Wireless communication networks for providing remote monitoring of devices

Information

  • Patent Grant
  • 7103511
  • Patent Number
    7,103,511
  • Date Filed
    Thursday, August 9, 2001
    24 years ago
  • Date Issued
    Tuesday, September 5, 2006
    19 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Hoff; Marc S.
    • Baran; Mary Catherine
    Agents
    • Troutman Sanders LLP
    • Schneider; Ryan A.
    • Yancey, Jr.; James Hunt
Abstract
Wireless communication networks for monitoring and controlling a plurality of remote devices are provided. Briefly, one embodiment of a wireless communication network may comprise a plurality of wireless transceivers having unique identifiers. Each of the plurality of wireless transceivers may be configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol. The original data message may comprise the corresponding unique identifier and sensor data signal. Each of the plurality of wireless transceivers may be configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol. The repeated data message may include the sensor data signal and the corresponding unique identifier. Furthermore, at least one of the plurality of wireless transceivers may be further configured to provide the original data messages and the repeated data messages to a site controller connected to a wide area network. The site controller may be configured to manage communications between the wireless communication network and a host computer connected to the wide area network.
Description
FIELD OF THE INVENTION

The present invention generally relates to systems for monitoring and/or controlling a plurality of remote devices via a host computer connected to a wide area network (WAN), and more particularly relates to systems and methods for managing communication between the host computer and the plurality of remote devices.


BACKGROUND OF THE INVENTION

There are a variety of systems for monitoring and/or controlling any of a number of systems and/or processes, such as, for example, manufacturing processes, inventory systems, emergency control systems, personal security systems, residential systems, and electric utility meters to name a few. In many of these “automated monitoring systems,” a host computer in communication with a wide area network monitors and/or controls a plurality of remote devices arranged within a geographical region. The plurality of remote devices typically use remote sensors and controllers to monitor and respond to various system parameters to reach desired results. A number of automated monitoring systems use computers or dedicated microprocessors in association with appropriate software to process system inputs, model system responses, and control actuators to implement corrections within a system.


Various schemes have been proposed to facilitate communication between the host computer and the remote devices within the system, including RF transmission, light transmission (including infra-red), and control signal modulation over the local power distribution network. For example, U.S. Pat. No. 4,697,166 to Warnagiris et al. describes a power-line carrier backbone for inter-element communications. As recognized in U.S. Pat. No. 5,471,190 to Zimmerman, there is a growing interest in home automation systems and products that facilitate such systems. One system, critically described in the Zimmerman patent, is the X-10 system. Recognizing that consumers will soon demand interoperability between household systems, appliances, and computing devices, the Electronics Industry Association (EIA) has adopted an industry standard, known as the Consumer Electronics Bus (CEBus). The CEBus is designed to provide reliable communications between suitably configured residential devices through a multi-transmission media approach within a single residence.


One problem with expanding the use of control systems technology to distributed systems is the cost associated with developing the local sensor-actuator infrastructure necessary to interconnect the various devices. A typical approach to implementing control system technology is to install a local network of hard-wired sensors and actuators along with a local controller. Not only is there expense associated with developing and installing appropriate sensors and actuators, but the added expense of connecting functional sensors and actuators with the local controller is also problematic. Another prohibitive cost is the expense associated with the installation and operational expense associated with programming the local controller.


Accordingly, an alternative solution for implementing a distributed control system suitable for monitoring and controlling remote devices that overcomes the shortcomings of the prior art is desired.


SUMMARY OF THE INVENTION

The present invention provides wireless communication networks for providing remote monitoring of devices. One embodiment of the present invention is generally directed to a cost-effective automated monitoring system and method for monitoring and controlling a plurality of remote devices via a host computer connected to a communication network, such as a wide area network. The automated monitoring system may include one or more sensors to be read and/or actuators to be controlled, ultimately, through a remote applications server via a site controller. The remote applications server and the site controller may communicate via a communication network, such as a wide area network. The sensors and/or actuators are in communication with a plurality of wireless transceivers, which define a primary wireless communication network. The wireless transceivers may transmit and/or receive encoded data and control signals to and from the site controller. Additional communication devices, such as wireless repeaters, may relay information between the wireless transceivers disposed in connection with the sensors and/or actuators and the site controller.


The present invention may be viewed as a wireless communication network adapted for use in an automated monitoring system for monitoring and controlling a plurality of remote devices via a host computer connected to a wide area network. Briefly, in one embodiment, the wireless communication network may comprise a plurality of wireless transceivers having unique identifiers and a site controller. Each of the plurality of wireless transceivers may be configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol. The original data message may comprise the corresponding unique identifier and sensor data signal. Each of the plurality of wireless transceivers may be further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol. The repeated data message may include the sensor data signal and the corresponding unique identifier. The site controller in communication with at least one of the plurality of wireless transceivers may be configured to: receive the original data messages and the repeated data messages; identify the remote device associated with the corresponding sensor data signal; and provide information related to the sensor data signal to the wide area network for delivery to the host computer.


The present invention may also be viewed as a wireless communication network for monitoring and controlling a plurality of remote devices. Briefly, in one embodiment, the wireless communication network may comprise a plurality of wireless transceivers having unique identifiers. Each of the plurality of wireless transceivers may be configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol. The original data message may comprise the corresponding unique identifier and sensor data signal. Each of the plurality of wireless transceivers may be configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol. The repeated data message may include the sensor data signal and the corresponding unique identifier. Furthermore, at least one of the plurality of wireless transceivers may be further configured to provide the original data messages and the repeated data messages to a site controller connected to a wide area network. The site controller may be configured to manage communications between the wireless communication network and a host computer connected to the wide area network.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 is a block diagram illustrating an embodiment of an automated monitoring system according to the present invention.



FIG. 2 is a block diagram of one of a number of embodiments of a transceiver of FIG. 1 in communication with a sensor of FIG. 1.



FIG. 3 is a more detailed schematic diagram illustrating the connectivity of the WAN of FIG. 1.



FIG. 4 is a block diagram illustrating one of a number of possible embodiments of the site controller of FIG. 1.



FIG. 5 is a table illustrating an embodiment of a message structure for a communication protocol according to the present invention that may be used for communicating between the site controller and transceivers of FIG. 1.



FIG. 6 is a table illustrating various values for the “to address” in the message structure of FIG. 5.



FIG. 7 illustrates three sample messages for the message structure of FIG. 5 according to the present invention.



FIG. 8 is a table illustrating the data section of a downstream message in accordance with the message protocol of FIG. 5.



FIG. 9 is a table illustrating the data section of an upstream message in accordance with the message protocol of FIG. 5.



FIG. 10 is a block diagram illustrating another embodiment of the automated monitoring system according to the present invention.



FIG. 11 illustrates an automated monitoring network 1100 according to the present invention for enabling multiple groups of remote devices associated with multiple wireless communication networks to be monitored and/or controlled via a common connection to a wide area network.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Having summarized the invention above, reference is now made in detail to the description of the invention as illustrated in the drawings. While the invention will be described in connection with these drawings, there is no intent to limit it to the embodiment or embodiments disclosed therein. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the spirit and scope of the invention as defined by the appended claims.



FIG. 1 is a block diagram illustrating one of a number of possible embodiments of an automated monitoring system 100 according to the present invention. Automated monitoring system 100 may comprise one or more applications servers 110, a database 115, a wide area network (WAN) 120, transceivers/repeaters 125, sensor/actuators 130, transceivers 135, sensors 140, transmitters 145, and at least one site controller 150. Each of the sensor/actuators 130 and sensors 140 is integrated with a suitably configured wireless transceiver/repeater 125, a wireless transceiver 135, or wireless transmitter 145. Within the context of this document, a wireless transceiver/repeater 125, a wireless transceiver 135, and a wireless transmitter 145 will be referred to as “wireless communication devices.”


Each of the wireless communication devices in automated monitoring system 100 is preferably small in size and may be configured to transmit a relatively low-power signal, such as, for example a radio frequency (RF) signal. As a result, in some applications, the transmission range of a given RF communication device may be relatively limited. Of course, the transmitter power and range may be appropriately designed for the target operating environment. As will be appreciated from the description that follows, this relatively limited transmission range of the wireless communication devices is advantageous and a desirable characteristic of automated monitoring system 100. Although the wireless communication devices are depicted without a user interface such as a keypad, etc., in certain embodiments the wireless communication devices may be configured with user selectable pushbuttons, switches, an alphanumeric keypad, or any other type of user interface device suitably configured with software and/or firmware to accept operator input. Often the wireless communication device will be in communication with a sensor 140 or with a sensor/actuator 130, such as a smoke detector, a thermostat, a security system, etc., where user selectable inputs may not be needed.


As illustrated in FIG. 1, the wireless communication devices in automated monitoring system 100 are geographically arranged such that the antenna patterns (not shown) associated with each wireless communication device overlap to create a coverage area 165. In this manner, automated monitoring system 100 may enable a site controller 150 associated with coverage area 165 to communicate with each sensor/actuator 130 and each sensor 140 via any of a plurality of possible communication paths. For instance, site controller 150 may communicate with a specific sensor/actuator 130 via a plurality of distinct communication paths, each of which are defined by one or more wireless communication devices involved in the communication between site controller 150 and the specific sensor/actuator 130. By way of example, one of the plurality of possible communication paths may consist of a wireless connection from site controller 150 to a wireless communication device associated with the specific sensor/actuator 130. Another possible communication path may consist of a wireless connection from site controller 150 to an intermediate wireless communication device and then to the wireless communication device associated with the specific sensor/actuator 130. Further communication paths may include multiple intermediate wireless communication devices in the wireless connection between site controller 150 and the wireless communication device associated with the specific sensor/actuator 130.


As illustrated in FIG. 1, one or more sensors 140 may communicate with at least one site controller 150 via a wireless transmitter 145, a wireless transceiver 135, or a wireless transceiver/repeater 125. Furthermore, one or more sensors/actuators 130 may communicate with at least one site controller 150 via a wireless transceiver 135 or a wireless transceiver/repeater 125. One of ordinary skill in the art will appreciate that in order to send a command from the applications server 110 to a sensor/actuator 130, the wireless communication device associated with the sensors/actuators 130 should be a two-way communication device, such as a transceiver. It will also be appreciated that one or more sensors/actuators 130 may be in direct communication with one or more site controllers 150. It will be further appreciated that the communication medium between the one or more sensor/actuators 130 and the one or more site controller 150 may be wireless or, for relatively closely located configurations, a wired communication medium may be used.


As is further illustrated in FIG. 1, automated monitoring system 100 may comprise a plurality of stand-alone wireless transceiver/repeaters 125. Each stand-alone wireless transceiver/repeater 125, as well as each wireless transceiver 135, may be configured to receive one or more incoming transmissions (transmitted by a remote transmitter 145 or transceiver 135) and to transmit an outgoing signal. This outgoing signal may be any wireless transmission signal, such as, for example, a low-power RF transmission signal, or a higher-power RF transmission signal. Alternatively, where a wired configured is employed, the outgoing signal may be transmitted over a conductive wire, fiber optic cable, or other transmission media. One of ordinary skill in the art will appreciate that if an integrated wireless communication device (e.g., a wireless transmitter 145, a wireless transceiver 135, or a wireless transceiver/repeater 125) is located sufficiently close to site controller 150 such that its output signal can be received by at least one site controller 150, the data transmission signal need not be processed and repeated through either a wireless transceiver/repeater 125 or wireless transceivers 135.


One or more site controllers 150 are configured and disposed to receive remote data transmissions from the various stand-alone wireless transceiver/repeaters 125, integrated wireless transmitters 145, or the integrated wireless transceivers 135. The site controllers 150 may be configured to analyze the transmissions received, convert the transmissions into TCP/IP format, and further communicate the remote data signal transmissions via WAN 120 to one or more applications servers 110 or other devices in communication with WAN 120. One of ordinary skill in the art will appreciate that additional site controllers 150 may function as either a back-up site controller in the event of a site controller failure or can function as a primary site controller to expand the potential size of coverage area 165 of automated monitoring system 100. When implemented as a back-up site controller 150, the second site controller 150 may function when the applications server 110 detects a site controller failure. Alternatively, the second site controller 150 may function to expand the capacity of automated monitoring system 100. A single site controller 150 may accommodate a predetermined number of wireless communication devices. While the number of wireless communication devices may vary based upon individual requirements, in one of a number of embodiments there may be approximately 500 wireless communication devices.


