Not applicable.
Not applicable.
1. Field of the Invention
The invention relates generally to the field of wellbore instruments used to determine the position within a wellbore of threaded connections between adjacent casing segments (or “joints”). Such instruments are referred to in the art as “casing collar locators”, irrespective of whether the casing joints are coupled to each other using internally threaded sleeve connectors (“collars”) or alternating externally and internally threaded casing joint ends (“pin” and “box” connections). More specifically, the invention relates to casing collar locators that communicate to the Earth's surface without using an electrical conductor or optical fiber cable for a signal communication channel.
2. Background Art
A casing collar locator is a instrument deployed in a wellbore which finds or locates the collars or casing joint ends which join together the individual joints to form a “string” of well casing. After a wellbore has been drilled, and as part of the wellbore completion procedure, the wellbore typically is “cased”, which means a length of steel or other high strength material pipe is inserted into the wellbore and is typically cemented in place. Casing is assembled by joining individual, discrete length segments (“joints”) together end to end. The joints are normally joined using an internally threaded coupling or “collar” which threads to the externally threaded ends of each of a pair of adjacent casing joints. The collar typically has a larger external diameter than the casing joints and is thus easy to locate using magnetic detection apparatus. Improvements in the design of threaded couplings in some instances enables the collars to be omitted, by incorporation of a different type of thread construction on the longitudinal ends of the casing joints, namely, a “pin and box” thread connection between adjacent joints. The pin end is externally threaded and is inserted into the internally threaded or “box” end of the adjacent casing joint. Pin and box casing connections reduce the mass of metal proximate the threaded connection. It provides a more uniform wall thickness while reducing the mass of metal around the connection of joints.
It is important to correctly locate the collars or joints so that the depth or location of a tool in the cased well can be determined. Given the fact that casing joints have uniform spacing, the depth of a particular instrument or device suspended in the wellbore can be determined if the casing collars or joints can be correctly counted.
An example of a casing collar locator that can generate an electrical signal when the locator moves past a collar or past a pin and box connection is described, for example, in U.S. Pat. No. 4,808,925 issued to Baird. Other types of casing collar locators are well known in the art.
Irrespective of the configuration of the threaded connection used in any casing string, as known in the art, it is necessary to provide an electrical and/or optical signal channel to communicate the output of the casing collar locator to the Earth's surface, so that a record with respect to depth in the well of the collar locator signal can be produced. For this reason, casing collar locators are ordinarily used with “wireline”, which is an armored cable having at least one insulated electrical conductor therein. There are configurations of wireline known in the art that also include optical fibers.
It is known in the art to perform wellbore intervention services using instrument conveyances that do not provide such signal channel. Such conveyance methods include, for example, coiled tubing, production tubing and slickline, for example. It is known in the at to use electromagnetic signal communication (radio) for signal communication over slickline. See, for example, U.S. Pat. No. 7,224,289 issued to Bausov et al. It is believed that the radio transmission device disclosed '289 patent may have limited applicability in wellbores having highly conductive fluid therein, particularly at great depth (in excess of about 5,000 feet). It is also known in the art to make a slickline in the form of a tube having an insulated electrical conductor therein. See, for example, U.S. Pat. No. 5,495,755 issued to Moore. Making a slickline as described in the Moore '755 patent is difficult and expensive, and requires that a spooling device or winch, used to deploy the slickline in the wellbore, include some form of slip ring or similar device that enables the winch drum to rotate while making electrical (or optical) connection to a rotationally fixed position in the unit used to detect signals from the instrument in the wellbore.
There continues to be a need for casing collar location devices that do not require an electrical or optical signal channel to communicate detection of a casing collar or connection to the surface, and do not require modification of conventional “slickline units” to include a slip ring or similar fixed-to-rotating electrical and/or optical coupling.
The ability to know in real time the location of a tool string in a well when the tool string is deployed using a coil tubing or slickline is critical to compensate for the elongation of the tubing string as it is deployed in the wellbore. The incorrect determination of the location of the tool string when performing a service in the wellbore can cause the string to fail in such services as hydraulic fracturing work due to excessive pressure that could be exerted onto the tool string.
