Embodiments of the present invention relate generally to wireless networks and, more specifically, to a wireless access point with modular network elements.
Home networks, in which multiple computing and/or peripheral devices are communicatively linked together in a consumer's home, are becoming increasingly ubiquitous. A home environment may include one or more computers, a wireless router, a DSL modem, and one or more other client devices capable of connecting to the home network. Conventionally, each device in the home network must be individually configured to connect to the network and, once configured, may then communicate with each of the other devices attached to the home network.
In practice, procedures for installing and associating client devices and provisioning services on a home network are typically too involved for the majority of home network users to implement reliably. For example, in order to configure client devices to communicate on a home network, a network user may need to manually reconfigure the home network router, determine a network IP address and/or hostname for each client device, establish network credentials, register the various services for each device, and manually track which network IP address is associated with which client device or service. In addition, the network user is also required to manage the various power supplies, cable harnesses, and other hard-wired connections for the different components making up the network.
The involved configuration procedures described above make it a challenge for unsophisticated users to reliably setup a home network and associate client devices or services on the home network. Accordingly, there is a need in the art for systems and methods that enable the user of a home network to conveniently and securely connect one or more devices or services to a home network.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention may be had by reference to example embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only example embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
For clarity, identical reference numbers have been used, where applicable, to designate identical elements that are common between figures. It is contemplated that features of one example embodiment may be incorporated in other example embodiments without further recitation.
In the following description, numerous specific details are set forth to provide a more thorough understanding of various example embodiments of the invention. However, it will be apparent to one of skill in the art that certain embodiments of the invention may be practiced without one or more of these specific details. In other instances, well-known features have not been described in order to avoid obscuring the invention.
One example embodiment of the present invention sets forth a network apparatus that includes a network host device and an integrated connection port. The network host device is enclosed in a housing and configured to transmit network data packets between an external network and other devices within a local wireless network, and the integrated connection port is disposed on a surface of the housing and includes a plurality of connectors for transmitting and receiving high-speed digital signals, power, and control signals in parallel.
Another example embodiment of the present invention sets forth a system that includes a first network module stack and a second network module stack. The first network module stack includes a power supply unit and a network host device. The second network module stack is located remotely from the first network module stack, is wirelessly connected to the network host device, and includes a power supply unit and a network client device. At least one network module in each of the first network module stack and the second network module stack is configured with an integrated connection port that includes a plurality of connectors for transmitting and receiving high-speed digital signals, power, and control signals in parallel.
Yet another example embodiment of the present invention sets forth a network apparatus that includes a housing enclosing a network client device, a first integrated connection port, and a second integrated connection port. The first integrated connection port is disposed on a first side of the housing and is configured to connect a second network apparatus to the network apparatus. The second integrated connection port is disposed on a second side of the housing that is opposite the first side and is configured to connect a third network apparatus to the network apparatus. The first integrated connection port and the second integrated connection port each includes a plurality of connectors for transmitting and receiving high-speed digital signals, power, and control signals in parallel.
A portal application 172, residing within the computer 170, is configured to access the network state model 178 to determine which client devices 130 are available within the smart network 102, which services the client devices 130 provide, and to access and use the services. The portal application 172 may include one or more applets 174, configured to extend functionality of the portal application 172. A given applet 174 may be associated with a specific client device 130 and may facilitate specific usage models for the client device 130 via the extended functionality. When a new client device 130 registers with the smart network 102, a most recent version of a corresponding applet 174 may not be available within the portal application 172. However, the portal application 172 may retrieve the corresponding applet 174 or version of the corresponding applet 174 from the applet store 116.
The applet store 116 is configured to facilitate access to applets 174 by the portal application 172. The applet store 116 provides storage for applets 174 corresponding to client devices 130 and makes the applets 174 available for download to the portal application 172 via the external network 110. In one embodiment, the applet store 116 occupies a well-known location, such as a universal resource locator (URL) associated with the external network 110. Any technically feasible technique may be used to identify a particular applet 174 as corresponding to a particular client device 130. Furthermore, any technically feasible technique may be used to download the particular applet 174 an incorporate the functionality of the applet 174 to the portal 172.
