The present invention relates to wireless power supply systems, and more particularly to a system for wirelessly charging an electronic device.
With continued growth in the use of battery-operated portable electronic devices, there are increasing concerns about the problems associated with conventional battery chargers. Battery-operated portable electronic devices are often provided with a battery charger for use in recharging the batteries. Many conventional battery chargers include a power cord that plugs into a power input port on an electronic device. The design of the battery charger, including power specifications and plug configuration, typically varies from device to device such that a battery charger of one device is not likely to operate properly in charging the batteries of another device. Accordingly, a user with multiple electronic devices is required to maintain and store a variety of different battery chargers. The cords of conventional corded battery chargers are unsightly and have a tendency to become tangled both alone and with cords of other chargers. Corded chargers are also relatively inconvenient because a user is required to plug and unplug the cord each time the device is charged.
To overcome these and other problems associated with corded battery chargers, there is a growing trend toward the use of wireless charging systems for charging batteries in portable electronic devices. Wireless charging systems offer a number of advantages. For example, they eliminate the unsightly mess created by a collection of charger cords and eliminate the need for users to plug and unplug the device from the charger.
Although wireless charging systems can be a marked improvement over wired chargers, they continue to suffer from some inconveniences. For example, due to limitations inherent in their nature of batteries, conventional battery chargers charge at a relatively slow rate. As a result, a device that has exhausted its battery must remain on the charger for a relatively long period before it is capable of further use. The inability to use a device for an extended period while it remains on the charger can be a significant inconvenience.
The present invention provides a battery-operated remote control with a wireless charging system having an inductive power supply and a secondary power circuit with a charge storage capacitor and a charging subcircuit for charging the battery with the power stored in the charge storage capacitor. In operation, the secondary power circuit wirelessly receives power from the inductive power supply and rapidly charges the capacitor. The charging subcircuit charges the battery with the power from the charge storage capacitor at a rate appropriate for battery charging. Because power is stored in the capacitor, battery charging can continue even after the remote control is removed from the inductive power supply.
In one embodiment, the charge storage capacitor is electrically connected to the electronics of the remote control such that the remote control can operate using power stored in the charge storage capacitor. The charge storage capacitor may be a single supercapacitor or it may be a bank of multiple capacitors, such as a series or parallel arrangement of supercapacitors.
In one embodiment, the charging system includes a communication system for communicating charging information from the secondary to the inductive power supply. The charging information may include, among other things, operating parameters or data that permits the inductive power supply to determine operating parameters. For example, the secondary may indicate when the power supplied to the secondary power circuit is within an adequate range for charging the capacitor, when the capacitor is fully charged or when the capacitor needs additional charging.
In one embodiment, the secondary includes a charging circuit connecting the capacitor and the battery. The charging circuit may be nothing more than an electrical connector that connects the battery and the capacitor. Alternatively, the charging circuit may be a more complicated charging circuit, such as an appropriate diode to prevent the battery from leaking power into the capacitor or a charge control circuit incorporated into an integrated circuit.
In an alternative embodiment, the present invention is incorporated into a simple analog charging system. In this embodiment, the secondary supplies power to the capacitor until the capacitor reaches a predetermined voltage. Once the capacitor reaches that voltage, a charging switch is opened to open the current path from the secondary to the capacitor. The circuit remains open until the voltage of the capacitor falls back belong the predetermined value, for example, after a sufficient amount of the power in the capacitor has been depleted in charging the battery.
In another aspect, the present invention provides a method for rapidly charging the battery of a remote control. The method includes the general steps of: 1) generating an electromagnetic field with an inductive power supply, 2) positioning a remote device with a secondary power circuit in the electromagnetic field to induce electrical power within the secondary power circuit, 3) rapidly charging a charge storage capacitor in the secondary power circuit with the induced power and 4) charging the battery of the remote device with the power stored in the charge storage capacitor.
In one embodiment, the method includes the steps of: 1) sending charge information from the secondary power circuit to the inductive power supply and 2) adjusting operation of the inductive power supply based on the charge information received from the secondary power circuit. In one embodiment, the inductive power supply adjusts its operating frequency based on the charge information. In another embodiment, the inductive power supply adjusts duty cycle in based on the charge information. In another embodiment, the inductive power supply adjusts input rail voltage based on the charge information.
