The present disclosure relates to wireless charging of batteries, including batteries in mobile computing devices in a vehicle. In particular, it refers to a wireless charging system for a vehicle, like an in-vehicle wireless charging system, and a control method providing a charging protocol for such a wireless charging system.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Wireless charging of mobile computing devices allows for the charging of mobile devices such as phones, headphones, wearables or tablets. Wireless charging in vehicles is known to reduce issues with having charging wires which need to be plugged in at inconvenient locations or becoming an entanglement hazard during the operation of a vehicle. Current Qi technology systems require flat surface charging pads. The flat charging pads also require the mobile device to be aligned for charging in the correct position and in contact with or within a very small distance of the charging pad. Without a correct alignment and contact, wireless charging of the mobile device will not occur. Another limitation of current in-vehicle charging systems is they lack the ability to provide optimized charging for a device. They are limited to a specific charging protocol for all mobile devices, with minimum to no variation
It is the object of this invention to provide a wireless charging system for mobile devices in a vehicle that overcomes at least some of the stated problems above.
This object is achieved with a wireless charging system for a vehicle, in particular in form of an in-vehicle wireless charging system, of claim 1. Preferred wireless charging systems of this disclosure are described in claims 2 to 11.
An in-vehicle wireless charging system for charging a mobile device is described herein. The in-vehicle wireless charging system may comprise a housing that defines a cavity, at least two coils arranged around the cavity, and a control unit connected to the at least two coils. The at least two coils and the control unit cooperate to form a transmitter. In one form, the at least two coils are independently connected to the control unit. In other variations the at least two coils may be connected to the control unit in either series, parallel, independently, or some combination thereof. The at least two coils may be nonplanar and create a static magnetic field within the cavity. The control unit regulates the current supplied to the at least two coils. Further, the control unit may comprise a connector to connect to a power supply which is either a vehicle power supply or a DC power source. The housing may be comprised of a nonmetallic material to ensure it does not interfere with the transmitter. The cavity may define a cup holder. In other variations, the cavity may define any form capable of retaining a mobile device. The transmitter may cooperate with a receiver within the mobile device.
A 3D magnetic field may be created for providing wireless charging in a vehicle environment. The exemplarily disclosed arrangements create a more user friendly charging environment in a vehicle by allowing for a larger air gap between a mobile device and in addition positional flexibility of the mobile device. The disclosed technology uses at least two nonplanar coil elements embedded in a vehicle component such as, but not limited to, a cup holder housing to create an inductive power field for wireless charging. Nonplanar is described herein as not being within the same plane. Each of the at least two nonplanar coil elements may be contained within a different plane. In one form this is an enhance Qi implementation that eliminates the requirement for strict alignment to charge mobile electronic devices in vehicle. In another variation this could use magnetic resonance.
The present disclosure also provides a control method providing a charging protocol for a wireless charging system of the present disclosure. Preferred methods are described in claims 13 to 21.
It should be noted that the features set out individually in the following description can be combined with each other in any technically advantageous manner and set out other forms of the present disclosure. The description further characterizes and specifies the present disclosure in particular in connection with the Figures.
In order that the disclosure may be well understood, there will now be described various forms thereof, given by way of example, reference being made to the accompanying, schematic drawings, in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. Individual features described with reference to one or more of the different embodiments of the present disclosure can be used in another embodiment as well.
The amount of coils can vary, but there are at least two. The at least two coils 100 are embedded in a body 108 to give form and structure to the coil 100 arrangement. In this form, the body 108 takes on the form of a cylinder typically associated with that of a cup holder. The body 108 may be any form or shape that is capable to house the coils 100.
The coils 100 are not limited by the graphical representation in
The coils 100 may be within 10 inches of one another, preferably no more than 3 inches. The distance depends on the amount as well as dimensioning of the coils and the body 108.
In this form, cavity 202 is sized and configured to allow for placement of a cup in the housing 200 creating a dual cup holder functionality. This configuration of housing 200 in a vehicle may also provide a storage location for other small items in a vehicle such as keys, coins, or a mobile device 402. The illustration of housing 200 as a dual cup holder is not intended to limit the use of this disclosure to a dual cup holder. The cavity 202 may be sized and designed to accommodate any shape desired including a single cup holder option, box, or other container configuration within the scope of this disclosure. The housing 200 in
The housing 200 may be constructed of a moldable plastic, polymer material, or nonmetallic material which is capable of having at least two nonplanar coils 100 embedded in the housing around the cavity 202. The coils 100 may be molded into the housing 200 wherein at least two coils 100 are in a nonplanar arrangement.
A wire 204 and a connector 206 provide power to the control unit 16 and the coils 100 when a charging protocol or control method 700, as depicted in
The control unit 16 communicates and activates zones according to the method 700, as seen in
In a step 702 a communication link with the mobile device 402 is established. The communication link is adapted to the communication which occurs between the receiver 14 in the mobile device 402 and the control unit 16. Once a communication link has been established between the control unit 16 and the receiver 14, the control unit 16 applies an initial current split to the at least two coils 100 in a step 704.