The smart network host device 120 implements a wireless network interface coupled to antenna 122, which is configured to convert electrical signals to electromagnetic signals for transmitting data packets, and electromagnetic signals to electrical signals for receiving data packets. The antenna 122 may comprise plural independent radiator structures, each having a separate radiation pattern for implementing spatial multiplexing. In one embodiment, the wireless network interface implements one or more well-known standards, such as the Institute of Electrical and Electronics Engineers (IEEE) standard 802.11, which defines a system for wireless local area networking. The antenna 122 is configured establish wireless client links 134 to antennas 132 coupled to corresponding client devices 130. The smart network host device 120 implements layer 2 forwarding (bridging) for wireless data packets forwarded among client devices 130 as well as Internet protocol (IP) layer 3 routing between an IP domain associated with the smart network 102 and the external network 110. In this configuration, the smart network host device 120 provides related services and protocols, such as dynamic host configuration protocol (DHCP), network address translation (NAT), and the like.
The smart network host device 120 acts as a central authentication authority for the smart network 102 and implements authentication services for devices registering with the smart network 102. In one embodiment, authentication is implemented via Identification (ID) devices 136 that are uniquely paired with corresponding client devices 130. For example, client device 130(0) may be uniquely paired with ID device 136(0) by a manufacturer of the client device 130(0). An ID device 136(0) is physically presented to the smart network host device 120 as an authentication credential to allow a client device 130(0) paired to the ID device 136(0) to join the smart network 102. Furthermore, the client device 130(0) is able to authenticate the smart network 102 as a trusted network by accessing credentials for the corresponding ID device 136(0) specifically via the smart network 102. In one embodiment, the ID devices 136 are implemented as near field radio frequency identification (RFID) tags. Each one of the RFID tags is configured to retain authentication credentials necessary to uniquely associate the one RFID tag with one instance of the client device 130. In this way, an RFID tag may be paired with a given client device 130. Persons skilled in the art will recognize that any technique may be implemented to generate and represent authentication credentials without departing the scope and spirit of the present invention. For example, in another embodiment, the ID devices 136 could be implemented as a physical token that includes a printed bar code on a face of the token. The bar code may encode authentication credentials for a corresponding client device 130. In such an embodiment, the smart network host device 120 may include an optical scanner capable of reading the printed bar code from the physical token. In alternative embodiments, other forms of ID devices 136 may implement storage of the authentication credentials. For example, a universal serial bus (USB) storage device may be used to present authentication credentials to the smart network host device 120 for authenticating a related device, such as the computer 170. In other alternative embodiments, a user may manually authenticate a client device 130 with the smart network host device 120. For example, the user may log onto a management web page generated by the smart network host device 120 and manually enter authentication credentials, such as a printed code associated with the client device 130.
In one usage scenario involving ID device 136, the user wishes to add a new device, such as a smart network-enabled printer to the smart network 102. The printer includes an ID device 136 implemented as an RFID tag that is paired to the printer. The user places the ID device 136 in close physical proximity to the smart network host device 120, which is the able to read the ID device 136 and authenticate the printer. The printer registers with the smart network host device 120 and is then available for use by devices connected within the smart network 102. Upon successfully reading the ID device 136, the smart network host device 120 may indicate success to the user by flashing a light-emitting diode (LED), or by generating any technically feasible indication.