The present invention provides a simple and effective wireless recharging system suitable for remote control systems and other battery-operated electronic devices. Because the charge storage capacitor charges much more quickly than a conventional rechargeable battery, the charge storage capacitor can be much more rapidly charged than the battery. As a result, the present invention allows the secondary power circuit to quickly store sufficient power to operate the electronic device for at least a short period. Further, the communication system allows the inductive power supply to adapt its operating parameters, such as operating frequency and/or duty cycle, to provide efficient operation. Additionally, the communication system facilitates interoperability by permitting compatible remote devices to identify themselves to the inductive power supply and to initiate inductive charging.
These and other objects, advantages and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiment and the drawings.
I. Overview.
A remote control system 10 having an inductive charging system in accordance with an embodiment of the present invention is shown in
II. Structure.
As noted above, the remote control system 10 includes an inductive power supply 12 that produces an electromagnetic field capable of inducing electrical power in an appropriate remote device, such as the remote control 14. Although described in connection with a specific inductive power supply 12, the present invention is configurable for use with essentially any inductive power supply capable of conveying the necessary power. Referring now to
A circuit diagram of an inductive power supply 12 in accordance with an embodiment of the present invention is shown in
In the illustrated embodiment, the primary coil 16 is a coil of wire, such as Litz wire. The characteristics of the primary coil 16 (e.g. wire size, wire type, number of turns, shape of coil) will vary from application to application to achieve the desired functionality. The primary coil 16 may be essentially any component capable of generating a magnetic field. For example, the primary coil 16 may be replaced by a printed circuit board coil or a stamped coil.
The tank capacitor 38 of the illustrated embodiment is selected to have a capacitance that, when coupled with the primary coil 16, provides the tank circuit with a resonant frequency at or near the anticipated range of operating frequencies. The characteristics of the tank capacitor 38 may vary from application to application, as desired.
The current sense transformer subcircuit 54 is coupled to the tank circuit 34 to provide a signal to the controller 32 that is indicative of the current within the tank circuit 34. In the illustrated embodiment, the current sense transformer subcircuit 54 includes a current sense transformer 55 the output of which is passed through a variety of conditioning and filtering components, as shown in
The illustrated embodiment includes an optional IRDA subcircuit 46 and an optional programming port 48. The IRDA subcircuit 46 and port 48 are alternatives for programming and upgrading the controller 32. The IRDA subcircuit 46 permits the controller 32 to be programmed or upgraded using conventional IRDA communications, while the port 48 allows the controller 32 to be programmed or upgraded through a plugged-in connection.
The remote control 14 is a battery-operated remote control that includes a secondary power circuit 60 that receives power from the inductive power supply 12 and uses the power to rapidly charge a charge storage capacitor 72. For example, in one embodiment, the remote control 14 may be a television remote control for wirelessly changing the channel of a television. The secondary power circuit 60 utilizes the power stored in the charge storage capacitor 72 to charge the battery 100 of the remote control 14 over an appropriate timeframe. In the illustrated embodiment, the secondary power circuit 60 generally includes a secondary coil 62, a rectifier 64, a charging switch 66, a current sense amplifier subcircuit 68, a voltage sense subcircuit 70, a charge storage capacitor 72, a VCC regulator subcircuit 74, a voltage boost subcircuit 76, a switch driver subcircuit 78, a controller 80, a communications subcircuit 82, a temperature sense subcircuit 84 and an A/D voltage reference subcircuit 86. In the illustrated embodiment, the secondary coil 62 is a generally conventional center-tapped coil of wire, such as Litz wire. The characteristics of the secondary coil 62 (e.g. wire size, wire type, number of turns, shape of coil) will vary from application to application to achieve the desired functionality. The secondary coil 62 may be essentially any component in which a voltage is induced in the presence of a magnetic field, such as the field generated by the inductive power supply 12. For example, the secondary coil 62 may be replaced by a printed circuit board coil or a stamped coil. The rectifier 64 rectifies the AC power induced in the secondary coil 62 to provide DC power. The rectifier 64 may be essentially any circuitry capable of converting AC power into DC power, but in the illustrated embodiment is a full-wave rectifier having two diodes 88a-b. The charging switch 66 is operable to selectively control the supply of DC power from the rectifier 64 to the charge storage capacitor 72. The charging switch 66 may be a FET that is opened and closed by operation of switch driver subcircuit 78. The switch driver subcircuit 78 may be essentially any driver capable of controlling operation of the charging switch 66. In the illustrated embodiment, the switch driver subcircuit 78 cooperates with the voltage boost subcircuit 76 to operate the charging switch 66. The switch driver subcircuit 78 of the illustrated embodiment 78 includes a transistor 90 that is actuated by a control signal from controller 80. When the transistor 90 closes, the output of the voltage boost subcircuit 76 drops to ground, thereby opening the charging switch 66. In the illustrated embodiment, the voltage boost subcircuit 76 is a conventional voltage doubler that converts the AC voltage from the secondary coil 62 to a higher DC voltage. The output of the voltage boost subcircuit 76 is used by the switch driver subcircuit 78 to operate the charging switch 66. The current sense amplifier subcircuit 68 measures the current being applied to the charge storage capacitor 72.