This initial current split in step 704 allows for each of the at least two coils 100 to be activated at an initial current level setting, which may be set at the same level for all the at least two coils 100. The initial current level setting may also be different for the at least two coils 100. In another form with at least three coils 100, the initial current level setting may be the same current level for at least two coils 100 and a different current setting for at least one coil 100. In other variations, there may be any combination of the same current levels and differing current levels for the at least two coils 100. This initial current split may be determined by the control unit 16 based on the detected location of the receiver 14 and direction of the communication link from the receiver 14 in relation to the at least two coils 100.
When utilizing the zones described in
After the selected coil current configuration and initial current setting has been initiated by the controller 16, the receiver 14 measures the received power from the magnetic field 106 generated by activating at least two coils 100. The receiver 14 communicates the received power level to the control unit 16 in a step 706.
The control unit 16 may be any electronic control unit (ECU) that is capable of storing and processing data in the vehicle. The control unit 16 stores the communicated power level from the receiver 14 of the mobile device 402 with the corresponding current split between each of the at least two coils 100 and the direction of the magnetic field 106 in a step 708. This creates an accessible and comparable stored record for a specific current level in the at least two coils 100 correlated to the received power in the receiver 14. The control unit 16 is able to adjust the current provided to the at least two coils 100 changing the produced magnetic field 106 and potentially providing a different received power in the receiver 14.
In a step 710, the control unit 16 checks to see that all directions of the magnetic field have a recorded value from the receiver 14. The control unit 16 can provide current adjustment to the at least two coils 100 which changes the direction of the magnetic field 106 in increments up to 90 degrees. In one example, if the control unit 16 is set to use an increment of 90 degrees, there will be 4 records stored in the control unit 16 as the magnetic field 106 will be created with 4 inputted current levels to the at least two coils 100. In other variations, the number of variations is calculated by dividing 360 degrees by degree increment desired. Once the control unit 16 has tested the number of variations desired, the records are complete for comparison. If all increments of the magnetic field variation do not have a corresponding power level from the mobile device 402 stored in the control unit 16 then the optimization of the magnetic field is not complete.
A step 712 adjusts the current split to change the direction of magnetic field 106 which alters the direction of the magnetic field and potentially the power lever perceived by the receiver 14. This adjustment may be set as a standard pattern or may be an adaptive learning algorithm set up in the control unit 16 to manipulate the magnetic field 106 in the cavity 202.
As another non-limiting example of a current adjustment, the current split to the coils 100 is changed to rotate the magnetic field 106 by fifteen degrees in the cavity 202 after each feedback received from the receiver 14. In this case, the control unit 16 continues to adjust the direction of the magnetic field through increments of 15 degrees checking at step 710 until reaching a complete rotation of the magnetic field 106. The adjustment sequence for the magnetic field may be adjusted based on the placement and number of coils 100, the size of the cavity 202, and the receiver 14.
Once all the magnetic field directions set by the control unit 16 have been measured and recorded with the power level from the receiver 14, a step 714 compares the recorded power levels from the receiver 14 stored in the control unit 16.
The highest value of received power to the receiver 14 and the associated current split setting is selected in a step 716. The control unit 16 adjusts the current split settings of the at least two coils 100 to the selected level. This will produce the highest received power at the receiver 14 optimizing the power charging to charge the device 402.
In a step 718, the control unit 16 continues to monitor the received power communicated from the receiver 14 and compares the latest received communicated power level from step 716 with the highest stored power level from step 714. This step ensures the power charging level previously determined is at the desired level.
A step 720 compares the newly monitored power level with the stored power level. If the newly recorded power level from step 716 is lower than the highest stored power level from step 714, the system will revert back to step 716. If the recorded power level from step 716 is less than the highest stored power level from step 714, the system will revert back to step 704 to optimize the power level with a potential new current split. This monitoring and re-optimization of the current split allows for any potential movement of the mobile device 402 in the cavity 202 during operation of the vehicle and still maintains the highest possible wireless charging. In step 718, if the power level determined in step 714 is the same or higher when compared to the received power level in Step 716, the control unit 16 maintains the current split setting to the at least two coils 100.
This disclosure illustrates the coil implemented into a cup holder housing of a vehicle. The described method and coil implementation is not limited to just a cup holder housing. The method 710 and the coils can be applied to any housing structure that may be in a vehicle and hold a mobile device 402.
The foregoing description of various preferred embodiments have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The example embodiments, as described above, were chosen and described in order to best explain the principles of the disclosure and its practical application to thereby enable others skilled in the art to best utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. The features of the invention disclosed in the foregoing description, in the drawings and in the claims can be essential both individually and in any combination for the implementation of the invention in its various embodiments.
This application is an International Patent Application, which claims the benefit of priority to U.S. Provisional Application No. 63/027,992, filed on May 21, 2020, which is hereby incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP21/63678 | 5/21/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63027992 | May 2020 | US |