In addition to previously described functionality, the smart network host device 120 is also configured to detect one or more smart network extender devices 140 and to establish a bridge link 128 to each of the one or more smart network extender devices 140. Each smart network extender device 140 is configured to act as a network bridge between a client device 130 and the smart network host device 120. For example, client devices 130(1) through 130(N) may be physically located such that they are able to connect to the smart network extender device 140, but not to the smart network host device 120. Furthermore, the smart network extender device 140 is able to connect to the smart network host device 120 via bridge link 128. Data packets transmitted by client devices 130(1) through 130(N) and destined to the external network 110 are received by the smart network extender device 140 and retransmitted by the smart network extender device 140 via bridge link 128 to the smart network host device 120, which then forwards the data packets to the external network 110. Similarly, data packets from the external network 110 that are destined to any of the client devices 130(1) through 130(N) are transmitted via bridge link 128 to the smart network extender device 140, which retransmits the data packets via wireless client links 134(1)-134(N). Persons skilled in the art will understand that wireless client links 134(1)-134(N) may each be configured to operate on a separate channel or band, or a common channel or band. Furthermore, bridge link 128 may operate on a separate channel or band with respect to the wireless client links 134.
In one embodiment, each smart network extender device 140 is paired to an ID device 136, which is presented as an authentication credential to the smart network host device 120 to enable the smart network extender device 140 to participate within the smart network 102.
In this embodiment, the smart network host device 120 is configured to operate similarly with respect to
Network data traffic between client device 130(N) and the external network 110 traverses wireless client link 134(N), bridge link 128, and backhaul link 158. This network data traffic is also forwarded by smart network extender device 140, smart network host device 120, and smart network connector device 150. A client device 130 may connect directly to any one of the network extender device 140, smart network host device 120, or smart network connector device 150. As shown, client device 130(0) is connected to smart network connector device 150 via wireless client link 134(0), client device 130(1) is connected to smart network host device 120 via wireless client link 134(1), and client device 130(N) is connected to smart network extender device 140 via wireless client link 134(N).
In one embodiment, the smart network connector device 150 is paired to an ID device 136, which is presented as an authentication credential to the smart network host device 120 to enable the smart network connector device 150 to participate within the smart network 102. In an alternative embodiment, the smart network connector device 150 and the smart network host device 120 are paired during a manufacturing step, eliminating the need for a separate ID device 136.
The processor complex 160 comprises a central processing unit (CPU), non-volatile memory for storing persistent programs, program state, and configuration information, random access memory (RAM) for storing temporary or volatile data, and an interface to the interconnect 165. In one embodiment, the processor complex 160 is configured to execute an operating system and applications that provide routing services. The routing services may include, for example, data packet forwarding between the network interface 118 and the wireless network interface 162. The packet forwarding services may include, without limitation, bridging among the one or more network devices via the wireless network interface 162.
The ID device reader 164 is configured to read data from an associated ID device 136. In one embodiment, the ID device reader 164 is configured to read data from RFID tags comprising the ID device 136. The ID device reader 164 may also include a USB reader. In another embodiment, the ID device reader 164 may be implemented as an optical scanner for reading ID devices 136 that encode data via a printed bar code. In yet other embodiments, the ID device reader 164 may be configured to read data from other types of interfaces, such as other types of flash memories like an SD flash card.
In certain embodiments, the smart network host device 120 comprises one or more integrated circuits that implement respective functions of the smart network host device 120. For example, the processor complex 160, wired network interface 166, and wireless network interface 162 may be integrated into a single integrated circuit.
Persons skilled in the art will recognize that the smart network extender device 140 may be implemented using the basic architecture of the smart network host device 120, with the exception that the ID device reader 164 and wired network interface 166 are not required for the smart network extender device 140. Similarly, the smart network connector device 150 may be implemented using the basic architecture of the smart network host device 120, with the exception that the ID device reader 164 is not required for the smart network connector device 150.