The secondary power circuit 60 includes current sense and voltage sense circuitry. One embodiment of a secondary power circuit is illustrated in
The charge storage capacitor 72 may be a single capacitor or a bank of capacitors. For example,
As noted above, the secondary power circuit 60 includes a VCC regulator subcircuit 74 to provide DC voltage at a level appropriate for operating the controller 80 and other components. The VCC regulator subcircuit 74 may be essentially any subcircuit capable of providing the desired DC output.
The secondary power circuit 60 includes an A/D voltage reference subcircuit 86. This subcircuit 86 may be essentially any subcircuit capable of producing a stable reference voltage. In the illustrated embodiment, the A/D voltage reference subcircuit 86 includes an IC 93 for generating the reference voltage. Alternatively, if the VCC regulator subcircuit 74 is configured to provide a voltage that is sufficiently stable, the A/D voltage reference subcircuit 86 may be eliminated.
The secondary power circuit 60 may also include a temperature sense subcircuit 84 that monitors the temperature within the secondary circuit and provides a temperature reading to the controller 80. The controller 80 may disable the secondary power circuit 60 when the temperature reading exceeds a predetermined value.
The secondary power circuit 60 is coupled to a battery 100 by a charging circuit 102. In use, the battery 100 provides power to the remote control functions of the remote control 14. The charging circuit 102 may be essentially any circuit capable of charging the battery 100 using the power stored in the charge storage capacitor 72. In one embodiment, the charging circuit 102 is simply electrical connectors that connect the battery to the charge storage capacitor 72 and to ground. In another embodiment, the charging circuit 102 includes a diode positioned between the charge storage capacitor 72 and the battery 100. In yet another embodiment, the charging circuit 102 may include a battery charging IC. A variety of battery charging ICs are commercially available. For example, lithium-ion charging ICs are commercially available to charge the battery 100 in accordance with a conventional lithium-ion charging profile.
As described in more detail below, the communications subcircuit 82 is designed to produce data communications carried on the electromagnetic field. In general, the communications subcircuit 82 communicates by selectively applying a load to the secondary coil in a pattern representative of the data. In the illustrated embodiment, the communications subcircuit 82 includes a FET 96 and a communication load in the form of resistor 98. In operation, the controller 80 selectively actuates FET 96 to apply and remove the resistor 98. The presence or absence of this load is conveyed to the primary circuit through reflected impedance, which in turn affects the current in the tank circuit. For example, an increased load in the secondary circuit typically results in an increase in the current in the tank circuit. If the load of the communication subcircuit is significant enough, the primary circuit will be able to distinguish the presence or absence of the communication subcircuit load in the secondary circuit by monitoring the current in the tank circuit. The “on” and “off” patterns of the communication circuit load can be used to create a binary data stream that is recognizable by the primary circuit, as described in more detail below. Although the illustrated embodiment includes a communication system that transmits data over the electromagnetic field, the system 10 may include alternative communication systems, such as communications systems that do not communicate over the electromagnetic field. For example, the system may utilize an external communication system, such as Bluetooth, WiFi or a second pair of electromagnetic coils.
