lock device 22 by using their digital credentials, which can be stored at the cloud lock access services or at the back-end 68, to pair a specific bridge 11 with a specific intelligent door lock system 10 grant specific rights. As non-limiting example, the specific rights include but are not limited to, gathering of status and operational history of the system 10, triggering lock device 22 operations in real-time, as well as applications for interfacing with the bridge 11 and a Bluetooth device 21.
In one embodiment the bridge 11 is used to determine if an intelligent door lock system 10 owners or designee with a non-internet connect device is at an interior or an exterior of a dwelling.
In one embodiment the bridge 11 is used to determine if the person is approaching or moving away from the dwelling. In one embodiment the bridge 11 measures the signal strength of the Bluetooth LE devices 21.
In one embodiment as a Bluetooth LE device 21, coupled to a person moves away from the bridge 11 the signal strength decreases, as more fully discuss hereafter. Similarly, as the signal strength increases this indicates that a person with the Bluetooth LE device is approaching the dwelling.
In one embodiment, each room of a dwelling with the intelligent door lock system has a bridge 11. In another embodiment, the major rooms of the dwelling each have a bridge 11.
In one embodiment the bridge 11 learns habits, movements, and the like of the intelligent door lock system 10 owners or designee.
In one embodiment a triangulation is provided between the bridge 11, the intelligent door lock system 10 and a Bluetooth LE device 21, as more fully explained hereafter.
In one embodiment the computing device 13 provides for coordination of information flow between the two radios 15 and 17. The computing device 13 is configured to enable the two radios, 15 and 17 to communicate and take incoming and outgoing information from one radio into a format that the other radio can transmit and receive. The internet facing radio 15 is configured to communicate through a router 25 to the Network Systems and the BLE LE devices 21 connect to Network Systems via one of the radios 15, 17 through the computing device 13 through the internet facing radio 16 through the router 25 to Network Systems, with the bridge 11 communicating with a data center 27.
In one embodiment the internet facing radio 115 is configured to communicate through the router 25 to Network Systems. The Bluetooth LE devices 21 connect to Network Systems, via the computing device 13, with the bridge 11 communicating with a data center 27.
The computing device 13 provides for coordination of information flow between the two radios 15 and 17. Because most radios speak in different frequencies or protocols, packet sizes, and the like, the computing device 13 enables the two radios 15 and 17 to communicate, takes incoming and outgoing information from one radio into the proper format that the other radio can transmit and receive. In one embodiment the computing device makes the first and second radios 16 and 18 the same thing.
A logic circuit 27 is in the computing device 13.
In one embodiment a wall wart in the dwelling is configured to communicate with other Bluetooth devices, including but not limited to redundant or backup power supplies, redundant data communications connections, environmental controls (e.g., air conditioning, fire suppression) and various security devices, thermostats, audio systems, appliances, gates, outdoor electrical equipment and the like.
In one embodiment the internet facing radio 15 is configured to communicate through the router 25 to Network Systems and Bluetooth LE devices 21 connected to Network Systems via the computing device 13. The bridge 11 communicates with the data center 27.
In one embodiment the computing device 13 is a wall wart, and equivalent element, which is a power adapter that contains the plug for a wall outlet.
In one embodiment the radios 15 and 17 transmit radio waves for communication purposes.
In one embodiment the bridge 11 provides at least a partial probability analysis of where a person with a Bluetooth LE device 21 is located, as well as to the existence of an adverse condition including but not limited to entrance via a window or door to the dwelling.
In one embodiment system 10 is an identification management system at a dwelling 15 includes one or more bridges 11 in the dwelling 15. Each bridge 11 includes a computing device 13 in an interior or exterior of a dwelling 15 with the internet-facing radio 17, and the second radio 19 communicating with one or more Bluetooth LE devices 21 or an equivalent device.
One or more Bluetooth devices or Bluetooth peripheral devices 21, collectively, Bluetooth devices 21, are in communication with the bridge 11. The Bluetooth device 21 is at an exterior of the dwelling 15. An intelligent door lock system is in communication with the bridge 11 and the one or more Bluetooth devices 21. The bridge 11 uses detection of a Bluetooth device 21 that is associated with a person to track the person.
In one embodiment signal strength between the bridge 11 and the Bluetooth device 21 is used to identify the person.
In one embodiment the bridge 11 is configured to provide real time conductivity to one or more servers, as more fully discussed hereafter. The one or more servers can be located at a cloud infrastructure. In one embodiment the one or more servers are at a backend of the system 10.
In one embodiment the system 10 is configured to provide an identify of a person entering or exiting the dwelling 15. The Bluetooth device 21 can be any device that associates a person with a person's identity.
In one embodiment facial/body motion recognition is utilized for identification. In one embodiment the equivalent device is selected from at least one of a mobile device, a key fob, a wearable device,
In one embodiment identification is taken in order to determine intent. In one embodiment the identification is to determine an intent of the person entering or exiting from the dwelling 15.
System 10 and/or the cloud can continuously sniff the air for identification of one or more persons.
The detection of facial/body motion expressions is described hereafter.
In one embodiment the door lock system 10 includes a vibration/tapping sensing device 11 configured to be coupled to intelligent lock system 10. In one embodiment the intelligent door lock system 10 is in communication with a mobile device 210 that includes a vibration/tapping sensing device to lock or unlock a door associated with the intelligent door lock system.
In one embodiment the vibration/tapping sensing device 11 senses knocking on the door and locks or unlocks the door. In one embodiment the vibration/tapping sensing device 11 is not included as part of the actual intelligent door lock system 10. In one embodiment the vibration/tapping sensing device 11 is coupled to the drive shaft 14. It will be appreciated that the vibration/tapping sensing device 11 can be coupled to other elements of the intelligent door lock system 10. The vibration/tapping sensing device detects vibration or knocking applied to a door that is used to unlock or lock the intelligent door lock system 10. This occurs following programming the intelligent door lock system 10. The programming includes a user's vibration code/pattern, and the like. Additionally, a user can give a third person a knock code/pattern to unlock the intelligent door lock system 10 of the door 12. The knocking is one that is recognized as having been defined by a user of the door lock system 10 as a means to unlock the door. The knocking can have a variety of different patterns, tempos, duration, intensity and the like.
The vibration/tapping sensing device 11 detects oscillatory motion resulting from the application of oscillatory or varying forces to a structure. Oscillatory motion reverses direction. The oscillation may be continuous during some time period of interest or it may be intermittent. It may be periodic or nonperiodic, i.e., it may or may not exhibit a regular period of repetition. The nature of the oscillation depends on the nature of the force driving it and on the structure being driven.
Motion is a vector quantity, exhibiting a direction as well as a magnitude. The direction of vibration is usually described in terms of some arbitrary coordinate system (typically Cartesian or orthogonal) whose directions are called axes. The origin for the orthogonal coordinate system of axes is arbitrarily defined at some convenient location.
In one embodiment, the vibratory responses of structures can be modeled as single-degree-of-freedom spring mass systems, and many vibration sensors use a spring mass system as the mechanical part of their transduction mechanism.
In one embodiment the vibration/tapping sensing device 11 can measure displacement, velocity, acceleration, and the like.
A variety of different vibration/tapping sensing devices 11 can be utilized, including but not limited to accelerometers, optical devices, electromagnetic and capacitive sensors, contact devices, transducers, displacement transducers, piezoelectric sensors, piezoresistive devices, variable capacitance, servo devices, audio devices where transfer of the vibration can be gas, liquid or solid, including but not limited to microphones, geo-phones, and the like.
Suitable accelerometers include but are not limited to: Piezoelectric (PE); high-impedance output; Integral electronics piezoelectric (IEPE); low-impedance output Piezoresistive (PR); silicon strain gauge sensor Variable capacitance (VC); low-level, low-frequency Servo force balance; and the like.
The vibration/tapping sensing device 11 can be in communication with an intelligent door lock system back-end 68, via Network Systems, as more fully described hereafter.
In one embodiment, the intelligent door lock system 10 is configured to be coupled to a structure door 12, including but not limited to a house, building and the like, window, locked cabinet, storage box, bike, automobile door or window, computer locks, vehicle doors or windows, vehicle storage compartments, and the like. In one embodiment, the intelligent door lock system 10 is coupled to an existing drive shaft 14 of a lock device 22 already installed and is retrofitted to all or a portion of the lock device 22, which includes a bolt/lock 24. In another embodiment, the intelligent door lock system 10 is attached to a door 12, and the like, that does not have a pre-existing lock device.
In one embodiment, the intelligent door lock system 10 includes a positioning sensing device 16, a motor 38, an engine/processor 36 with a memory and one or more wireless communication devices 40 coupled to a circuit 18. The motor 38 converts any form of energy into mechanical energy. As a non-limiting example, three more four wireless communications devices 40 are in communication with circuit 18. In one embodiment the vibration sensing device can be included with the positioning sensing device.
In one embodiment, the intelligent door lock system 10 is provided with the position sensing device 16 configured to be coupled to the drive shaft 14 of the lock device 22. The position sensing device 16 senses position of the drive shaft 14 and assists in locking and unlocking the bolt/lock 24 of the lock device 22. The engine 36 is provided with a memory. The engine 36 is coupled to the positioning sensing device 16. A circuit 18 is coupled to the engine 36 and an energy source 50 is coupled to the circuit. A device 38 converts energy into mechanical energy and is coupled to the circuit 18, positioning sensing device 16 and the drive shaft 14. Device 38 is coupled to the energy source 50 to receive energy from the energy source 50, which can be via the circuit 18.
In one embodiment, the intelligent door lock system 10 includes any or all of the following, a face plate 20, ring 32, latches such as wing latches 37, adapters 28 coupled to a drive shaft 14, one or more mounting plates 26, a back plate 30, a power sensing device 46, energy sources, including but not limited to batteries 50, and the like.
In one embodiment (see
In one embodiment, the memory of engine/processor 36 includes states of the door 12. The states are whether the door 12 is a left handed mounted door, or a right handed mounted door, e.g., opens from a left side or a right side relative to a door frame. The states are used with the position sensing device 16 to determine via the engine/processor 36 if the lock device 22 is locked or unlocked.
In one embodiment, the engine/processor 36 with the circuit 18 regulates the amount of energy that is provided from energy source 50 to the motor 38. This thermally protects the motor 38 from receiving too much energy and ensures that the motor 38 does not overheat or become taxed.
A variety of position sensing devices 16 can be used, including but not limited to, accelerometers, optical encoders, magnetic encoders, mechanical encoders, Hall Effect sensors, potentiometers, contacts with ticks, optical camera encoders, and the like.