The runtime server 180 comprises a network provisioning module 182, a service and discovery provisioning (SDP) module 184, an event module 186, and a network configuration module 188. The event module 186 tracks different network events, such as a network device advertising presence or updating status within the smart network 102. The SDP module 184 maintains a persistent view of different network devices and related services, based on data from the event module 186 and on data from the network devices. The network provisioning module 182 provides authentication and authorization for network devices within the smart network 102. Authentication credentials may be presented via a given ID device 136. The network provisioning module 182 may also facilitate certain network services, such as DHCP leases. The network configuration module 188 includes hardware platform-specific implementation methods for network configuration and management. The persistent view comprises the network state model 178 of
Persons skilled in the art will recognize that the smart network connector device 150 and smart network extender device 140 may be implemented using an appropriate subset of the system software architecture 104 described above in conjunction with
Embodiments of the invention contemplate a wireless access point (AP) having a modular architecture, where each network element module of the modular architecture provides added capability, i.e., devices and/or services, to the wireless AP. The wireless AP may be incorporated into a wireless network, such as the smart network 102, and generally includes the smart network host device 120. The modular and mechanically interlocking structure of the wireless AP enables a network user to easily expand or otherwise modify a home wireless network in a simplified manner by physically adding or removing specific network element modules. Each network element module includes the requisite power, high-speed digital signal, and module control connections in an integrated connection port, and is already loaded with suitable software for devices included in the network module element. Consequently, the network user can expand the smart network with a desired functionality by simply plugging the desired network element module into the wireless AP, and all connection and network association procedures are carried out automatically.
The network element modules 220 facilitate the “plug-and-play” addition of devices, services, and software to the wireless AP 200. Specifically, when a network element module 220 is added to the wireless AP 200, all requisite power, control, and digital signal connections are made between the newly added network element module 220 and the base module 210 using mating integrated connection ports 230. In addition, devices included in a new network element module 220 automatically register with the smart network host device 120, which then updates the network state model 178 in
In some embodiments, the housing 211 of the base module 210 includes a plurality of air vents 219 to allow free convective air flow through the housing 211 to cool internal components, such as the power supply unit 215 and the smart network host device 120. In such an embodiment, a portion of the air vents 219 may be disposed in a lower region of the housing 211 and a remaining portion of the air vents 210 may be disposed in an upper portion of the housing 211. In some embodiments, the base module 210 may further include a fan 218 to provide forced convective cooling of internal components.
First integrated connection port 320 includes a DC power connector 321, a high-speed digital signal connector 322, and a control signal connector 323. Similarly, second integrated connection port 330 includes a DC power connector 331, a high-speed digital signal connector 332, and a control signal connector 333. The DC power connectors 321, 331 include conductors and connectors configured to transmit DC power at one or more voltages to the network element modules 220 added to the wireless AP 200. The high-speed digital signal connectors 322, 332 include conductors and connectors configured to transmit and receive high-speed digital signals to and from the network element modules 220 added to wireless AP 200. For example, in some embodiments, the high-speed digital signal connectors 322, 332 are configured to transmit and receive multiple universal serial bus (USB) 2.0 signals, multiple Ethernet signals, or a combination of both. The control signal connectors 323, 333 include conductors and connectors configured to transmit and receive control signals for controlling the network element modules 220 added to the wireless AP 220. In some embodiments, such control signals include at least one of serial peripheral interface (SPI) protocol signals, inter-integrated circuit (I2C) protocol signals, power control signals, plug detection signals, and the like.
In some embodiments, the wireless AP 200 includes a network element module 220 configured with one or more devices that provide additional functionality to the wireless AP 200. Suitable devices that can be incorporated into a network element module 220 include high-volume data storage devices, such as a hard disk drive or solid state memory device, digital signal switches, such as a multi-port Ethernet or USB switch, an antenna and/or transceiver for the smart network host device 120, such as a 5 GHz WiFi device, a home audio receiver, an audio-video receiver, and the like. To facilitate plug-and-play expansion of the wireless AP 200, a network element module that includes such a device also may include drivers and other software associated the device.