III. Operation.
In the illustrated embodiment, the method of operation of the inductive power supply 12 generally includes the steps of: 1) determining when a compatible remote control is present, 2) inductively transferring power once a compatible remote control is present, 3) adjusting operation in response to feedback from the remote control and 4) stopping inductive power transfer once the remote control is charged. The illustrated method of operation includes a variety of optional steps that may provide improved efficiency or improved performance. The method of operation may vary from application, as desired, including the elimination of optional steps.
The method of operation 200 of the inductive power supply 12 of the illustrated embodiment will now be described in connection with
When a communication signal indicative of the presence of a compatible remote control 14 is received, the inductive power supply 12 begins inductive power transfer 206 at a specific start frequency. This start frequency may be stored in memory within the inductive power supply 12 or it may be communicated to the inductive power supply 12 by the remote control 14, for example, within the feedback signal generated by the remote control 14 in response to the ping.
The inductive power supply 12 continues inductive power transfer at the start frequency for a specified period. This period may be stored in memory within the inductive power supply 12 or communicated to the inductive power supply 12 by the remote control 14. For example, the length of the period may be embedded within the feedback signal generated by the remote control 14 in response to the ping. If, after the specified period has passed, the inductive power supply 12 has not received a feedback signal from the remote control 14, the inductive power supply 12 will adjust its operating frequency to increase the power supplied to the remote control 14. In the illustrated embodiment, the inductive power supply 12 operates above the resonant frequency of the tank circuit 34 (See
If, on the other hand, a feedback signal is received from the remote control 14, the inductive power supply 12 analyzes the feedback signal to determine the content of the signal. If the feedback signal directs the inductive power supply 12 to stop charging 212, the inductive power supply 12 stops inductive power transfer 214 and returns to the ping state 202.
If not, the inductive power supply 12 analyzes the feedback signal and adjusts the inductive power supply 12 in accordance with the communication. In the illustrated embodiment, the system 10 attempts to supply a fixed amount of power to the charge storage capacitor 72. As described in more detail below, the secondary circuit 60 monitors the power being applied to the charge storage capacitor 72 and provides feedback signals that permit the inductive power supply 12 to vary its operation to provide the desired power. In this embodiment, the inductive power supply 12 increases the power until the secondary circuit 60 indicates that the power is at the desired level. The secondary circuit 60 then provides a feedback signal that directs the inductive power supply to stop increasing its power level. Because this embodiment adjusts operating frequency to control power level, the feedback signal essentially directs the inductive power supply to stop decreasing its operating frequency. The inductive power supply 12 increases 216 its operating frequency and after a specified period of delay 217 returns to step 208. The inductive power supply 12 will continue to increase its operating frequency until the secondary circuit 60 stops providing a feedback signal indicating that the power is at or above the desired charging level or that the charge storage capacitor 72 is fully charged. The length of delay between adjustments and the size of adjustments may vary from application to application, as desired. These values may be stored in the internal memory of the inductive power supply 12 or communicated to the inductive power supply 12 by the remote control 14. For example, the delay may be embedded within the feedback signal generated by the remote control 14 in response to the ping.
As can be seen, the feedback signals drive operation of the inductive power supply 12 in this embodiment. If no feedback signal is received, the inductive power supply 12 periodically and repeatedly decreases the operating frequency (e.g. steps 208 and 210). If the feedback signal indicates that the charging power is at the desired value, the inductive power supply 12 periodically and repeatedly increases the operating frequency (e.g. steps 208 and 216). If the feedback signal indicates that the charge storage capacitor 72 is fully charged, the inductive power supply 12 stops inductive power transfer 214 and returns to the ping state 202 (e.g. steps 208, 212 and 214). In this way, the inductive power supply 12 remains in a low-power ping state until a compatible remote control 14 (or other remote device) is present. The inductive power supply 12 then inductively supplies power to the remote control 14 adjusting its operating parameters to maintain a relatively constant power level based on feedback from the remote control 14 until the capacitor is fully charged.