As a non-limiting example, an accelerometer 16, well known to those skilled in the art, detects acceleration. The accelerometer 16 provides a voltage output that is proportional to a detected acceleration. Suitable accelerometers 16 are disclosed in, U.S. Pat. Nos. 8,347,720, 8,544,326, 8,542,189, 8,522,596, EP0486657B 1, EP 2428774 A1, incorporated herein by reference.
In one embodiment, the position sensing device 16 is an accelerometer 16. Accelerometer 16 includes a flex circuit coupled to the accelerometer 16. The accelerometer reports X, Y, and X axis information to the engine/processor 36 of the drive shaft 14. The engine/processor 36 determines the orientation of the drive shaft 14, as well as door knocking, bolt/lock 24 position, door 12 close/open (action) sensing, manual key sensing, and the like, as more fully explained hereafter.
Suitable optical encoders are disclosed in U.S. Pat. Nos. 8,525,102, 8,351,789, and 8,476,577, incorporated herein by reference.
Suitable magnetic encoders are disclosed in U.S. Publication 20130063138, U.S. Pat. No. 8,405,387, EP2579002A1, EP2642252 A1, incorporated herein by reference.
Suitable mechanical encoders are disclosed in, U.S. Pat. No. 5,695,048, and EP2564165A2, incorporated herein by reference.
Suitable Hall Effect sensors are disclosed in, EP2454558B1 and EP0907068A1, incorporated herein by reference.
Suitable potentiometers are disclosed in, U.S. Pat. No. 2,680,177, EP1404021A3, CA2676196A1, incorporated herein by reference.
In various embodiments, the positioning sensing device 16 is coupled to the drive shaft 14 by a variety of means, including but not limited to the adapters 28. In one embodiment, the position sensing device 16 uses a single measurement, as defined herein, of drive shaft 14 position sensing which is used to determine movement in order the determine the location of the drive shaft 14 and the positioning sensing device 16. The exact position of the drive shaft 14 can be measured with another measurement without knowledge of any previous state. Single movement, which is one determination of position sensing, is the knowledge of whether the door 12 is locked, unlocked or in between. One advantage of the accelerator is that one can determine position, leave it off, come back at a later time, and the accelerometer 16 will know its current position even if it has been moved since it has been turned off. It will always know its current position.
In one embodiment the position sensing device 16, including but not limited to the accelerometer 16, provides an acceleration signal to a controller coupled to the intelligent door lock system 10 and included as part of the intelligent door lock system, or positioned at the door 12, in response to sensed acceleration.
In one embodiment the positioning sensing device 16, including but not limited to the accelerator 16, provides an acceleration signal to a controller, at the intelligent door lock system 10, in response to sensed acceleration.
In one embodiment the intelligent door lock system 10 includes an accelerometer 16 for determining movement, such as a knock or the door opening, in which the lock is disposed and controlling a radio or the intelligent door lock system 10 via a controller, as a function of the acceleration signal.
In one embodiment, the mobile device 201 includes an accelerometer 1246 and outputs an acceleration signal to a controller 1218 upon acceleration of the mobile device 201. The acceleration signal is output to the controller 1218 and a radio signal generator is triggered to begin generating a radio signal.
In one embodiment a wireless access control system for a door includes a lock assembly 10 coupled at the door 10 and has a lock, wireless circuitry and a controller that in operation provides for a change in the lock for a locked and lock position, and further can have a proximity detector. A user mobile device 201 is in communication with the lock assembly 10. An accelerometer 16 can be at the door, the lock system 10 and/or the mobile device 201.
In one embodiment, a wireless access control system is provided to lock or unlock a door 12 at a dwelling. A remote access device, including but not limited to a mobile device 210, transmits a signal. The lock system 10 includes a lock 22, a processor 36 with a memory, one or more wireless communication device 40 coupled to a circuit 18 and one or more motion transfer device 34 coupled to a drive shaft 14. The lock 22 receives the signal, enabling the lock 22 to be one of locked or unlocked in response to the signal. The remote access device 210 has a controller for generating the signal, and an accelerometer 16 providing an acceleration signal to the controller when the accelerometer 16 experiences acceleration. The controller generates the signal in response to the acceleration signal.
In one embodiment the memory stores an identifier associated with a respective remote access device, and the lock 22 only provides access to a predetermined remote access device having an identifier stored in the memory during a respective predetermined time period associated in the memory with the remote access device.
In one embodiment a proximity detector is included and configured to determine a presence of a user upon receipt of a proximity detector input.
In one embodiment the remote access device includes a geo positioning system and the signal has a geo location of the remote access device. In one embodiment the lock 22 exhibits a low power broadcast state and a high rate broadcast. A listening state can also be provided. In one embodiment the processor 36 causes the lock 22 to exhibit a high rate broadcast and the listening state as a function of the geo location of the remote access device.
In one embodiment a proximity detector is provided that detects a presence of a user. The proximity detector sends a presence signal to the processor 36 when the presence of a user is detected. The processor 36 causes the lock 22 to change a status of the lock 22 from one of locked to unlocked and unlocked to locked in response to the presence signal.
In one embodiment the remote access device includes a geo positioning system, and the signal includes a geo location of the remote access device. The processor 36 causes the lock 22 to change from one of locked to unlocked and unlocked to locked as a function of the geo location.
In one embodiment at least one antenna transmits a signal, an accelerometer 16 detects acceleration of a door 12 in which the lock 22 is coupled to, and the processor 36 receives an accelerometer signal that causes a signal to be transmitted by the antenna in response to the acceleration signal.
In one embodiment a wireless access control system includes mobile device 210 for accessing lock 22. Mobile device 210 has a mobile device controller for generating a signal mobile device 210 and a lock 22 can be locked or unlocked. Mobile device 210 has a geo-positioning system sensor for determining a geographic location of the mobile device 210. In one embodiment the controller of mobile device 210 determines whether or not a geographic position of a user with the mobile device 210 is within a geo-fence for lock/unlocking operation.
In one embodiment a memory of mobile device 210 stores past transaction information. The controller of mobile device 210 accesses a past transaction information to recognize patterns and outputs the signal to the lock when a pattern of data presently exhibited at mobile device 210 corresponds to a pattern of past transaction information stored in the memory corresponding to a past event in which a control signal is sent to lock 22. In another embodiment the memory at intelligent door lock system 10 can perform this function.
In one embodiment mobile device 210 time stamps a time of day of the transmission of a successful signal to lock 22 and stores the time stamp of the time of day of a successful transmission of the signal in the memory. In one embodiment the mobile device controller compares a time of day of a previous successful signal to a current time of day and increases a broadcast rate when the current time of day matches the stored time of day. This can also be performed at intelligent door lock system 10 with its memory and processor 36.
In one embodiment mobile device 210 has a geo-positioning system sensor for determining a geolocation of mobile device 210. As a non-limiting example the location of lock 22 is stored in the mobile device memory. In one embodiment a pattern includes a geo-location of lock 22. The controller of mobile device 210 does a comparison between a current geolocation to a stored geolocation. In response to this comparison the rate at which the signal is broadcast can be modified to be slower when the current geolocation substantially matches the stored geo-location. This results in a power saving of mobile device 210 and intelligent door lock system 10. This can also be performed at intelligent door lock system 10 with processor 36. In one embodiment intelligent door lock system 10 includes one or more devices, including but not limited to the bridges, and geo-sensors, for performing these functions.
In one embodiment mobile device 210 has the geo-positioning sensor or device as well as a real time clock monitored by the mobile device controller for determining elapsed time a time and date. In one embodiment mobile device 210 stamps a transmission of a successful signal to lock 22 and stores the time stamp of the transmission of the signal in its memory. The mobile device controller can compare a time of day and geo-location of mobile device 210 and increasing a broadcast rate when the current time of day matches a stored time of day and the current geolocation substantially matches a stored geo-location. This same function can be performed at intelligent door lock system 10 with its bridge and processor 36.
In one embodiment mobile device has an accelerometer that outputs an acceleration signal to the mobile device controller each time the accelerometer senses acceleration. As a non-limiting example the mobile device controller outputs the signal in response to the acceleration signal. This same function can be performed with the accelerator 16 of intelligent door lock system 10.
In one embodiment the mobile device controller is configured to output the signal at a first rate and in response to the acceleration signal outputs the signal at a second rate, with the second rate being higher than the first rate. This same function can be performed at intelligent door lock system.
In one embodiment mobile device 210 sends a command signal to intelligent door lock system 10. This same function can be performed by intelligent door lock system.
In one embodiment mobile device 210 sends a unique identifier to intelligent door lock system 210. A determination can be made at the intelligent door lock system 10 or at mobile device 210 whether the unique identifier of mobile device 210 corresponds to an authorized user. In one embodiment the state of lock 22 information is only sent when the unique identifier corresponds to an authorized user.
In one embodiment mobile device 210 sends a change lock state command to intelligent door lock system 10 and intelligent door lock system 10 changes a state of the lock in response to a change lock state command.
In one embodiment intelligent door lock system 20 sends a message to mobile device 210 to confirm a change of state of lock 22.
In one embodiment, the positioning sensing device 16 is directly coupled to the drive shaft 14, as illustrated in
In one embodiment, the same positioning sensing device 16 is able to detect knocks by detecting motion of the door 12 in the Z axis. As a non-limiting example, position sensing is in the range of counter and clock wise rotation of up to 180 degrees for readings. The maximum rotation limit is limited by the position sensing device 16, and more particularly to the accelerometer cable. In one embodiment, the result is sub 1° resolution in position sensing. This provides a higher lifetime because sampling can be done at a slower rate, due to knowing the position after the position sensing device 16 has been turned off for a time period of no great 100 milli seconds. With the present invention, accuracy can be enhanced taking repeated measurements. With the present invention, the positioning sensing device 16, such as the accelerometer, does not need to consume additional power beyond what the knock sensing application already uses.
In one embodiment, the position sensing device 16 is positioned on the drive shaft 14, or on an element coupled to the drive shaft 14. In one embodiment, a position of the drive shaft 14 and power sensing device and/or a torque limited link 38 are known. When the position of the drive shaft 14 is known, it is used to detect if the bolt/lock 24 of a door lock device 22 is in a locked or unlocked position, as well as a depth of bolt/lock 24 travel of lock device 22, and the like. This includes but is not limited to if someone, who turned the bolt/lock 24 of lock device 22 from the inside using the ring 32, used the key to open the door 12, if the door 12 has been kicked down, attempts to pick the bolt/lock 24, bangs on the door 12, knocks on the door 12, opening and closing motions of the door 12 and the like. In various embodiments, the intelligent door lock system 10 can be interrogated via hardware, including but not limited to a key, a mobile device, a computer, key fob, key cards, personal fitness devices, such as fitbit®, nike fuel, jawbone up, pedometers, smart watches, smart jewelry, car keys, smart glasses, including but not limited to Google Glass, and the like.