In some embodiments, the wireless AP 200 includes a network element module 220 configured with a combination of hardware and software to provide additional functionality to the wireless AP 200. For example, in one embodiment, a network module 220 is configured with a parental control system and/or other service that may include both hardware and software components. In another embodiment, a network module 220 is configured to include a video game console. In such an embodiment, auxiliary software associated with the video game console may also be included in the network module. In yet other embodiments, a network module 220 may include only a software enhancement for the wireless AP 200. In such an embodiment, attachment of the network module 220 may only be required temporarily for installation of the desired software and then the network module 220 may be removed. Alternatively, the software-containing network module 220 may be left in place in the wireless AP 200 to indicate the presence of the associated software.
Embodiments of the invention contemplate various configurations of the base module and power supply unit. In
Embodiments of the invention further contemplate a configuration of the smart network 102 (illustrated in
As shown, the wireless AP 800 and the client devices 830(1) and 830(2) each include an array of multiple network element modules. The client devices 830(1) and 830(2) may be located remotely from the wireless AP 800, e.g. in different rooms, and are connected to the smart network host device 120 in the wireless AP 800 via wireless client links 134(1) and 134(2), respectively. Generally, the wireless AP 800 and the client devices 830(1) and 830(2) are independently powered, since each may be located remotely from one another.
The wireless AP 800 includes a supplemental power supply module 820 coupled to a base module 810, which includes a smart network host device 120, an internal power supply unit 215, and a transceiver 217. The wireless AP 800 further includes an antenna module 822 and a data storage module 823. The base module 810, the supplemental power supply module 820, the antenna module 822 and the data storage module 823 are each configured as network element modules, such as the network element modules 220 in
The client device 830(1) includes an external power supply module 840, and an audio-video receiver module 845. The external power supply module 840 converts AC power to DC power for the audio-video receiver module 845. The audio-video receiver module 845 is configured with a high-definition multimedia interface (HDMI) output port 846 for outputting videos to a display device, and multiple HDMI input ports 847 to facilitate the use of multiple sources for said videos. The client device 830(2) includes an external power supply module 840 and an Ethernet switch module 850 that provides a user with multiple Ethernet ports 851. As shown, the external power supply modules 840, the audio-video receiver module 845, and the Ethernet switch module 850 are each configured as network element modules, similar to the network element modules 220 in
In operation, a user of the smart network 802 can easily modify or expand the functionality of the wireless AP 800 or the client devices 830(1) and 830(2) by physically attaching the requisite network element module where desired. For example, a data storage device can be added to the client device 830(1) by simply attaching a network element module that is configured with such a storage device to the integrated connection port 891 the audio-video receiver module 845. Because the network element module is coupled to the integrated connection port 891 of the audio-video receiver module 845, all connections for power, control signals, and high-speed digital signals are made simultaneously and without any cable management on the part of the user. The storage device and any other devices incorporated into the network element module automatically register with the smart network host device 120, which then updates the network state model 178 to include the new device or devices. Thus, by simply physically coupling a new network element module to the wireless AP 800, the wireless AP 800 is immediately and automatically provided with the new functionality of the network element module with essentially no interaction or set-up procedures carried out by the user.
In some embodiments, new network element modules coupled to the wireless AP 200 in
In one embodiment, a network module coupled to the wireless AP 200 converts the smart network 102 to a dual-band concurrent network. In such an embodiment, the new network module includes a transceiver configured to operate at a different wireless signaling frequency than the primary transceiver of the wireless AP 200, i.e. the transceiver 217 in
In another embodiment, a new network element module coupled to the wireless AP 200 in
In another embodiment, a new network element module coupled to the wireless AP 200 in
In sum, example embodiments of the invention disclose a wireless AP having a modular architecture, where supplemental network element modules provide added capability, i.e., devices and/or services, to the wireless AP. Because each network element module includes the requisite power, high-speed digital signal, and module control connections in an integrated connection port, and because each network element module is already loaded with suitable software for devices included in the network module element, expansion of the wireless is greatly simplified. A network user only needs to plug a desired network element module into the wireless AP, and all connection and network association procedures are carried out automatically.
While the foregoing is directed to certain example embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. Therefore, the scope of the present invention is determined by the claims that follow.