The method of operation 250 of the secondary power circuit 60 is described primarily with reference to
The secondary power circuit 60 “awakens” in the presence of the ping transmitted by the inductive power supply 12. Upon awakening, the secondary power circuit 60 sends 252 an identification signal back to the inductive power supply 12. As described elsewhere, the secondary power circuit 12 creates feedback signals by selectively applying the communication load 98 to the secondary coil 62. The controller 80 selectively opens and closes FET 96 to create a data stream on the electromagnetic field in accordance with the communication protocol described in more detail below. In the illustrated embodiment, data is transmit to the inductive power supply 12 in data packets. Before generating a data packet, the controller 80 disconnects the charge storage capacitor 72 from the secondary coil 62. The secondary power circuit 60 disconnects the charge storage capacitor 72 through switch driver subcircuit 78. The controller 80 outputs a signal that closes transistor 90, thereby dropping the output of the voltage boost subcircuit 76 to ground, which in turn opens the charging switch 66. Once open, the charge storage capacitor 72 is effectively isolated from the secondary coil 62 and the communication load 98. The charging switch 66 is held open for a period sufficient to send the data packet. After the data packet is sent, the charging switch 66 is again closed, allowing power to flow to the charge storage capacitor 72. As noted above, the inductive power supply 12 responds to the identification signal by beginning inductive power supply.
While inductive power supply is ongoing, the secondary power circuit 60 periodically or continuously monitors 254 the voltage of the charge storage capacitor 72 and periodically or continuously monitors 256 the current being applied to the capacitor 72. More specifically, the voltage sense subcircuit 70 provides signal indicative of the voltage of the charge storage capacitor 72 to the controller 80. If the sensed voltage is at or above maximum capacity 258, the secondary power circuit 60 sends a data packet 260 to the inductive power supply 12 indicating that the charge storage capacitor 72 is fully charged, which as discussed above causes the inductive power supply to stop inductive power transfer and return to the ping state. The charging switch 66 is opened while the “fully charged” data packet is sent. If the sensed voltage is not at or above the maximum capacity, the controller 80 calculates the capacitor charging power 262 based on signals from the current sense amplifier subcircuit 68 and the voltage sense subcircuit 70. If the power is at or above the desired charging power 264, the secondary power circuit 60 sends a data packet 266 to the inductive power supply 12 indicating that the power is at or above the desired value. Again, the charging switch is opened while the data packet is being sent. The “at charging power” data packet is sent in accordance with the communications methodology discussed below. As noted above, the inductive power supply 12 responds to this data packet by increasing the operating frequency of the inductive power supply 12, which should move the operating frequency away from resonance and reduce the power supplied to the secondary coil 62. The secondary power circuit 60 will continue to periodically send the “at charging power” signal for as long as the calculated power remains at or above the predetermined charging power.
Once the charging power drops below the desired threshold, the secondary power circuit 60 stops transmitting the “at charging power” signal. The absence of this signal causes the inductive power supply 12 to begin to periodically and repeatedly decrease the operating frequency, thereby serially increasing the capacitor charging power until it again reaches the desired threshold. As can be seen, the secondary power circuit 60 of the illustrated embodiment creates feedback signals that direct the inductive power supply 12 to adjust operating parameters to maintain a desired capacitor charging power and to stop inductive power transfer once the charge storage capacitor 72 is fully charged.
In the illustrated embodiment, the power supplied to the secondary coil is varied through adjustments to the operating frequency of the power supplied to the tank circuit 34. Operating frequency adjustment may, if desired, be replaced by or supplemented with other mechanisms for varying power. For example, the inductive power supply may be configured to control the power by varying the duty cycle of the signal applied to the tank circuit 34 (instead of or in addition to varying the operating frequency). The input DC voltage rail could be varied while the frequency is held constant.
As discussed above, the secondary power circuit 60 of the illustrated embodiment sends communications to the inductive power supply 12 that are useful in controlling certain aspects of the operation of the inductive power supply 12. The present invention may use essentially any communication system capable of providing communication from the secondary power circuit 60 to the inductive power supply 12. In the illustrated embodiment, communications are transmit in the form of feedback signals that are carried on the electromagnetic field. This allows communications to pass from the secondary coil 62 to the primary coil 16, thereby eliminating the need for additional communications components. Although the method for embedding communications into the electromagnetic field may vary from application to application, the communications system of the illustrated embodiment uses digital bi-phase encoding and backscatter modulation technology. In this application, data is modulated onto the RF field by the secondary power circuit 60 by backscatter modulation. This may be achieved through the communications subcircuit 82 by turning “on” and “off” a relatively heavy load (resistor 98) to the secondary coil 62. Turning this load “on” and “off” causes a change in the impedance of the secondary power circuit 60, which is conveyed to the primary coil 16 by reflected impedance. This change in reflected impedance is detected on the inductive power supply side as a change in current in the tank circuit 34. The increase in the amplitude of the signal is illustrated by regions 120 and 122 in
The present invention may utilize essentially any methodology for encoding data bits. In the illustrated embodiment, the secondary power circuit 60 uses a differential bi-phase encoding technique to create data bits. The technique is transition based and an edge occurs at every clock edge. Data bits are distinguished by the presence or absence of a transition in the middle of a clock period. If a transition occurs in the middle of a clock period, the data bit is a “1”; if not, the data bit is a “0.” Because the encoding technique is transition based, it is polarity independent of the “0's” and “1's” used by the data modulation. Data bytes may be formatted using a standard asynchronous serial format: 1 start bit, 8 data bits (LSB first), 1 odd parity bit, and 1 stop bit. In this embodiment, the start bit is a “0” and the stop bit is a “1.”