During a power up mode, the current position of the drive shaft 14 is known.
Real time position information of the drive shaft 14 is determined and the bolt/lock 24 of lock device 22 travels can be inferred from the position information of the drive shaft 14. The X axis is a direction along a width of the door 12, the Y axis is in a direction along a length of a door 12, and the Z axis is in a direction extending from a surface of the door 12.
In one embodiment, the accelerometer 16 is the knock sensor. Knocking can be sensed, as well as the number of times a door 12 is closed or opened, the physical swing of the door 12, and the motion the door 12 opening and closing. With the present invention, a determination is made as to whether or not someone successfully swung the door 12, if the door 12 was slammed, and the like. Additionally, by coupling the position sensing device 16 on the moveable drive shaft 14, or coupled to it, a variety of information is provided, including but not limited to, if the bolt/lock 24 is stored in the correct orientation, is the door 12 properly mounted and the like.
In one embodiment, a calibration step is performed to determine the amount of drive shaft 14 rotations to fully lock and unlock the bolt/lock 24 of lock device 22. The drive shaft 14 is rotated in a counter-counter direction until it can no longer rotate, and the same is then done in the clock-wise direction. These positions are then stored in the engine memory. Optionally, the force is also stored. A command is then received to rotate the drive shaft 14 to record the amount of rotation. This determines the correct amount of drive shaft 14 rotations to properly lock and unlock the lock device 22.
In another embodiment, the drive shaft 14 is rotated until it does not move anymore. This amount of rotation is then stored in the memory and used for locking and unlocking the lock device 22.
In another embodiment, the drive shaft 14 is rotated until it does not move anymore. However, this may not provide the answer as to full lock and unlock. It can provide information as to partial lock and unlock. Records from the memory are then consulted to see how the drive shaft 14 behaved in the past. At different intervals, the drive shaft 14 is rotated until it does not move anymore. This is then statistically analyzed to determine the amount of drive shaft 14 rotation for full locking and unlocking. This is then stored in the memory.
In one embodiment, the engine/processor 36 is coupled to at least one wireless communication device 40 that utilizes audio and RF communication to communicate with a wireless device, including but not limited to a mobile device/key fob 210, with the audio used to communicate a security key to the intelligent door lock system 10 from the wireless device 210 and the RF increases a wireless communication range to and from the at least one wireless communication device 40. In one embodiment, only one wireless communication device 40 is used for both audio and RF. In another embodiment, one wireless communication device 40 is used for audio, and a second wireless communication device 40 is used for RF. In one embodiment, the bolt/lock 22 is included in the intelligent door lock system 10. In one embodiment, the audio communications initial set up information is from a mobile device/key fob 210 to the intelligent door lock system 10, and includes at least one of, SSID WiFi, password WiFi, a Bluetooth key, a security key and door configurations.
In one embodiment, an audio signal processor unit includes an audio receiver, a primary amplifier circuit, a secondary amplifier circuit, a current amplifier circuit, a wave detection circuit, a switch circuit and a regulator circuit. In one embodiment, the audio receiver of each said audio signal processor unit is a capacitive microphone. In one embodiment, the switch circuit of each audio signal processor unit is selected from one of a transistor and a diode. In one embodiment, the regulator circuit of each audio signal processor unit is a variable resistor. In one embodiment, the audio mixer unit includes a left channel mixer and a right channel mixer. In one embodiment, the amplifier unit includes a left audio amplifier and a right audio amplifier. In one embodiment, the Bluetooth device includes a sound volume control circuit with an antenna, a Bluetooth microphone and a variable resistor, and is electrically coupled with the left channel mixer and right channel mixer of said audio mixer unit. Additional details are in U.S. Publication US20130064378 A1, incorporated fully herein by reference.
In one embodiment, the faceplate 20 and/or ring 32 is electrically isolated from the circuit 18 and does not become part of circuit 18. This allows transmission of RF energy through the faceplate 20. In various embodiments, the faceplate and/or ring are made of materials that provide for electrical isolation. In various embodiments, the faceplate 20, and/or the ring 32 are at ground. As non-limiting examples, (i) the faceplate 20 can be grounded and in non-contact with the ring 32, (ii) the faceplate 20 and the ring 32 are in non-contact with the ring 32 grounded, (iii) the faceplate 20 and the ring can be coupled, and the ring 32 and the faceplate 20 are all electrically isolated from the circuit 18. In one embodiment, the ring 32 is the outer enclosure to the faceplate 20, and the bolt/lock 24 and lock device 22 is at least partially positioned in an interior defined by the ring 32 and the faceplate 20.
In one embodiment, the lock device 22 has an off center drive mechanism relative to the outer periphery that allows up to R displacements from a center of rotation of the bolt/lock 24 of lock device 22, where R is a radius of the bolt/lock 24, 0.75 R displacements, 0.5 R displacements, and the like, as illustrated in
As illustrated in
In one embodiment of the present invention, a haptic device 49 is included to provide the user with haptic feedback for the intelligent door lock system 10, see
In one embodiment, the wing latches 37 are used to secure the intelligent door lock system 10 to a mounting plate 26 coupled to the door 12. In one embodiment, the wing latches 37 secure the intelligent door lock system 10 to a mounting plate 26 coupled to a door 12 without additional tools other than the wing latches 37.
In one embodiment, the main circuit 18 is coupled to, the engine 36 with a processor and memory, the motor 38, wireless communication device 40 such as a WiFi device including but not limited to a Bluetooth device with an antenna, position sensing device 16, speaker (microphone) 17, temperature sensor 42, battery voltage sensor 44, current sensor or power sensor 46 that determines how hard the motor 38 is working, a protection circuit to protect the motor from overheating, an LED array 48 that reports status and one or more batteries 50 that power circuit 18, see
The current sensor 46 monitors the amount of current that goes to the motor 38 and this information is received and processed by the engine/processor 36 with memory and is coupled to the circuit 18. The amount of current going to the motor 38 is used to determine the amount of friction experienced by door 12 and/or lock device 22 with lock/bolt 24 in opening and/or closing, as applied by the intelligent door lock system 10 and the positioning sensing device 16 to the drive shaft 14. The circuit 18 and engine/processor 36 can provide for an adjustment of current. The engine/processor 36 can provide information regarding the door and friction to the user of the door 12.
In one embodiment, a lead in ramp,
The intelligent door lock system 10 can be in communication with an intelligent door lock system back-end 68, via Network Systems, as more fully described hereafter.
In one embodiment, the flex circuit 18, which has an out-of-plane deflection of at least 1 degree, includes a position detector connector 46, Bluetooth circuit, and associated power points, as well as other elements.
In one embodiment, the intelligent door lock system 10 can use incremental data transfer via Network Systems, including but not limited to BLUETOOTH® and the like. The intelligent door lock system 10 can transmit data through the inductive coupling for wireless charging. The user is also able to change the frequency of data transmission.
In one embodiment, the intelligent door lock system 10 can engage in intelligent switching between incremental and full syncing of data based on available communication routes. As a non-limiting example, this can be via cellular networks, WiFi, BLUETOOTH® and the like.
In one embodiment, the intelligent door lock system 10 can receive firmware and software updates from the intelligent lock system back-end 68.
In one embodiment, the intelligent door lock system 10 produces an output that can be received by an amplifier, and decoded by an I/O decoder to determine I/O logic levels, as well as, both clock and data information. Many such methods are available including ratio encoding, Manchester encoding, Non-Return to Zero (NRZ) encoding, or the like; alternatively, a UART type approach can be used. Once so converted, clock and data signals containing the information bits are passed to a memory at the intelligent door lock system 10 or intelligent door lock system back-end 68.
In one embodiment, the intelligent door lock system 10, or associated back-end 68, can include a repeatable pseudo randomization algorithm in ROM or in ASIC logic.
As illustrated in
The back-end 68 knows that an intelligent door lock system 10 is with a user, and includes a database with the user's account information. The back-end 68 knows if the user is registered or not. When the intelligent door lock system 10 is powered up, the back-end 68 associated that intelligent door lock system 10 with the user.
The conditioning electronics 80 can provide signal conditioning, including but not limited to amplification, filtering, converting, range matching, isolation and any other processes required to make sensor output suitable for processing after conditioning. The conditioning electronics can provide for, DC voltage and current, AC voltage and current, frequency and electric charge. Signal inputs accepted by signal conditioners include DC voltage and current, AC voltage and current, frequency and electric charge. Outputs for signal conditioning electronics can be voltage, current, frequency, timer or counter, relay, resistance or potentiometer, and other specialized output.
In one embodiment, the one or more processors 78, can include a memory, such as a read only memory, used to store instructions that the processor may fetch in executing its program, a random access memory (RAM) used by the processor 78 to store information and a master dock. The one or more processors 78 can be controlled by a master clock that provides a master timing signal used to sequence the one or more processors 78 through internal states in their execution of each processed instruction. In one embodiment, the one or more processors 78 can be low power devices, such as CMOS, as is the necessary logic used to implement the processor design. Information received from the signals can be stored in memory.
In one embodiment, electronics 92 are provided for use in intelligent door system 10 analysis of data transmitted via System Networks. The electronics 92 can include an evaluation device 94 that provides for comparisons with previously stored intelligent door system 10 information.
Signal filtering is used when the entire signal frequency spectrum contains valid data. Filtering is the most common signal conditioning function, as usually not all the signal frequency spectrum contains valid data.
Signal amplification performs two important functions: increases the resolution of the inputed signal, and increases its signal-to-noise ratio.
Suitable amplifiers 86 include but are not limited to sample and hold amplifiers, peak detectors, log amplifiers, antilog amplifiers, instrumentation amplifiers, programmable gain amplifiers and the like.
Signal isolation can be used in order to pass the signal from to a measurement device without a physical connection. It can be used to isolate possible sources of signal perturbations.
In one embodiment, the intelligent door lock system back-end 68 can provide magnetic or optic isolation. Magnetic isolation transforms the signal from voltage to a magnetic field, allowing the signal to be transmitted without a physical connection (for example, using a transformer). Optic isolation takes an electronic signal and modulates it to a signal coded by light transmission (optical encoding), which is then used for input for the next stage of processing.
In one embodiment, the intelligent door lock system 10 and/or the intelligent door lock system back-end 68 can include Artificial Intelligence (AI) or Machine Learning-grade algorithms for analysis. Examples of AI algorithms include Classifiers, Expert systems, case based reasoning, Bayesian networks, and Behavior based AI, Neural networks, Fuzzy systems, Evolutionary computation, and hybrid intelligent systems.
