The subject matter herein generally relates to wireless communication devices, and particularly to a wireless communication device having a metal housing.
Metal housings are widely used for electronic devices such as mobile phones or personal digital assistants (PDAs). Antennas are also widely used in electronic devices. However, signals of the antenna located in the metal housing are often shielded by the metal housing.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “comprising” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The radiating body 12 includes a first grounding point 121, a second grounding point 122 and a feeding point 123 located between the first and second grounding points 121, 122. The radiating body 12 further includes a first edge 124 and an opposite second edge 125 parallel to the first edge 124. In at least one embodiment, lengths of the first and second edges 124 and 125 are both about 10 mm; a distance between the first and second edges 124 and 125 is about 75 mm; a distance between the first grounding point 121 and the first edge 124 is about 14 mm; a distance between the feeding point 123 and the first edge 124 is about 18 mm; a distance between the second grounding point 122 and the second edge 125 is about 21 mm.
The wireless communication device 100 is also provided with a first electronic component 20 and a second electronic component 30 both of which are located inside the wireless communication device 100 and adjacent to the radiating body 12, and are positioned at two opposite sides of the second grounding point 122 respectively. In at least one embodiment, the first electronic component 20 is an audio jack, the second electronic component 30 is an USB connector.
In the exemplary embodiment, a regulating circuit 43 is also included that is electronically coupled between the system grounding point 42 and the second grounding point 122. The regulating circuit 43 is configured to regulate a central frequency of an operating frequency band of the low frequency resonate mode. The regulating circuit 43 includes a switch 431 and three inductors L1, L2 and L3. Inductances of the inductors L1, L2 and L3 are different. The switch 421 is configured to selectively couple one of the inductors L1, L2 and L3 to the second grounding point 122. When the inductor L1 having an inductance of about 12 nH is coupled between the system grounding point 42 and the second grounding point 122, the radiating body 12 can resonate at about 700 MHz; when the inductor L2 having an inductance of about 8.2 nH is coupled between the system grounding point 42 and the second grounding point 122, the radiating body 12 can resonate at about 850 MHz; when the inductor L3 having an inductance of about 4.7 nH is coupled between the system grounding point 42 and the second grounding point 122, the radiating body 12 can resonate at about 900 MHz.
The embodiments shown and described above are only examples. Many details are often found in the art. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0721710 | Dec 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20040227678 | Sievenpiper | Nov 2004 | A1 |
20080129639 | Mitsugi | Jun 2008 | A1 |
20090256758 | Schlub | Oct 2009 | A1 |
20120176278 | Merz | Jul 2012 | A1 |
20120299785 | Bevelacqua | Nov 2012 | A1 |
20130318766 | Kiple | Dec 2013 | A1 |
20160064812 | Han | Mar 2016 | A1 |
20160079653 | Kanj | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160164166 A1 | Jun 2016 | US |