In some applications, the communication system may be eliminated altogether. For example, the present invention may be implemented in a simple analog circuit in which charge control is carried out solely within the secondary power circuit. Referring now to
Another exemplary embodiment of a secondary power circuit is illustrated in the circuit diagram of
Although described in connection with a remote control 14, the present invention is well suited for use in connection with a wide variety of battery-powered electronic devices. For example, the present invention may be incorporated into smart phones, cell phones, media players, personal digital assistants and other portable electronic devices. The present invention may also be incorporated into inductively-charged implantable medical devices. For example,
The above description is that of the current embodiment of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention.
This application claims the benefit of U.S. Provisional Patent Application 61/079,301 filed on Jul. 9, 2008, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2678417 | McMath | May 1954 | A |
3586870 | Cwiak | Jun 1971 | A |
3654537 | Coffey | Apr 1972 | A |
3675108 | Nicholl | Jul 1972 | A |
3885211 | Gutai | May 1975 | A |
3914562 | Bolger | Oct 1975 | A |
3930889 | Ruggiero et al. | Jan 1976 | A |
3938018 | Dahl | Feb 1976 | A |
4031449 | Trombly | Jun 1977 | A |
4125681 | Sjogren | Nov 1978 | A |
4142178 | Whyte et al. | Feb 1979 | A |
4374354 | Petrovic et al. | Feb 1983 | A |
4408151 | Justice | Oct 1983 | A |
RE31458 | Trattner | Dec 1983 | E |
4575670 | Hignutt | Mar 1986 | A |
4611161 | Barker | Sep 1986 | A |
4628243 | Hodgman et al. | Dec 1986 | A |
4685047 | Phillips | Aug 1987 | A |
4800328 | Bolger et al. | Jan 1989 | A |
4806440 | Hahs, Jr. et al. | Feb 1989 | A |
4873677 | Sakamoto et al. | Oct 1989 | A |
4912391 | Meadows | Mar 1990 | A |
4942352 | Sano | Jul 1990 | A |
5012121 | Hammond et al. | Apr 1991 | A |
5159256 | Mattinger et al. | Oct 1992 | A |
5162721 | Sato | Nov 1992 | A |
5229652 | Hough | Jul 1993 | A |
5248927 | Takei et al. | Sep 1993 | A |
5250891 | Glasgow | Oct 1993 | A |
5277993 | Landers | Jan 1994 | A |
5298346 | Gyenes | Mar 1994 | A |
5300875 | Tuttle | Apr 1994 | A |
5329274 | Donig et al. | Jul 1994 | A |
5367242 | Hulman | Nov 1994 | A |
5389009 | Van Sckenck, III | Feb 1995 | A |
5391972 | Gardner et al. | Feb 1995 | A |
5396538 | Hong | Mar 1995 | A |
5399446 | Takahashi | Mar 1995 | A |
5455466 | Parks et al. | Oct 1995 | A |
5461297 | Crawford | Oct 1995 | A |
5504412 | Chan et al. | Apr 1996 | A |
5525888 | Toya | Jun 1996 | A |
5529971 | Kaschmitter et al. | Jun 1996 | A |
5536979 | McEachern et al. | Jul 1996 | A |
5550452 | Shirai et al. | Aug 1996 | A |
5568036 | Hulsey et al. | Oct 1996 | A |
5568037 | Massaroni et al. | Oct 1996 | A |
5600225 | Goto | Feb 1997 | A |
5618023 | Eichholz et al. | Apr 1997 | A |
5703460 | Plaells Almerich | Dec 1997 | A |