A wireless casing collar locator according to one aspect of the invention includes a pipe coupling detector configured to be conveyed through a wellbore. A detection device is associated with the pipe coupling detector. The detection device generates an output indicative of detection of a pipe coupling in response to the output of the pipe coupling detector. The casing collar locator includes an acoustic transmitter functionally associated with the detection device. The acoustic transmitter is configured to apply an acoustic impulse to a conveyance device used to move the collar locator along the wellbore in response to communication to the acoustic transmitter of the output of the detection device when a collar is detected.
A method for detecting a pipe coupling according to another aspect of the invention includes moving a pipe coupling detector along the interior of a pipe disposed in a wellbore. An output of the coupling detector is conducted to a signal detector. The signal detector generates a pulse in response to detection by the coupling detector of a pipe coupling in the wellbore. Output of the signal detector is coupled to an acoustic telemetry transmitter. The transmitted is then caused to impart an acoustic signal to an instrument conveyance device in response to output of the signal detector.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
A typical wellbore intervention operation including one example of a casing collar locator 18 according to the invention is shown in
The wellbore 10 includes a steel pipe or casing 14 inserted therein. The casing 14 is typically formed by threadedly coupling end to end a plurality of segments or “joints” of such pipe or casing. In some examples, the casing joints include male threads (pin ends) at both longitudinal ends, and the joints are threadedly coupled by connecting two adjacent joints to a casing collar 16. A casing collar is essentially an internally threaded sleeve configured to mate with the pin (externally threaded) end of each adjacent casing joint. It should be clearly understood that so called “flush joint” casing having one end internally threaded (a “box end”) and configured to mate with the pin end of the adjacent casing joint may also be used with the invention. One example of a casing collar locator particularly suited to detect flush joint threaded connections is described in U.S. Pat. No. 7,224,289 issued to Bausov et al.
The slickline 20 can be extended from and withdrawn onto a winch or similar spooling device (not shown separately) forming part of a slickline unit 26. The slickline unit 28 may include a spooling head 28 or similar laterally movable extension arm with rollers (not shown) that enables the operator thereof to guide the slickine 20 so that it is wound neatly on a winch drum (not shown). In some examples, a motion detector 54, such as an accelerometer, is coupled to the spooling head 28 such that an axial acceleration of the slickline 20 is measured. As will be further explained with reference to
In the example of
An example of circuitry that may be included in some examples of a casing collar locator are shown schematically in
It is also possible to use contact arm-type caliper tools as a pipe coupling detection device. One such contact arm caliper is disclosed in U.S. Pat. No. 4,299,033 issued to Kinley et al. Inside a pipe coupling, there is typically at least a small longitudinal segment having a different internal diameter than the adjacent pipe joints. Momentary increase in measured internal diameter may be indicative of a pipe coupling.
Irrespective of the type of collar locator device used, the output of the pipe coupling detection device 32 is coupled to a detection circuit 34. The detection circuit 34 is configured to determine from the signal sent from the pipe joint detection device whether the device 32 has passed a connection between adjacent pipe joints (collar or otherwise), and in response thereto provides a pulsed output that is indicative of a casing collar or other threaded connection in the casing (14 in
During periods of time when the telemetry transmitter is not operating, the batteries 46 charge, through a current regulator 44, a bank of capacitors 42. The capacitors 42 store energy to be released quickly through the telemetry transmitter to cause a large amplitude acoustic pulse to be imparted to the slickline (20 in
The surface recording system 56 may include detection circuitry configured to detect and interpret acoustic pulses imparted to the slickline (or other conveyance) by the collar locator (18 in
A casing collar locator system according to the invention can provide casing collar or threaded coupling location in a wellbore without the need to provide an electrical or optical signal channel. Such capability may provide casing collar detection in environments not well suited for electrical and/or optical signal transmission.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.