Information received or transmitted from the back-end 68 to the intelligent door system 10 and mobile device 210 can use logic resources, such as AI and machine learning grade algorithms to provide reasoning, knowledge, planning, learning communication, and create actions.
In one embodiment, AI is used to process information from the intelligent door lock system 10, from mobile device 210, and the like. The back-end 68 can compute scores associated with various risk variables involving the intelligent door lock system 10. These score can be compared to a minimum threshold from a database and an output created. Alerts can be provided to the intelligent door lock system 10, mobile device 210 and the like. The alert can provide a variety of options for the intelligent door lock system 10 to take, categorizations of the received data from the mobile device 210, the intelligent door lock system 10, and the like, can be created. A primary option can be created as well as secondary options.
In one embodiment, data associated with the intelligent door lock system 10 is received. The data can then be pre-processed and an array of action options can be identified. Scores can be computed for the options. The scores can then be compared to a minimum threshold and to each other. A sorted list of the action options based on the comparison can be outputted to the intelligent door lock system 10, the mobile device 210 and the like. Selections can then be received indicating which options to pursue. Action can then be taken. If an update to the initial data is received, the back-end 68 can then return to the step of receiving data.
Urgent indicators can be determined and directed to the intelligent door lock system 10, including unlocking, locking and the like.
Data received by the intelligent door lock system 10 and mobile device 210 can also be compared to third party data sources.
In data evaluation and decision making, algorithm files from a memory can be accessed specific to data and parameters received from the intelligent door lock system 10 and mobile device 210.
Scoring algorithms, protocols and routines can be run for the various received data and options. Resultant scores can then be normalized and weights assigned with likely outcomes.
The intelligent door lock system 10 can be a new lock system mounted to a door 12, with all or most of the elements listed above, or it can be retrofitted over an existing lock device 22.
To retrofit the intelligent door lock system 10 with an existing lock system, the user makes sure that the existing lock device 22 and bolt/lock 24 is installed right-side up. The existing thumb-turn is then removed. With some lock devices 22, additional mounting plates 26 need to be removed and the intelligent door lock system 10 can include replacement screws 56 that are used. The correct mounting plate 26 is then selected. With the existing screws 56 in the thumb-turn, the user sequentially aligns with 1 of 4 mounting plates 26 that are supplied or exist. This assists in determining the correct diameter and replace of the screws 56 required by the bolt/lock 24. The mounting plate 26 is then positioned. The correct adapter 28 is positioned in a center of the mounting plate 26 to assist in proper positioning. Caution is made to ensure that the adapter 28 does not rub the sides of the mounting plate 26 and the screws 56 are then tightened on the mounting plate 26. The intelligent door lock system bolt/lock 24 of lock device 22 is then attached. In one embodiment, this is achieved by pulling out side wing latches 36, sliding the lock device 22 and/or bolt/lock 24 over the adapter 28 and pin and then clamping down the wings 36 to the mounting plate 26. The faceplate is rotated to open the battery compartment and the battery tabs are then removed to allow use of the battery contacts 64. An outer metal ring 32 to lock and unlock the door 12 is then rotated. An app from mobile device 210 and/or key then brings the user through a pairing process.
A door 12 can be deformed, warped, and the like. It is desirable to provide a customer or user, information about the door, e.g., if it is deformed, out of alignment, if too much friction is applied when opening and closing, and the like.
As recited above, the current sensor 46 monitors the amount of current that goes to the motor 38 and this information is received and processed by the engine/processor 36 with memory and is coupled to the circuit 18. The amount of current going to the motor 38 is used to determine the amount of friction experienced by door 12 and/or lock device 22 in opening and/or closing, as applied by the intelligent door lock system 10 and the positioning sensing device 16 to the drive shaft 14. The circuit 18 and engine/processor 36 can provide for an adjustment of current. The engine/processor 36 can provide information regarding the door and friction to the user of the door 12.
In one embodiment of the present invention, the intelligent door lock system 10 provides an ability to sense friction on the lock device 22 and/or door 12 by measuring the torque required to move the bolt/lock 24. The intelligent door lock system 10 increases the applied torque gradually until the bolt/lock 24 moves into its desired position, and the applied torque is the minimum amount of torque required to move the bolt/lock 24, which is directly related to how deformed the door is.
In one embodiment, when a bad door is detected, a customer can be notified that their door may require some servicing. In one embodiment, door deformation can be detected with a torque device is used to determine if the torque applied when the door is rotated is too high. As a non-limiting example, this can be 2-15 in lbs of torque. The intelligent door lock system back end 68 can then perform a comparison between the measured torque with a standard, or a norm that is included in the one or more databases 88.
In one embodiment of the present invention, before the door is serviced, the intelligent door lock system 10 allows operation by offering a high-friction mode. As a non-limiting example, the high friction mode is when, as non-limiting examples, 2 inch lbs, 3 inch lbs., 3.5 inch pounds, and the like are required to open the door. In the high friction mode, the bolt/lock 24 is driven while the user is pushing, lifting, torqueing the door, pulling, performing visual inspections of rust, blockage, other conditions that can compromise a door and the like, that is applied to the doorknob. The position sensing device 16 is used to determine if the bolt/lock 24 was moved to a final position. In the high friction mode, motion of the door closing is confirmed. Upon detecting the closing of the door, the bolt/lock 24 is then driven. When the user receives an auditory, visual, or any other type of perceptible confirmation, the user then knows that the door has been locked. In one embodiment, the firmware elements, of the intelligent door lock system 10, as well as other door lock device 22 elements, can also attempt to drive the bolt/lock 24 for a second time when the first time fails. However, this can result in more power consumption, reducing lifetime of the power source, particularly when it is battery 50 based.
In one embodiment of the present invention, the intelligent door lock system 10 seeks to have the motor 38 operate with reduced energy consumption for energy source lifetime purposes, as well as eliminate or reduce undesirable noises, operations, and user experiences that occur when this is a failure in door locking and unlocking, particularly due to door deformation, door non-alignment, as well as other problems with the door that can be irritating to the person locking or unlocking the door.
In one embodiment of the present invention, the intelligent door lock system back-end 68 can track performance of doors and friction levels across time and build a service to encourage users to better maintain their doors. Such service can be a comparison of a door's friction level to other users that are similar geographic locations, at similar weather pattern, such that the user is encouraged to maintain their doors at a competent level. There can be a comparison to standards that at a certain level the door becomes unsafe. Guidelines are provided as to how to maintain their doors. This can be achieved by asking a door user what improves their door, including but not limited to, pushing, lifting, torqueing the door, pulling, visual inspections of rust, blockage, other conditions that can compromise a door, and the like. The analysis and comparison can be conducted at the back-end 68 and the results computed to door lock operator as well as others.
In one embodiment of the present invention, the intelligent door lock system 10 has a deformed operation mode that can be activated after a selected amount of time. As a non-limiting example, this can immediately after the user has been notified, more than 1 pico second, 1 second, 5 seconds, and greater periods of time. The deformed operation mode can be activated by the intelligent door lock system 10 itself, or by the intelligent door lock system back-end 68. It can be activated on the door operator's request. In one embodiment, the back-end 68 can anticipate these problems. As non-limiting examples, these can include but are not limited to, due to analysis of doors 12 in similar geographic areas, doors under similar conditions, doors with similar histories, similar environmental conditions, as well as the history of a particular door, and the like.
The deformed mode provides cooperation with the door user to more readily open the door. In one embodiment, this is a mechanism for the door to communicate back to the door lock operator. As a non-limiting example, feedback can be provided to the door operator. Such feedback can include, but is not limited to, communication via, tactile, audio, visual, temperature, electronic, wirelessly, through a computer, mobile device and the like. In another embodiment, the operator can signify to the door the operator's desire to leave by unlocking and opening the door 12. This is a door operator and lock communication. The door operator can close the door, which is sensed by the intelligent door lock system 10, a timer can then be initiated to provide with door operator with a selected time period in which the door operator can manually alleviate the friction problem. When the time has expired, the intelligent door system 10 can then lock the door 12. Upon detecting a successful door locking event, the intelligent door lock system 10 can advise the door operator that there is a successful door locking. If the door locking is not successful, the intelligent door lock system 10 can provide a message to the door operator via a variety of means, including but not limited to a message or alert to the door lock operator's mobile device. Such a mobile device message provides the door operator with notification that door locking was not successful or achieved, and the door lock operator can then then take action to lock the door 12 either in person, wirelessly, and the like.
For entry, communication with the lock device 22 may be different. In one embodiment, it can be locking coupled with close proximity to a mobile device that is exterior to the door.
In another embodiment of the present invention, the intelligent door lock system back-end 68 can track performance of doors and friction levels across time and build a simple service to encourage users to maintain their doors better, as discussed above.
This information can be stored in the one or more databases 64.
In one embodiment of the present invention, the intelligent door lock system 10 unlocks when a selected temperature is reached, when smoke is detected, when a fire is detected by processor 38 and the like. As non-limiting examples, the intelligent door lock system 10 unlocks the bolt/lock 24 when a temperature is sensed by the temperature sensor 46 that, as non-limiting examples, is greater than 40 degrees C., any temperature over 45 degrees C. and the like. The temperature sensor 46212 sends a signal to the processor 36 which communicates with the motor 38 that will then cause the drive shaft 14 to rotate sufficiently and unlock the bolt/lock 24. An arm can also be activated. It will be appreciated that the processor 36 can be anywhere as long as it is in communication with the temperature sensor 46, and the motor 38, which can be at the intelligent door lock system 10, at the back-end 68, anywhere in the building, and at any remote location. The processor 36 determines if there is an unsafe condition, e.g., based on a rise in temperature and this then results in an unlocking of the bolt/lock 24.
In one embodiment, the intelligent door lock system back-end 68 can track performance of doors and friction levels across time and build a service to encourage users to better maintain their doors, as discussed above.
