The present disclosure generally relates to wireless charging devices and, more particularly, to a wireless charging device with reflected power communication for charging electronic devices.
The advantages and features of the present disclosure will become better understood with reference to the following detailed description and claims taken in conjunction with the accompanying drawings, wherein like elements are identified with like symbols, and in which:
Like reference numerals refer to like parts throughout the description of several views of the drawings.
For a thorough understanding of the present disclosure, refer to the following detailed description, including the appended claims, in connection with the above-described drawings. Although the present disclosure is described in connection with exemplary embodiments, the disclosure is not intended to be limited to the specific forms set forth herein. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
The terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present disclosure provides a wireless charging device with reflected power communication.
The inductive coupler 102 is an inductor coil, which acts like a primary side of a transformer. The inductive coupler 102 is configured to supply power, i.e., charge the electronic devices present in the docking area of the wireless charging device 100. Further, the inductive coupler 102 is also configured to maintain a communication link with the electronic device 110. The inductive coupler 102 exchanges a set of information with the electronic device 110. The set of information is used during the charging of the electronic device.
The set of information includes, but is not limited to, the presence of at least one electronic device in the docking area, charging requirement of the at least one electronic device, a charging state of the wireless charging device 100, and safety information corresponding to the charging of the at least one electronic device. The communication link between the inductive coupler 102 and the electronic device 110 may be a bidirectional link. The communication link can function as long as some amount of power is being supplied from the inductive coupler 102 to the electronic device 110. In an embodiment of the present disclosure, the set of information can be exchanged in a closed loop communication with the electronic device 110. The closed loop communication allows the electronic device 110 to constantly tune its output power characteristics such as its power requirement and its presence in the docking area of the wireless charging device 100 during the charging operation.
The reflected power detector 104 is operably coupled to the inductive coupler 102. The reflected power detector 104 identifies the set of information through the inductive coupler 102. The exchange of information is explained herein with the help of the following example. The charging requirement of each electronic device present in the docking area may be different. Such electronic devices need to communicate the wireless charging device 100 about their requirement. For example, the electronic device 110 may communicate that it requires n Volt×Inductive turns power supply to the inductive coupler 102. The inductive coupler 102 feeds the demand of power supply to the reflected power detector 104, which in turn, identifies the requirement of the power by the electronic device 110.
In an embodiment of the present disclosure, the reflected power detector 104 comprises an embedded modulator (not shown in
The power control system 108 is operably coupled to the reflected power detector 104 and the power source 106. The power source 106 provides power to the inductive coupler 102 for charging the electronic device 110. The power control system 108 is configured to control the power source 106 based on the set of information identified by the reflected power detector 104. For example, the power control system 108 may direct the power source 106 to feed a particular amount of power to the inductive coupler 102 as required by the electronic device 110.
Once the presence of the electronic device is determined, a set of information is exchanged between the wireless charging device 100 and the electronic device through the inductive coupling, at 206. The set of information includes, but is not limited to, a presence of the electronic device in the docking area, charging requirement of the electronic device, a charging state of the wireless charging device 100, and safety information corresponding to the charging of the electronic device. The set of information is exchanged by establishing a communication link with the electronic device. The communication link may be a bidirectional link.
At 208, the electronic device is charged based on the set of information. The set of information may be exchanged in a closed loop communication with the electronic device. For example, the electronic device may keep informing the wireless charging device 100 about its power requirement and any change in its special location, until it is charged completely. The wireless charging device 100 maintains the exchange of the set of information with the electronic device as long as some amount of the power is supplied to the electronic device. The wireless charging device 100 may modulate its charging field and the inductive load of the electronic device to exchange the set of information. The method for charging ends at 210.
The charging operation of the electronic device 110 by the wireless charging device 100 is explained herein using the following example. First, the wireless charging device 100 may be viewed as a base station which when powered on, sends a low amplitude carrier wave (CW) to its inductive coupler 102 (which will eventually be half a transformer). While doing this, it monitors the impedance of a coil of the inductive coupler 102. In another embodiment of the present disclosure, monitoring of the impedance can be done by actively measuring the insertion loss or reflected power from the inductive coupler 102. In yet another embodiment of the present disclosure, a directional coupler or circulator is also used when the carrier frequency is high enough (for example, carrier frequency >2 kHz).
The electronic device 110 has a complementary coil which can couple power from the wireless charging device 100 for charging the electronic device 110. Since the charging needs of various electronic devices present in the docking area may be different, they need to be able to communicate to the wireless charging device 100 about their power requirements and other information such as special location, safety information, and the like. This requires a method of communication. Similarly, the wireless charging device 100 needs to make sure that it does not power up if an extraneous thing is placed on top of it, for instance, a piece of aluminum foil, so that it does not attempt to transmit 90 W of power into a thin piece of metal and overheat in the process. The method of communication utilizes the fact that by modulating the inductive load in the electronic device 110 (by shunting or partially shunting or opening the coil in a pulse train pattern and creating an effective FSK backscatter signal for the wireless charging device 100), the reflected power detector 104 can pick up the FSK pulse train which can identify and communicate the needs of the electronic device 110 via a basic protocol.
The foregoing descriptions of specific embodiments of the present disclosure have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical application, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omission and substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but such are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure.