1. Field of Invention
The present invention relates to a wireless communication network system and method. More particularly, the present invention relates to a wireless communication network system and method communicating with several interfaces through several channels.
2. Description of Related Art
Above all, there is a need for a method and a system for a wireless communication network to utilize the bandwidth between the gateway and Internet efficiently.
A wireless communication network system is provided. The wireless communication network system includes several nodes and at least one gateway. Each of the nodes has several first wireless network interfaces. Each of the first interfaces utilizes one of channels to send, receive or forward signals. The first interfaces of the same node utilize different and non-overlapping channels to send, receive or forward the signals at the same time. Each of the gateways includes a network interface and several second wireless network interfaces. Each of the network interfaces connects to the Internet to receive or forward the signals. Each of the second wireless network interfaces utilizes one of the channels to receive or forward the signals. The second wireless network interfaces of the same gateway utilize different and non-overlapping channels to receive or forward the signals at the same time.
A wireless communication network method is also disclosed. The wireless communication network method includes the following steps. A process unit of a device assigns some of wireless network interfaces of the device to send the signals at the same time through different and non-overlapping channels. The process unit assigns some of the wireless network interfaces to forward the signals at the same time through different and non-overlapping channels.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims. It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The first process unit 214 connects to the wireless network interfaces 211, 212, 213 respectively. The first process unit 223 connects to the wireless network interfaces 221 and 222 respectively. The first process unit 233 connects to the wireless network interfaces 231 and 232 respectively. The second process unit 244 connects to the wireless network interfaces 241, 242 and 243 and the network interface 245. The network interface 245 connects to the Internet 25. The network interface 245 connects to the Internet through a cable modem, Asymmetric Digital Subscribe Line (ADSL), Integrated Services Digital Network (ISDN), T1, T2, T3, T4, E1, or Fiber Optical Network.
The wireless network interfaces 211, 212, 213, 221, 222, 231 and 232 send, receive or forward signals through channels ch1, ch2, ch3, ch4 and ch5. The wireless network interfaces 241, 242 and 243 receive or forward signals through the channels ch1, ch2, ch3, ch4 and ch5. The wireless network interfaces 211, 212, 213, 221, 222, 231, 232, 241, 242 and 243 can transmit signals to each other utilizing the same channel.
The first process unit 214 assigns the wireless network interfaces 211, 212 and 213 to send, receive or forward signals. The first process unit 223 assigns the wireless network interfaces 221 and 222 to send, receive or forward signals. The first process unit 233 assigns the wireless network interfaces 231 and 232 to send, receive or forward signals. The second process unit 244 assigns the wireless network interfaces 241, 242 and 243 to receive or forward signals. Therefore, the signals of the nodes 21, 22 and 23 or the gateway 24 can be transmitted at the same time through several wireless network interfaces by the assignment. For example, the signals of the node 21 can be transmitted by the wireless network interfaces 211 and 212 at the same time to the gateway 24 through the assignment of the first process unit 214.
Also, the channels ch1, ch2, ch3, ch4 and ch5 can be assigned previously to the wireless network interfaces 211, 212, 213, 221, 222, 231, 232, 241, 242 and 243 to maximize the bandwidth of the multi-channeled wireless communication network system 20. Therefore, the bandwidth of the network interface 245 can be utilized more efficiently. Take
In the first embodiment, the multi-channeled wireless communication network system comprises several nodes and a gateway. Each of the nodes disposes several wireless network interfaces to transmit signals through several channels at the same time. The gateway disposes several wireless network interfaces to transmit the signals through different channels. Therefore, the bandwidth of the multi-channeled wireless communication network system increases, which makes the bandwidth between the gateway and Internet utilized efficiently.
The first process unit 314 connects to the wireless network interfaces 311, 312, 313 respectively. The first process unit 323 connects to the wireless network interfaces 321. The first process unit 333 connects to the wireless network interfaces 331, 332 respectively. The second process unit 344 connects to the wireless network interfaces 341, 342, 343 and the network interface 345. The second process unit 352 connects to the wireless network interface 351 and the network interface 353. The network interfaces 345 and 353 connect to the Internet 36. The network interfaces 345 and 353 connect to the Internet through cable modem, Asymmetric Digital Subscribe Line (ADSL), Integrated Services Digital Network (ISDN), T1, T2, T3, T4, E1, or Fiber Optical Network.
The wireless network interfaces 311, 312, 313, 321, 331 and 332 send, receive or forward signals through channels ch1, ch2, ch3, ch4 and ch5. The wireless network interfaces 341, 342, 343 and 351 receive or forward signals through the channels ch1, ch2, ch3, ch4 and ch5. The wireless network interfaces 311, 312, 313, 321, 331, 332, 341, 342, 343 and 351 can transmit signals to each other utilizing the same channel.
The first process unit 314 assigns the wireless network interfaces 311, 312 and 313 to send, receive or forward signals. The first process unit 323 assigns the wireless network interface 321 to send, receive or forward signals. The first process unit 333 assigns the wireless network interfaces 331, 332 to send, receive or forward signals. The second process unit 344 assigns the wireless network interfaces 341, 342, 343 to receive or forward signals. The second process unit 352 assigns the wireless network interface 351 to receive or forward signals. Therefore, the signals of the nodes 31, 32 and 33 or the gateways 34 and 35 can be transmitted at the same time through several wireless network interfaces by the assignment. For example, the signals of the node 31 can be transmitted by the wireless network interfaces 311, 312 to the gateway 34 at the same time through the assignment of the first process unit 314.
Also, the channels ch1, ch2, ch3, ch4 and ch5 can be assigned previously to the wireless network interfaces 311, 312, 313, 321, 331, 332, 341, 342, 343 and 351 to maximize the bandwidth of the multi-channeled wireless communication network system 30. Therefore, the bandwidth of the network interfaces 345 and 353 can be utilized more efficiently. Take
In the second embodiment, the multi-channeled wireless communication network system comprises several nodes and several gateways. Each of the nodes disposes several wireless network interfaces to transmit signals through several channels at the same time. Each of the gateways disposes several wireless network interfaces to transmit the signals through different channels. Therefore, the bandwidth of the multi-channeled wireless communication network system increases, which makes the bandwidth between the gateways and Internet utilized efficiently.
In the third embodiment, the signals of the device are assigned to several wireless network interfaces. Besides, since the assignment of the signals is much faster than the wireless network transmission rate, the signals can be transmitted by several wireless interfaces assigned by the process unit through different channels at the same time. Therefore, increase the transmission rate of the signals.
Above all, each of nodes or gateways disposes several wireless network interfaces. In addition to assignment of wireless network interfaces, signals can be transmitted by several wireless network interfaces through several channels at the same time.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, their spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.