In another embodiment, the mobile device or computing device 210 may execute a browser stored in the memory of the mobile or computing device 210 using a processor from the mobile device or computing device 210 to interact with the intelligent door lock system back-end component 114. Each of the elements shown in
As shown in
The intelligent door look assembly 100 may have an extension gear which extends through the baseplate of the smart door lock. The baseplate may have one or more oval mounting holes to accommodate various rose screw distances from 18 mm to 32 mm to accommodate various different doors. In one implementation, the intelligent door lock system 100 may have a circular shape and also a rotating bezel. The rotating bezel allows a user to rotate the smart door lock and thus manually lock or unlock the bolt as before. The extension gear extends through the baseplate and then interacts with the existing bolt elements and allows the smart door lock to lock/unlocks the bolt. The extension gear may have a modular adapter slot at its end which interfaces with an extension rod of the bolt assembly 124. These modular adapters, as shown in
The intelligent door lock system 100 may be used for various functions. As a non-limiting example, the intelligent door lock system 100 may enable a method to exchange a security token between mobile or computing device 210 and the intelligent door look system 100. All or all of the intelligent door look systems 100 may be registered with the intelligent door lock back-end 68 with a unique registration ID. The unique ID of the an intelligent door look system 100 may be associated with a unique security token that can only be used to command a specific intelligent door look system 100 to lock or unlock. Through a virtual key provisioning interface of the intelligent door lock system back-end 68, a master user, who may be an administrator, can issue a new security token to a particular mobile or computing device 210. The intelligent door look system 100 can periodically broadcast an advertisement of its available services over System Networks. When the mobile or computing device 210 is within a predetermined proximity of the intelligent door look system 100, which varies depending on the protocol being used, the mobile or computing device 210 can detect the advertisement from the intelligent door lock assembly 100.
The application on the mobile or computing device 210 detects the intelligent door look system 100 and a communications session can be initiated. The token, illustrated as a key 118 in
The intelligent door lock system 100 may also allow for the triggering of multiple events upon connection to an intelligent door look system 100 by a mobile or computing device 210. As a non-limiting example, the intelligent door look system 100 can detect and authenticate the mobile or computing device 210, as described herein, and initiate a series of actions, including but not limiting to, unlocking doors 100, turning on lights, adjusting temperature, turning on stereo etc. The commands for these actions may be carried out by the mobile or computing device 210 or the intelligent door lock system back-end 68. In addition, through a web interface of the intelligent door lock system back-end 68, the user may define one or more events to be triggered upon proximity detection and authentication of the user's mobile or computing device 210 to the intelligent door look system 100.
The intelligent door lock system 100 may also allow for the intelligent triggering of events associated with an individual. In particular, environmental settings may be defined per individual in the intelligent door lock system back-end 68 and then applied intelligently by successive ingress by that person into a building that has an intelligent door look system 100. For example: person A arrives home and its mobile or computing device 210 is authenticated by the intelligent door look system 100. His identity is shared with the intelligent door lock system back-end 68. The intelligent door lock system back-end 68 may send environmental changes to other home controllers, such as “adjust heat to 68 degrees”. Person B arrives at the same building an hour later and her mobile or computing device 210 is also authenticated and shared with the intelligent door lock system back-end 68. The intelligent door lock system back-end 68 accesses her preferred environmental variables such as “adjust heat to 71 degrees”. The intelligent door lock system back-end understands that person B has asked for a temperature increase and issues the respective command to the dwelling thermostat. In one example, the intelligent door lock back-end system 68 has logic that defers to the higher temperature request or can deny it. Therefore if person A entered the home after person B, the temperature would not be decreased.
Referring now to
The mobile or computing device 210 can include a display 1214 that can be a touch sensitive display. The touch-sensitive display 1214 is sometimes called a “touch screen” for convenience, and may also be known as or called a touch-sensitive display system. The mobile or computing device 210 may include a memory 1216 (which may include one or more computer readable storage mediums), a memory controller 1218, one or more processing units (CPU's) 1220, a peripherals interface 1222, Network Systems circuitry 1224, including but not limited to RF circuitry, audio circuitry 1226, a speaker 1228, a microphone 1230, an input/output (I/O) subsystem 1232, other input or control devices 1234, and an external port 1236. The mobile or computing device 210 may include one or more optical sensors 1238. These components may communicate over one or more communication buses or signal lines 1240.
It should be appreciated that the mobile or computing device 210 is only one example of a portable multifunction mobile or computing device 210, and that the mobile or computing device 210 may have more or fewer components than shown, may combine two or more components, or a may have a different configuration or arrangement of the components. The various components shown in
Memory 1216 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 1216 by other components of the mobile or computing device 210, such as the CPU 1220 and the peripherals interface 1222, may be controlled by the memory controller 1218.
The peripherals interface 1222 couples the input and output peripherals of the device to the CPU 1220 and memory 1216. The one or more processors 1220 run or execute various software programs and/or sets of instructions stored in memory 1216 to perform various functions for the mobile or computing device 210 and to process data.
In some embodiments, the peripherals interface 1222, the CPU 1220, and the memory controller 1218 may be implemented on a single chip, such as a chip 1242. In some other embodiments, they may be implemented on separate chips.
The Network System circuitry 1244 receives and sends signals, including but not limited to RF, also called electromagnetic signals. The Network System circuitry 1244 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. The Network Systems circuitry 1244 may include well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. The Network Systems circuitry 1244 may communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
The wireless communication may use any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), BLUETOOTH®, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802. 11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for email (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), and/or Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS)), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
The audio circuitry 1226, the speaker 1228, and the microphone 1230 provide an audio interface between a user and the mobile or computing device 210. The audio circuitry 1226 receives audio data from the peripherals interface 1222, converts the audio data to an electrical signal, and transmits the electrical signal to the speaker 1228. The speaker 1228 converts the electrical signal to human-audible sound waves. The audio circuitry 1226 also receives electrical signals converted by the microphone 1230 from sound waves. The audio circuitry 1226 converts the electrical signal to audio data and transmits the audio data to the peripherals interface 1222 for processing. Audio data may be retrieved from and/or transmitted to memory 1216 and/or the Network Systems circuitry 1244 by the peripherals interface 1222. In some embodiments, the audio circuitry 1226 also includes a headset jack. The headset jack provides an interface between the audio circuitry 1226 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
The I/O subsystem 1232 couples input/output peripherals on the mobile or computing device 210, such as the touch screen 1214 and other input/control devices 1234, to the peripherals interface 1222. The I/O subsystem 1232 may include a display controller 1246 and one or more input controllers 210 for other input or control devices. The one or more input controllers 1 receive/send electrical signals from/to other input or control devices 1234. The other input/control devices 1234 may include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, and joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 1252 may be coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse. The one or more buttons may include an up/down button for volume control of the speaker 1228 and/or the microphone 1230. The one or more buttons may include a push button. A quick press of the push button may disengage a lock of the touch screen 1214 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, which is hereby incorporated by reference in its entirety. A longer press of the push button may turn power to the mobile or computing device 210 on or off. The user may be able to customize a functionality of one or more of the buttons. The touch screen 1214 is used to implement virtual or soft buttons and one or more soft keyboards.
The touch-sensitive touch screen 1214 provides an input interface and an output interface between the device and a user. The display controller 1246 receives and/or sends electrical signals from/to the touch screen 1214. The touch screen 1214 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user-interface objects, further details of which are described below.
A touch screen 1214 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. The touch screen 1214 and the display controller 1246 (along with any associated modules and/or sets of instructions in memory 1216) detect contact (and any movement or breaking of the contact) on the touch screen 1214 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on the touch screen. In an exemplary embodiment, a point of contact between a touch screen 1214 and the user corresponds to a finger of the user.
The touch screen 1214 may use LCD (liquid crystal display) technology, or LPD (light emitting polymer display) technology, although other display technologies may be used in other embodiments. The touch screen 1214 and the display controller 1246 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with a touch screen 1214.
A touch-sensitive display in some embodiments of the touch screen 1214 may be analogous to the multi-touch sensitive tablets described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in their entirety. However, a touch screen 1214 displays visual output from the portable mobile or computing device 210, whereas touch sensitive tablets do not provide visual output.
A touch-sensitive display in some embodiments of the touch screen 1214 may be as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 12, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
The touch screen 1214 may have a resolution in excess of 1000 dpi. In an exemplary embodiment, the touch screen has a resolution of approximately 1060 dpi. The user may make contact with the touch screen 1214 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which are much less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, the mobile or computing device 210 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from the touch screen 1214 or an extension of the touch-sensitive surface formed by the touch screen.
In some embodiments, the mobile or computing device 210 may include a physical or virtual click wheel as an input control device 1234. A user may navigate among and interact with one or more graphical objects (henceforth referred to as icons) displayed in the touch screen 1214 by rotating the click wheel or by moving a point of contact with the click wheel (e.g., where the amount of movement of the point of contact is measured by its angular displacement with respect to a center point of the click wheel). The click wheel may also be used to select one or more of the displayed icons. For example, the user may press down on at least a portion of the click wheel or an associated button. User commands and navigation commands provided by the user via the click wheel may be processed by an input controller 1252 as well as one or more of the modules and/or sets of instructions in memory 1216. For a virtual click wheel, the click wheel and click wheel controller may be part of the touch screen 1214 and the display controller 1246, respectively. For a virtual click wheel, the click wheel may be either an opaque or semitransparent object that appears and disappears on the touch screen display in response to user interaction with the device. In some embodiments, a virtual click wheel is displayed on the touch screen of a portable multifunction device and operated by user contact with the touch screen.
The mobile or computing device 210 also includes a power system 1214 for powering the various components. The power system 1214 may include a power management system, one or more power sources (e.g., battery 1254, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
The mobile or computing device 210 may also include one or more sensors 1238, including not limited to optical sensors 1238. An optical sensor can be coupled to an optical sensor controller 1248 in I/O subsystem 1232. The optical sensor 1238 may include charge- coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. The optical sensor 1238 receives light from the environment, projected through one or more lens, and converts the light to data representing an image. In conjunction with an imaging module 1258 (also called a camera module); the optical sensor 1238 may capture still images or video. In some embodiments, an optical sensor is located on the back of the mobile or computing device 210, opposite the touch screen display 1214 on the front of the device, so that the touch screen display may be used as a viewfinder for either still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image may be obtained for videoconferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of the optical sensor 1238 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 1238 may be used along with the touch screen display for both video conferencing and still and/or video image acquisition.
The mobile or computing device 210 may also include one or more proximity sensors 1250. In one embodiment, the proximity sensor 1250 is coupled to the peripherals interface 1222. Alternately, the proximity sensor 1250 may be coupled to an input controller in the I/O subsystem 1232. The proximity sensor 1250 may perform as described in U.S. patent application Ser. No. 11/241,839,“Proximity Detector In Handheld Device,” filed Sep. 30, 2005; Ser. No. 11/240,788, “Proximity Detector In Handheld Device,” filed Sep. 30, 2005; Ser. No. 13/096,386, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices,” filed Oct. 24, 2006; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables the touch screen 1214 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call). In some embodiments, the proximity sensor keeps the screen off when the device is in the user's pocket, purse, or other dark area to prevent unnecessary battery drainage when the device is a locked state.
In some embodiments, the software components stored in memory 1216 may include an operating system 1260, a communication module (or set of instructions) 1262, a contact/motion module (or set of instructions) 1264, a graphics module (or set of instructions) 1268, a text input module (or set of instructions) 1270, a Global Positioning System (GPS) module (or set of instructions) 1272, and applications (or set of instructions) 1272.