By way of example, a second site controller 150 may double the capacity of a single system. Although not shown, additional site controllers 150 may be added depending on the specific implementation of automated monitoring system 100. The number of wireless communication devices managed by a site controller 150 is limited only by technical constraints such as memory, storage space, etc. In addition, the site controller 150 may manage more addresses than devices as some wireless communication devices may have multiple functions such as sensing, repeating, etc. As stated above, automated monitoring system 100 includes an applications server 110 in communication with site controller 150 via WAN 120. Applications server 110 may host any of a variety of application specific software depending on the precise environment in which automated monitoring system 100 is employed. As further described below, the site controller 150 may receive, via WAN 120, information in the form of data and/or control signals from applications server 110, laptop computer 155, workstation 160, and any other device in communication with WAN 120. Site controller 150 may then communicate the data and/or control signals to remote sensor/actuators 130 and/or remote sensors 140. Automated monitoring system 100 may also comprise a database 115 associated with applications server 110. Database 115 may be configured to communicate with applications server 110 and record client specific data or to assist the applications server 110 in deciphering a particular data transmission from a particular sensor 140, sensor/actuator 130, etc.


Reference is now made to FIG. 2, which is a block diagram illustrating a transceiver 135 that may be integrated with a sensor 140, sensor/actuator 130, etc. As stated above, the characteristics of sensor 130 may vary depending on the environment in which automated monitoring system 100 is implemented. For example, the sensor 130 may be a two-state device such as a smoke alarm, a thermometer, a utility meter, a personal security system controller, or any other sensor. Regardless the specific characteristics of sensor 130, transceiver 135 may include a data interface 205 configured to receive and/or transmit signal to sensor 130. If the signal output from the sensor 130 is an analog signal, the data interface 205 may include an analog-to-digital converter (not shown) to convert the signals. Alternatively, where transceiver 135 and sensor 130 communicate using digital signals, transceiver 135 may include a digital interface (not shown) that communicates with the data interface 205 and the sensor 130.


As illustrated in FIG. 2, the sensor 140 may be in communication with the transceiver 135. Transceiver 135 may comprise an RF transceiver controller 210, a data interface 205, a microcontroller 215, a memory 220, and an antenna 225. A data signal forwarded from the sensor 140 may be received by the data interface 205. In those situations where the data interface 205 has received an analog data signal, the data interface 205 may be configured to convert the analog signal into a digital signal before forwarding a digital representation of the data signal to the data controller 215. In one embodiment, each transceiver 135 may be configured with a memory 220 that stores a unique transceiver identifier that identifies the RF transceiver 135.


Transceivers 135 that function in automated monitoring system 100 as both a repeater and an integrated transceiver have two unique addresses. One address indicates messages intended for the repeater; the second address indicates messages for the sensor 140. Data controller 215 evaluates the incoming message to determine which address the message contains, which function is desired, and acts accordingly.


In operation, the RF transceiver 135 receives an incoming message via antenna 225. The transceiver controller 210 receives the incoming message, modifies the received signal, and passes the modified signal onto the microcontroller 215. The microcontroller 215 evaluates the message to determine the intended recipient.


If the intended recipient is the integrated transceiver 135, the microcontroller 215 then prepares the appropriate response as discussed below. This response may include data from the sensor 140. If the intended recipient is the repeater, the microcontroller 215 then prepares the message to be repeated onto the intended recipient according to the message protocol discussed below.


Of course, additional and/or alternative configurations may also be provided by a similarly configured transceiver 135. For example, a similar configuration may be provided for a transceiver 135 that is integrated into, for example, a carbon monoxide detector, a door position sensor, etc. Alternatively, system parameters that vary across a range of values may be transmitted by transceiver 135 as long as data interface 205 and microcontroller 215 are configured to apply a specific code that is consistent with the input from sensor 140. Automated monitoring system 100 may enable the target parameter to be monitored. The transceiver 135 may be further integrated with an actuator (not shown). This provides the ability to remotely control systems such as HVAC systems, lighting systems, etc. via the applications server 110 (FIG. 1). Further information regarding use of actuators in automated monitoring system 100 may be found in commonly assigned U.S. patent application Ser. No. 09/811,076, entitled “System and Method for Monitoring and Controlling Remote Devices,” and filed Mar. 16, 2001, which is hereby incorporated in its entirety by reference.


One of ordinary skill in the art will appreciate that the various communication devices in automated monitoring system 100 may be configured with a number of optional power supply configurations. For example, a personal mobile transceiver may be powered by a replaceable battery. Similarly, a repeater may be powered by a replaceable battery that may be supplemented and/or periodically charged via a solar panel. These power supply circuits, therefore, may differ between communication device depending upon the devices being monitored, the related actuators to be controlled, the environment, and the quality of service required. In the case of a transceiver acting as both a repeater and a remote monitoring device, the transceiver may be independently powered so as not to drain the sensor or actuator. Those skilled in the art will appreciate how to meet the power requirements of the various communication devices. As a result, it is not necessary to further describe a power supply suitable for each communication device and each application in order to appreciate the concepts and teachings of the present invention.


As stated above, automated monitoring system 100 may be used in a variety of environments to monitor and/or control any of a variety of types of sensors 140 and sensors/actuators 130. Regardless of the particular environment and the type of remote device employed in automated monitoring system 100, transceiver 135 may further comprise logic configured to receive data from sensor 140 and/or sensor/actuator 130, retrieve the unique identifier from memory 220, and generate a transmit message using a predefined communication protocol being implemented by the wireless communication network, which is described in detail below. Nonetheless, one of ordinary skill in the art will appreciate that various other communication protocols may be used in accordance with the present invention.


Depending on the specific implementation of sensor 140 and/or sensor/actuator 130, the data may be formatted in a variety of ways. For example, as stated above, the data received by data interface 205 may be an analog or a digital signal. Regardless the specific configuration of sensor 140 and/or sensor/actuator 130, data interface 205 is configured to receive the sensor data.


The transmit message generated may comprise the unique identifier stored in memory 220 and the sensor data. As described above, the transmit message may be formatted in the message structure described below. More importantly, the transmit message may be configured such that the transmit message may be received by the site controller 150 via the wireless communication network and such that the site controller 150 may identify the sensor 140 and/or sensor/actuator 130 and notify applications server 110 of the transmit message.


One of ordinary skill in the art will appreciate that the logic described above, may be implemented in hardware, software, firmware, or a combination thereof. As illustrated in FIG. 2, in one of a number of possible embodiments, the logic is implemented in software or firmware that is stored in memory 220 and that is executed by microcontroller 215. If implemented in hardware, as in alternative embodiments, the logic may be implemented in any one or combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). Memory 220 may incorporate electronic, magnetic, optical, and/or other types of storage media. Memory 220 may also have a distributed architecture, where various components are situated remote from one another. If implemented in hardware, as in alternative embodiments, the logic may be implemented with any or a combination of the following technologies, which are all well known in the art: a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.


Furthermore, one of ordinary skill in the art will appreciate that the integration of sensor 140 and/or sensor/actuator 130 and transceiver 135 may be accomplished in a variety of ways. For example, in one embodiment, transceiver 135 may be included within sensor 140 and/or sensor/actuator 130 as part of its internal configuration. In other embodiments, transceiver 135 may be externally attached to sensor 140 and/or sensor/actuator 130. In further embodiments, transceiver 135 may be installed in close proximity to sensor 140 and/or sensor/actuator 130 such that transceiver 135 and sensor 140 and/or sensor/actuator 130 communicate via a wired or wireless connection.


Referring again to FIG. 2, during normal operation, transceiver 135 may receive a command message on antenna 225 via a message protocol. The command message may be initiated from site controller 150, applications server 110, laptop 155, workstation 160, or any other device connected to WAN 120. In this manner, the command message may be used to request data related to the electricity consumption of a particular electric meter (i.e., sensor 104, sensor/actuator 135). Microcontroller 215 may evaluate the received message to determine if the “to” address is its own unique address. If it is, then the microcontroller 215 evaluates the command and prepares a response message.


In response to the command message, microcontroller 215 receives the senosr data related to the sensor 140 and/or sensor/actuator 130. In one embodiment, the sensor data may be retrieved by initiating a request to the sensor 140 and/or sensor/actuator 130. In another embodiment, the data may be stored in memory 220, in which case microcontroller 215 retrieves the data from memory 220. Microcontroller 215 may also retrieve the unique address from memory 220. Then, the microcontroller 215 formats a transmit signal in response to the command message as described above. Microcontroller 215 then communicates the transmit signal to transceiver controller 210, which provides the transmit signal to the wireless communication network. The transmit signal may be delivered to the site controller 150. Depending on where the command message was generated, the transmit signal may be forwarded to applications server 110, laptop 155, workstation 160, a computing device operated by a user, or any other device connected to WAN 120.