5703461 | Minoshima et al. | Dec 1997 | A |
5710502 | Poumey | Jan 1998 | A |
5734205 | Okamura et al. | Mar 1998 | A |
5734254 | Stephens | Mar 1998 | A |
5736271 | Cisar et al. | Apr 1998 | A |
5898579 | Boys et al. | Apr 1999 | A |
5923544 | Urano | Jul 1999 | A |
5929598 | Nakama et al. | Jul 1999 | A |
5932992 | Tomatsu et al. | Aug 1999 | A |
5949155 | Tamura et al. | Sep 1999 | A |
5952814 | Van Lerberghe | Sep 1999 | A |
5963012 | Garcia et al. | Oct 1999 | A |
5982050 | Matsui | Nov 1999 | A |
6208115 | Binder | Mar 2001 | B1 |
6376764 | Luo | Apr 2002 | B1 |
6411064 | Brink | Jun 2002 | B1 |
6417649 | Brink | Jul 2002 | B1 |
6421600 | Ross | Jul 2002 | B1 |
6518734 | Nourai et al. | Feb 2003 | B1 |
6608464 | Lew | Aug 2003 | B1 |
6617830 | Nozu et al. | Sep 2003 | B2 |
6633155 | Liang | Oct 2003 | B1 |
6683438 | Park et al. | Jan 2004 | B2 |
7400911 | Planning et al. | Jul 2008 | B2 |
7923870 | Jin | Apr 2011 | B2 |
20010035735 | Fukuoka et al. | Nov 2001 | A1 |
20020068528 | White et al. | Jun 2002 | A1 |
20040150934 | Baarman | Aug 2004 | A1 |
20040212344 | Tamura et al. | Oct 2004 | A1 |
20050083020 | Baarman | Apr 2005 | A1 |
20050162125 | Yu et al. | Jul 2005 | A1 |
20060226805 | Yu | Oct 2006 | A1 |
20070279002 | Partovi | Dec 2007 | A1 |
20090096413 | Partovi et al. | Apr 2009 | A1 |
20090129126 | Boys | May 2009 | A1 |
20100060231 | Trainor et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
0642203 | May 1997 | EP |
0903830 | Mar 1999 | EP |
2623345 | May 1989 | FR |
2796216 | Nov 2001 | FR |
1460046 | Dec 1976 | GB |
06153411 | May 1994 | JP |
07153577 | Jun 1995 | JP |
07326390 | Dec 1995 | JP |
08315864 | Nov 1996 | JP |
WO 2007055264 | May 2007 | WO |
2009031639 | Mar 2009 | WO |
Entry |
---|
Extending implanted electronic device lifetime by external switching and battery recharging. Jeutter, Dean C. (Marquette Univ, Milwaukee, Wis), Journal of Sound and Vibration, 1979, pp. 270-272 Conference: IEEE Eng in Med and Biol Soc Annu Conf, 1st, Fron of Eng in Healthy Care, Oct. 6-7, 1979, Denver, CO, USA Publisher: IEEE. |
Three phase energy transfer circuit with superconducting energy storage coils. Fuja, Raymond E. (Argonne Natl Lab, III); Kustom, Robert L.; Ehsani, Mehrdad Source: Conference Record—IAS Annual Meeting (IEEE Industry Applications Society), 1979, pp. 472-478 CODEN: CIASDZ Conference: Conf Rec IAS Annu Meet 14th, Pap Presented, Sep. 30-Oct. 5, 1979, Cleveland, OH, USA PUblisher: IEEE. |
Power to the People, Stephen J. Mraz, machine design; Apr. 17, 1997; 69, 8; ABI/INFORM global, p. 46. |
Nesscap Ultracapacitor Datasheets, 2003. |
Muhammad H. Rashid, Power Electronics Handbook—Second Edition, 2007, 160-161, Academic Press. |
International Search Report and Written Opinion for International Application No. PCT/US2009/049992 dated Oct. 21, 2009. |
Number | Date | Country | |
---|---|---|---|
20100007307 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61079301 | Jul 2008 | US |