The operating system 1260 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
The communication module 1262 facilitates communication with other devices over one or more external ports 1274 and also includes various software components for handling data received by the Network Systems circuitry 1244 and/or the external port 1274. The external port 1274 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod (trademark of Apple Computer, Inc.) devices.
The contact/motion module 106 may detect contact with the touch screen 1214 (in conjunction with the display controller 1246) and other touch sensitive devices (e.g., a touchpad or physical click wheel). The contact/motion module 106 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred, determining if there is movement of the contact and tracking the movement across the touch screen 1214, and determining if the contact has been broken (i.e., if the contact has ceased). Determining movement of the point of contact may include determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations may be applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, the contact/motion module 106 and the display controller 1246 also detects contact on a touchpad. In some embodiments, the contact/motion module 1284 and the controller 1286 detects contact on a click wheel.
Examples of other applications that may be stored in memory 1216 include other word processing applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 1214, display controller 1246, contact module 1276, graphics module 1278, and text input module 1280, a contacts module 1282 may be used to manage an address book or contact list, including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone, video conference, e-mail, or IM; and so forth.
The foregoing description of various embodiments of the claimed subject matter has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the claimed subject matter to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Particularly, while the concept “component” is used in the embodiments of the systems and methods described above, it will be evident that such concept can be interchangeably used with equivalent concepts such as, class, method, type, interface/body motion, module, object model, and other suitable concepts. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the relevant art to understand the claimed subject matter, the various embodiments and with various modifications that are suited to the particular use contemplated.
This application claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 16/197,518, filed Nov. 21, 2018, now U.S. Pat. No. 10,846,957 issued on Nov. 24, 2020, which claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 15/227,761, filed Aug. 3, 2016, now U.S. Pat. No. 10,181,232 issued Jan. 15, 2019, the entire contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2680177 | Rosenthal | Jun 1954 | A |
3898976 | Coffman, Jr. | Aug 1975 | A |
5245329 | Gokcebay | Sep 1993 | A |
5306407 | Hauzer et al. | Apr 1994 | A |
5407035 | Cole et al. | Apr 1995 | A |
5594430 | Cutter et al. | Jan 1997 | A |
5695048 | Tseng | Dec 1997 | A |
5712626 | Andreou et al. | Jan 1998 | A |
5774058 | Henry et al. | Jun 1998 | A |
5903225 | Schmitt et al. | May 1999 | A |
5933086 | Tischendorf et al. | Aug 1999 | A |
5979199 | Elpem et al. | Nov 1999 | A |
6032500 | Collard, Jr. et al. | Mar 2000 | A |
6078264 | Nose | Jun 2000 | A |
6196936 | Meckel | Mar 2001 | B1 |
6215781 | Kato et al. | Apr 2001 | B1 |
6282931 | Padiak et al. | Sep 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6334636 | Huang et al. | Jan 2002 | B1 |
6360573 | Ming-Chih | Mar 2002 | B1 |
6407520 | Kleefeldt et al. | Jun 2002 | B1 |
6418764 | Lerchner | Jul 2002 | B1 |
6422457 | Frich et al. | Jul 2002 | B1 |
6568726 | Caspi et al. | May 2003 | B1 |
6570557 | Westerman et al. | May 2003 | B1 |
6580871 | Proidl | Jun 2003 | B1 |
6612415 | Yamane | Sep 2003 | B2 |
6624739 | Stobbe | Sep 2003 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6891479 | Eccleston | May 2005 | B1 |
6910301 | Kalempa et al. | Jun 2005 | B2 |
6961763 | Wang et al. | Nov 2005 | B1 |
6967562 | Menard et al. | Nov 2005 | B2 |
6972660 | Montgomery, Jr. et al. | Dec 2005 | B1 |
7127083 | Han et al. | Oct 2006 | B2 |
7248836 | Taylor | Jul 2007 | B2 |
7252311 | Pratt et al. | Aug 2007 | B2 |
7351910 | Magisano et al. | Apr 2008 | B1 |
7420456 | Fisher | Sep 2008 | B2 |
7439850 | Boulard et al. | Oct 2008 | B2 |
7520152 | Sabo et al. | Apr 2009 | B2 |
7614008 | Ording | Nov 2009 | B2 |
7633076 | Huppi et al. | Dec 2009 | B2 |
7643056 | Silsby | Jan 2010 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7657849 | Chaudhri et al. | Feb 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7734249 | Mitchell, Jr. et al. | Jun 2010 | B1 |
7810852 | Alacqua et al. | Oct 2010 | B2 |
7844914 | Andre et al. | Nov 2010 | B2 |
7891222 | Ratkus et al. | Feb 2011 | B2 |
8006002 | Kalayjian et al. | Aug 2011 | B2 |
8019353 | Smithey et al. | Sep 2011 | B1 |
8024186 | De Bonet | Sep 2011 | B1 |
8035478 | Lee | Oct 2011 | B2 |
8122645 | Theile et al. | Feb 2012 | B2 |
8239784 | Hotelling et al. | Aug 2012 | B2 |
8269627 | Gore et al. | Sep 2012 | B2 |
8279180 | Hotelling et al. | Oct 2012 | B2 |
8310365 | Siegler, II et al. | Nov 2012 | B2 |
8314680 | Ichihara | Nov 2012 | B2 |
8325039 | Picard et al. | Dec 2012 | B2 |
8347720 | De Los Santos et al. | Jan 2013 | B2 |
8351789 | Wagener et al. | Jan 2013 | B2 |
8405387 | Novak et al. | Mar 2013 | B2 |
8445779 | Gretz | May 2013 | B1 |
8476577 | Nagahama et al. | Jul 2013 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8498572 | Schooley et al. | Jul 2013 | B1 |
8522596 | Avery | Sep 2013 | B2 |
8525102 | Augustyniak et al. | Sep 2013 | B2 |
8533144 | Reeser et al. | Sep 2013 | B1 |
8542189 | Milne et al. | Sep 2013 | B2 |
8544326 | Je | Oct 2013 | B2 |
8586902 | Verfuerth | Nov 2013 | B2 |
8600430 | Herz et al. | Dec 2013 | B2 |
8653982 | Yulkowski et al. | Feb 2014 | B2 |
8671723 | Dayanikli et al. | Mar 2014 | B2 |
8826708 | Lopes | Sep 2014 | B2 |
8864049 | Nolte et al. | Oct 2014 | B2 |
8872915 | Scalisi et al. | Oct 2014 | B1 |
8896416 | Lundy et al. | Nov 2014 | B1 |
8918208 | Hickman et al. | Dec 2014 | B1 |
8935052 | Hermann | Jan 2015 | B2 |
9000916 | Meeker et al. | Apr 2015 | B2 |
9024759 | Uyeda et al. | May 2015 | B2 |
9049352 | Scalisi et al. | Jun 2015 | B2 |
9057210 | Dumas et al. | Jun 2015 | B2 |
9113051 | Scalisi | Aug 2015 | B1 |
9187929 | Webb et al. | Nov 2015 | B2 |
9222282 | Russo et al. | Dec 2015 | B2 |
9251679 | Wandel et al. | Feb 2016 | B2 |
9322194 | Cheng et al. | Apr 2016 | B2 |
9322201 | Cheng et al. | Apr 2016 | B1 |
9326094 | Johnson et al. | Apr 2016 | B2 |
9359794 | Cheng | Jun 2016 | B2 |
9378598 | Dumas et al. | Jun 2016 | B2 |
9382739 | Johnson et al. | Jul 2016 | B1 |
9396598 | Daniel-Wayman et al. | Jul 2016 | B2 |
9447609 | Johnson et al. | Sep 2016 | B2 |
9454893 | Warren et al. | Sep 2016 | B1 |
9470017 | Cheng et al. | Oct 2016 | B1 |
9470018 | Cheng et al. | Oct 2016 | B1 |
9514585 | Ahearn et al. | Dec 2016 | B2 |
9528294 | Johnson et al. | Dec 2016 | B2 |
9528296 | Cheng et al. | Dec 2016 | B1 |
9530262 | Johnson | Dec 2016 | B2 |
9530295 | Johnson | Dec 2016 | B2 |
9534420 | Cheng et al. | Jan 2017 | B1 |
9574372 | Johnson et al. | Feb 2017 | B2 |
9613476 | Johnson | Apr 2017 | B2 |
9624695 | Cheng et al. | Apr 2017 | B1 |
9640053 | Siann et al. | May 2017 | B2 |
9644398 | Cheng et al. | May 2017 | B1 |
9644399 | Johnson et al. | May 2017 | B2 |
9644400 | Cheng et al. | May 2017 | B1 |
9647996 | Johnson et al. | May 2017 | B2 |
9652917 | Johnson et al. | May 2017 | B2 |
9683391 | Johnson et al. | Jun 2017 | B2 |
9683392 | Cheng et al. | Jun 2017 | B1 |
9685015 | Johnson | Jun 2017 | B2 |
9685017 | Johnson | Jun 2017 | B2 |
9685018 | Johnson | Jun 2017 | B2 |
9691198 | Cheng et al. | Jun 2017 | B2 |
9695616 | Johnson et al. | Jul 2017 | B2 |
9704314 | Johnson et al. | Jul 2017 | B2 |
9704320 | Johnson et al. | Jul 2017 | B2 |
9706365 | Johnson et al. | Jul 2017 | B2 |
9725927 | Cheng | Aug 2017 | B1 |
9727328 | Johnson | Aug 2017 | B2 |
9728023 | Johnson | Aug 2017 | B2 |
9761073 | Cheng et al. | Sep 2017 | B2 |
9761074 | Cheng et al. | Sep 2017 | B2 |
9767632 | Johnson | Sep 2017 | B2 |
9769435 | Scalisi et al. | Sep 2017 | B2 |
9818247 | Johnson | Nov 2017 | B2 |
9916746 | Johnson et al. | Mar 2018 | B2 |
9922481 | Johnson et al. | Mar 2018 | B2 |
10017963 | Johnson et al. | Jul 2018 | B2 |
10140828 | Johnson et al. | Nov 2018 | B2 |
10181232 | Cheng et al. | Jan 2019 | B2 |
10198884 | Johnson | Feb 2019 | B2 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020099945 | McLintock et al. | Jul 2002 | A1 |
20020117868 | Bates et al. | Aug 2002 | A1 |
20020138767 | Hamid et al. | Sep 2002 | A1 |
20020196771 | Vij et al. | Dec 2002 | A1 |
20030160681 | Menard et al. | Aug 2003 | A1 |
20030167693 | Mainini | Sep 2003 | A1 |
20040003257 | Mitchell | Jan 2004 | A1 |
20040012352 | Kachouh et al. | Jan 2004 | A1 |
20040075532 | Ueda et al. | Apr 2004 | A1 |
20040212678 | Cooper et al. | Oct 2004 | A1 |
20040215910 | Okaue et al. | Oct 2004 | A1 |
20040236918 | Okaue et al. | Nov 2004 | A1 |
20040237609 | Hosselet | Dec 2004 | A1 |
20040243779 | Okaue et al. | Dec 2004 | A1 |
20050007451 | Chiang | Jan 2005 | A1 |
20050029345 | Waterhouse et al. | Feb 2005 | A1 |
20050088145 | Loch | Apr 2005 | A1 |
20050179517 | Harms et al. | Aug 2005 | A1 |
20050212750 | Marvit et al. | Sep 2005 | A1 |
20050212752 | Marvit et al. | Sep 2005 | A1 |
20050248444 | Joao | Nov 2005 | A1 |
20050252739 | Callahan et al. | Nov 2005 | A1 |
20050286466 | Tagg et al. | Dec 2005 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060033724 | Chaudhri et al. | Feb 2006 | A1 |
20060158144 | Theile et al. | Jul 2006 | A1 |
20060164208 | Schaffzin et al. | Jul 2006 | A1 |
20060193262 | McSheffrey et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060267409 | Mullet et al. | Nov 2006 | A1 |
20060283219 | Bendz et al. | Dec 2006 | A1 |
20070056338 | Sabo et al. | Mar 2007 | A1 |
20070090843 | De Doncker et al. | Apr 2007 | A1 |
20070150842 | Chaudhri et al. | Jun 2007 | A1 |
20070188307 | Lai et al. | Aug 2007 | A1 |
20070229350 | Scalisi et al. | Oct 2007 | A1 |
20070246396 | Brollier | Oct 2007 | A1 |
20080011032 | Groff | Jan 2008 | A1 |
20080055241 | Goldenberg et al. | Mar 2008 | A1 |
20080125965 | Carani et al. | May 2008 | A1 |
20080129498 | Howarter et al. | Jun 2008 | A1 |
20080211775 | Hotelling et al. | Sep 2008 | A1 |
20080223093 | Amir | Sep 2008 | A1 |
20080236214 | Han | Oct 2008 | A1 |
20080238669 | Linford | Oct 2008 | A1 |
20080297602 | Chang | Dec 2008 | A1 |
20080309624 | Hotelling | Dec 2008 | A1 |
20090029672 | Manz | Jan 2009 | A1 |
20090066320 | Posey | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090128329 | Sato et al. | May 2009 | A1 |
20090180933 | Kauling et al. | Jul 2009 | A1 |
20090217596 | Neundorf et al. | Sep 2009 | A1 |
20090250552 | Kearns et al. | Oct 2009 | A1 |
20090256676 | Piccirillo et al. | Oct 2009 | A1 |
20090267732 | Chauvin et al. | Oct 2009 | A1 |
20090273438 | Sultan et al. | Nov 2009 | A1 |
20100000750 | Andel | Jan 2010 | A1 |
20100070281 | Conkie et al. | Mar 2010 | A1 |
20100089109 | Bliding et al. | Apr 2010 | A1 |
20100127517 | Bliding et al. | May 2010 | A1 |
20100141381 | Bliding et al. | Jun 2010 | A1 |
20100141762 | Siann et al. | Jun 2010 | A1 |
20100145164 | Howell | Jun 2010 | A1 |
20100156809 | Nutaro et al. | Jun 2010 | A1 |
20100201536 | Robertson et al. | Aug 2010 | A1 |
20100283579 | Kraus et al. | Nov 2010 | A1 |
20100306549 | Ullmann | Dec 2010 | A1 |
20100313612 | Eichenstein | Dec 2010 | A1 |
20110148631 | Lanham et al. | Jan 2011 | A1 |
20110056253 | Greiner et al. | Mar 2011 | A1 |
20110082634 | Povirk et al. | Apr 2011 | A1 |
20110100076 | Weinstein | May 2011 | A1 |
20110109678 | Schwartz et al. | May 2011 | A1 |
20110148575 | Sobecki et al. | Jun 2011 | A1 |
20110154740 | Matsumoto et al. | Jun 2011 | A1 |
20110185554 | Huang et al. | Aug 2011 | A1 |
20110215597 | Weum | Sep 2011 | A1 |
20110265528 | Saari | Nov 2011 | A1 |
20110276207 | Falkenstein | Nov 2011 | A1 |
20110277520 | Nunuparov | Nov 2011 | A1 |
20110285501 | Chen | Nov 2011 | A1 |
20120011905 | Gui | Jan 2012 | A1 |
20120068817 | Fisher | Mar 2012 | A1 |
20120073482 | Meeker et al. | Mar 2012 | A1 |
20120092502 | Knasel et al. | Apr 2012 | A1 |
20120199374 | Herth | Aug 2012 | A1 |
20120257615 | Eskildsen et al. | Oct 2012 | A1 |
20120280783 | Gerhardt et al. | Nov 2012 | A1 |
20120280789 | Gerhardt et al. | Nov 2012 | A1 |
20120280790 | Gerhardt et al. | Nov 2012 | A1 |
20120306655 | Tan et al. | Dec 2012 | A1 |
20120319827 | Pance et al. | Dec 2012 | A1 |
20130010120 | Nnoruka | Jan 2013 | A1 |
20130023278 | Chin | Jan 2013 | A1 |
20130038550 | Chien et al. | Feb 2013 | A1 |
20130050106 | Chung et al. | Feb 2013 | A1 |
20130062892 | Chow et al. | Mar 2013 | A1 |
20130063138 | Takahashi et al. | Mar 2013 | A1 |
20130064378 | Chuang | Mar 2013 | A1 |
20130067969 | Webb et al. | Mar 2013 | A1 |
20130076048 | Aerts et al. | Mar 2013 | A1 |
20130126666 | Brown | May 2013 | A1 |
20130138826 | Ling et al. | May 2013 | A1 |
20130154823 | Ostrer et al. | Jun 2013 | A1 |
20130166202 | Bandyopadhyay et al. | Jun 2013 | A1 |
20130176107 | Dumas et al. | Jul 2013 | A1 |
20130178233 | McCoy et al. | Jul 2013 | A1 |
20130192318 | Yanar et al. | Aug 2013 | A1 |
20130207773 | Hathaway et al. | Aug 2013 | A1 |
20130229274 | Kumar et al. | Sep 2013 | A1 |
20130237193 | Dumas et al. | Sep 2013 | A1 |
20130271261 | Ribas et al. | Oct 2013 | A1 |
20130307670 | Ramaci | Nov 2013 | A1 |
20140020295 | Bonahoom et al. | Jan 2014 | A1 |
20140021725 | Baty et al. | Jan 2014 | A1 |
20140028443 | Ebner | Jan 2014 | A1 |
20140033773 | Myers et al. | Feb 2014 | A1 |
20140039366 | Joseph | Feb 2014 | A1 |
20140047878 | Zheng et al. | Feb 2014 | A1 |
20140049366 | Vasquez | Feb 2014 | A1 |
20140049369 | Ahearn et al. | Feb 2014 | A1 |
20140051355 | Ahearn et al. | Feb 2014 | A1 |
20140051425 | Ahearn et al. | Feb 2014 | A1 |
20140052783 | Swatsky et al. | Feb 2014 | A1 |
20140062466 | Thibault et al. | Mar 2014 | A1 |
20140067452 | Anderson et al. | Mar 2014 | A1 |
20140125599 | Seeley | May 2014 | A1 |
20140145666 | Swanson | May 2014 | A1 |
20140159865 | Eto et al. | Jun 2014 | A1 |
20140189758 | Kozlowski | Jul 2014 | A1 |
20140218173 | Long et al. | Aug 2014 | A1 |
20140239647 | Jadallah et al. | Aug 2014 | A1 |
20140265359 | Cheng et al. | Sep 2014 | A1 |
20140267736 | DeLean | Sep 2014 | A1 |
20140267740 | Almomani et al. | Sep 2014 | A1 |
20140292481 | Dumas et al. | Oct 2014 | A1 |
20140324590 | Kong et al. | Oct 2014 | A1 |
20140340196 | Myers et al. | Nov 2014 | A1 |
20140354820 | Danialian et al. | Dec 2014 | A1 |
20140365773 | Gerhardt et al. | Dec 2014 | A1 |
20140375422 | Huber et al. | Dec 2014 | A1 |
20150008685 | Beck | Jan 2015 | A1 |
20150015513 | Kwak et al. | Jan 2015 | A1 |
20150022466 | Levesque | Jan 2015 | A1 |
20150027178 | Scalisi | Jan 2015 | A1 |
20150049189 | Yau et al. | Feb 2015 | A1 |
20150049191 | Scalisi et al. | Feb 2015 | A1 |
20150065167 | Scalisi | Mar 2015 | A1 |
20150102609 | Johnson et al. | Apr 2015 | A1 |
20150102610 | Johnson et al. | Apr 2015 | A1 |
20150102927 | Johnson et al. | Apr 2015 | A1 |
20150109104 | Fadell et al. | Apr 2015 | A1 |
20150116075 | Cregg et al. | Apr 2015 | A1 |
20150116080 | Cregg et al. | Apr 2015 | A1 |
20150116082 | Cregg et al. | Apr 2015 | A1 |
20150116490 | Scalisi | Apr 2015 | A1 |
20150128667 | Yoon et al. | May 2015 | A1 |
20150145796 | Lee | May 2015 | A1 |
20150156031 | Fadell et al. | Jun 2015 | A1 |
20150160770 | Stewart et al. | Jun 2015 | A1 |
20150170448 | Robfogel et al. | Jun 2015 | A1 |
20150185311 | Lohier | Jul 2015 | A1 |
20150194000 | Schoenfelder et al. | Jul 2015 | A1 |
20150199860 | Hong et al. | Jul 2015 | A1 |
20150211259 | Dumas et al. | Jul 2015 | A1 |
20150213658 | Dumas et al. | Jul 2015 | A1 |
20150213663 | Dumas et al. | Jul 2015 | A1 |
20150216326 | Artwohl et al. | Aug 2015 | A1 |
20150218850 | Uyeda et al. | Aug 2015 | A1 |
20150218857 | Hamada | Aug 2015 | A1 |
20150222517 | McLaughlin et al. | Aug 2015 | A1 |
20150227201 | Nakao | Aug 2015 | A1 |
20150227227 | Myers et al. | Aug 2015 | A1 |
20150228167 | Scalisi et al. | Aug 2015 | A1 |
20150233153 | Smart et al. | Aug 2015 | A1 |
20150233154 | Smart et al. | Aug 2015 | A1 |
20150240521 | Vaknin et al. | Aug 2015 | A1 |
20150240531 | Blust et al. | Aug 2015 | A1 |
20150241974 | Takeda | Aug 2015 | A1 |
20150242007 | Iwaizumi et al. | Aug 2015 | A1 |
20150242036 | Heidari | Aug 2015 | A1 |
20150242038 | Steiner et al. | Aug 2015 | A1 |
20150242045 | Choi et al. | Aug 2015 | A1 |
20150242047 | Zafiris | Aug 2015 | A1 |
20150242074 | Iwamoto | Aug 2015 | A1 |
20150242113 | Nguyen Thien et al. | Aug 2015 | A1 |
20150242115 | Gao et al. | Aug 2015 | A1 |
20150242696 | Kim et al. | Aug 2015 | A1 |
20150259949 | Cheng | Sep 2015 | A1 |
20150269799 | Martinez et al. | Sep 2015 | A1 |
20150287254 | Ribas et al. | Oct 2015 | A1 |
20150300048 | Yen et al. | Oct 2015 | A1 |
20150302738 | Geerlings et al. | Oct 2015 | A1 |
20150308157 | Lin et al. | Oct 2015 | A1 |
20150348399 | Cree et al. | Dec 2015 | A1 |
20150356345 | Velozo et al. | Dec 2015 | A1 |
20150363989 | Scalisi | Dec 2015 | A1 |
20160032621 | Johnson et al. | Feb 2016 | A1 |
20160036594 | Comad et al. | Feb 2016 | A1 |
20160037306 | Johnson et al. | Feb 2016 | A1 |
20160042581 | Kumar et al. | Feb 2016 | A1 |
20160047145 | Johnson et al. | Feb 2016 | A1 |
20160049024 | Johnson et al. | Feb 2016 | A1 |
20160049025 | Johnson | Feb 2016 | A1 |
20160049026 | Johnson | Feb 2016 | A1 |
20160050515 | Johnson | Feb 2016 | A1 |
20160055694 | Saeedi et al. | Feb 2016 | A1 |
20160055695 | Saeedi et al. | Feb 2016 | A1 |
20160092954 | Bassett et al. | Mar 2016 | A1 |
20160116510 | Kalous et al. | Apr 2016 | A1 |
20160127874 | Kingsmill et al. | May 2016 | A1 |
20160133071 | Henderson | May 2016 | A1 |
20160180618 | Ho et al. | Jun 2016 | A1 |
20160180621 | Desinor, Jr. | Jun 2016 | A1 |
20160189453 | Johnson et al. | Jun 2016 | A1 |
20160189454 | Johnson et al. | Jun 2016 | A1 |
20160189459 | Johnson et al. | Jun 2016 | A1 |
20160189502 | Johnson et al. | Jun 2016 | A1 |
20160189503 | Johnson et al. | Jun 2016 | A1 |
20160208541 | Goto | Jul 2016 | A1 |
20160284170 | Kasmir et al. | Sep 2016 | A1 |
20160284181 | Johnson | Sep 2016 | A1 |
20160291966 | Johnson | Oct 2016 | A1 |
20160300476 | Kasmir et al. | Oct 2016 | A1 |
20160319569 | Johnson et al. | Nov 2016 | A1 |
20160319571 | Johnson | Nov 2016 | A1 |
20160326775 | Johnson | Nov 2016 | A1 |
20160328901 | Johnson | Nov 2016 | A1 |
20160330413 | Scalisi et al. | Nov 2016 | A1 |
20160343181 | Cheng et al. | Nov 2016 | A1 |
20160343188 | Johnson | Nov 2016 | A1 |
20160358433 | Johnson | Dec 2016 | A1 |
20160358437 | Johnson et al. | Dec 2016 | A1 |
20170011570 | Johnson et al. | Jan 2017 | A1 |
20170016249 | Johnson et al. | Jan 2017 | A1 |
20170019378 | Johnson et al. | Jan 2017 | A1 |
20170032597 | Johnson | Feb 2017 | A1 |
20170032602 | Cheng et al. | Feb 2017 | A1 |
20170053468 | Johnson | Feb 2017 | A1 |
20170053469 | Cheng et al. | Feb 2017 | A1 |
20170109952 | Johnson | Apr 2017 | A1 |
20170169679 | Johnson et al. | Jun 2017 | A1 |
20170193724 | Johnson et al. | Jul 2017 | A1 |
20170228603 | Johnson | Aug 2017 | A1 |
20170243420 | Lien | Aug 2017 | A1 |
20170243455 | Johnson et al. | Aug 2017 | A1 |
20170263065 | Johnson | Sep 2017 | A1 |
20180040183 | Cheng et al. | Feb 2018 | A1 |
20180073274 | Johnson et al. | Mar 2018 | A1 |
20180135336 | Johnson et al. | May 2018 | A1 |
20180135337 | Johnson et al. | May 2018 | A1 |
20180137702 | Padgett | May 2018 | A1 |
20180179786 | Johnson | Jun 2018 | A1 |
20180253951 | Johnson et al. | Sep 2018 | A1 |
20180261029 | Johnson et al. | Sep 2018 | A1 |
20180268675 | Johnson et al. | Sep 2018 | A1 |
20180340350 | Johnson et al. | Nov 2018 | A1 |
20190019364 | Cheng et al. | Jan 2019 | A9 |
20190130686 | Cheng et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2014236999 | Oct 2015 | AU |
2676196 | Jul 2008 | CA |
2834964 | Nov 2012 | CA |
2905009 | Sep 2014 | CA |
0 244 750 | Nov 1987 | EP |
0 486 657 | May 1992 | EP |
0 907 068 | Apr 1999 | EP |
1 404 021 | Mar 2004 | EP |
1 529 904 | May 2005 | EP |
2 428 774 | Mar 2012 | EP |
2 447 450 | May 2012 | EP |
2 454 558 | May 2012 | EP |
2 564 165 | Mar 2013 | EP |
2 579 002 | Apr 2013 | EP |
2 631 400 | Aug 2013 | EP |
2 642 252 | Sep 2013 | EP |
2 259 737 | Mar 1993 | GB |
WO 9119986 | Dec 1991 | WO |
WO 2006085852 | Aug 2006 | WO |
WO 2009142596 | Nov 2009 | WO |
WO 2011006515 | Jan 2011 | WO |
WO 2011139682 | Nov 2011 | WO |
WO 2012151290 | Nov 2012 | WO |
WO 2014062321 | Apr 2014 | WO |
WO 2014107196 | Jul 2014 | WO |
WO 2014151692 | Sep 2014 | WO |
WO 2014151692 | Sep 2014 | WO |
WO 2015023737 | Feb 2015 | WO |
WO 2015138726 | Sep 2015 | WO |
WO 2015138740 | Sep 2015 | WO |
WO 2015138747 | Sep 2015 | WO |
WO 2015138755 | Sep 2015 | WO |
WO 2016130777 | Aug 2016 | WO |
WO 2016196025 | Dec 2016 | WO |
Entry |
---|
U.S. Appl. No. 16/558,696, filed Sep. 3, 2019, Johnson et al. |
U.S. Appl. No. 16/197,574, filed Nov. 21, 2018, Johnson. |
U.S. Appl. No. 15/463,022, filed Mar. 20, 2017, Johnson et al. |
U.S. Appl. No. 17/026,007, filed Sep. 18, 2020, Johnson et al. |
U.S. Appl. No. 16/908,358, filed Jun. 22, 2020, Johnson et al. |
U.S. Appl. No. 15/798,425, filed Oct. 31, 2017, Johnson et al. |
U.S. Appl. No. 15/867,773, filed Jan. 11, 2018, Johnson et al. |
U.S. Appl. No. 15/867,992, filed Jan. 11, 2018, Johnson et al. |
U.S. Appl. No. 15/881,776, filed Jan. 28, 2018, Johnson. |
U.S. Appl. No. 16/197,443, filed Nov. 21, 2018, Johnson. |
U.S. Appl. No. 15/066,091, filed Mar. 10, 2016, Johnson et al. |
U.S. Appl. No. 16/197,518, filed Nov. 21, 2018, Cheng. |
U.S. Appl. No. 15/208,254, filed Jun. 12, 2016, Johnson. |
PCT/US2014/026254, Nov. 18, 2014, International Search Report and Written Opinion. |
PCT/US2014/026254, Sep. 24, 2015, International Preliminary Report on Patentability. |
PCT/US2015/020180, Jun. 16, 2015, International Search Report and Written Opinion. |
PCT/US2015/020180, Sep. 22, 2016, International Preliminary Report on Patentability. |
PCT/US2015/020206, Jun. 29, 2015, International Search Report and Written Opinion. |
PCT/US2015/020206, Sep. 22, 2016, International Preliminary Report on Patentability. |
PCT/US2015/020216, Jun. 17, 2015, International Search Report and Written Opinion. |
PCT/US2015/020216, Sep. 22, 2016, International Preliminary Report on Patentability. |
PCT/US2015/020226, Jun. 25, 2015, International Search Report and Written Opinion. |
PCT/US2015/020226, Sep. 22, 2016, International Preliminary Report on Patentability. |
PCT/US2016/017508, Jun. 14, 2016, International Search Report and Written Opinion. |
PCT/US2016/017508, Aug. 24, 2017, International Preliminary Report on Patentability. |
PCT/US2016/033257, Aug. 22, 2016, International Search Report and Written Opinion. |
PCT/US2016/033257, Dec. 14, 2017, International Preliminary Report on Patentability. |
International Search Report and Written Opinion for International Application No. PCT/US2014/026254, dated Nov. 18, 2014. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/026254, dated Sep. 24, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/020180, dated Jun. 16, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/020180, dated Sep. 22, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2015/020206, dated Jun. 29, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/020206, dated Sep. 22, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2015/020216, dated Jun. 17, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/020216, dated Sep. 22, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2015/020226, dated Jun. 25, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/020226, dated Sep. 22, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/017508, dated Jun. 14, 2016. |
International Preliminary Report on Patentability for International Application No. PCT/US2016/017508, dated Aug. 24, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2016/033257, dated Aug. 22, 2016. |
International Preliminary Report on Patentability for International Application No. PCT/US2016/033257, dated Dec. 14, 2017. |
Number | Date | Country | |
---|---|---|---|
20210074096 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16197518 | Nov 2018 | US |
Child | 17101526 | US | |
Parent | 15227761 | Aug 2016 | US |
Child | 16197518 | US |