Of course, additional and/or alternative configurations may also be provided by a similarly configured transceiver. For example, a similar configuration may be provided for a transceiver that is integrated into, for example, a carbon monoxide detector, a door position sensor, etc. Alternatively, system parameters that vary across a range of values may be transmitted by transceiver 135 as long as data interface 205 and microcontroller 215 are configured to apply a specific code that is consistent with the input from sensor 140. As long as the code is known by the application server 110 or workstation 160, the target parameter may be monitored with the present invention. The RF transceiver 135 may be further integrated with an actuator. This would provide the user with the ability to remotely control systems such as HVAC systems, lighting systems, etc. remotely via the applications server 110. Further information regarding the integration of an actuator can be found in Ser. No. 09/811,076, “System and Method for Monitoring and Controlling Remote Devices,” filed Mar. 16, 2001, commonly assigned and incorporated in its entirety herein by reference.


Reference is now made to FIG. 3, which illustrates the external connectivity of WAN 120 of FIG. 1 in accordance with the present invention. Site controller 150 may be configured to transmit control signals and receive data signals using the open data packet protocol described in detail below. Site controller 150 is preferably interconnected permanently on WAN 120 and configured to receive data signals from the wireless communication devices and translate the data signals for transfer to applications servers 110 via WAN 120. Site controller 150 may translate the received data signals into any appropriate protocol for delivery via WAN 120. For example, in one embodiment site controller 150 translates the received data signals into transmission control protocol/Internet protocol (TCP/IP) for delivery via WAN 120. As stated above, applications server 110 may be configured for communication with WAN 120 via, for example, router 310 and further protected and buffered by firewall 320. Applications server 110 may also configured with web applications and client specific applications as needed for operation of automated monitoring system 100. Consistent with the concepts and teachings of the present invention, applications server 110 may be assisted in its task of storing and making available client specific data by database 115.


As further illustrated in FIG. 3, a client workstation 160 may include a Web browser for facilitating communication with applications server 110, database 115, and/or site controller 150. Alternatively, clients may access WAN 120 via a remote laptop 155 or other computing devices (not shown) configured with a compatible Web browser or other user interface. In this way, the applications server 110 may provide client specific data upon demand.


As stated above, communication between site controller 150 and sensors/actuators 130 and sensors 140 is accomplished using an open data packet protocol in accordance with the present invention. Because the wireless communication devices are geographically arranged such that their respective antenna patterns overlap to create a coverage area 165, site controller 150 may communicate with each sensor/actuator 130 and each sensor 140 via any of a plurality of possible communication paths. Each of the communication paths are defined by one or more wireless communication devices involved in the communication between site controller 150 and the target sensor/actuator 130 and/or sensor 140. For instance, site controller 150 may communicate with a specific sensor/actuator 130 via a plurality of distinct communication paths. By way of example, one of the plurality of possible communication paths may consist of a wireless connection from site controller 150 to a wireless communication device associated with the specific sensor/actuator 130. Another possible communication path may consist of a wireless connection from site controller 150 to an intermediate wireless communication device and then to the wireless communication device associated with the specific sensor/actuator 130. Further communication paths may include multiple intermediate wireless communication devices in the wireless connection between site controller 150 and the wireless communication device associated with the specific sensor/actuator 130. In this manner, site controller 150 may communicate with sensors/actuators 130 and/or sensors 140 that are located a greater distance from the site controller 150 by having messages repeated by successive wireless communication devices along one of the communication paths.


Having illustrated and described the operation of the various combinations of communication devices with the sensor 140 and sensor/actuators 130 (FIG. 1), reference is now made to FIG. 4, which is a block diagram further illustrating one embodiment of a site controller 150. A site controller 150 may comprise an antenna 400, an RF transceiver 402, a central processing unit (CPU) 404, memory 406, a network interface device, such as a network card 425, a digital subscriber line (DSL) modem, an integrated services digital network (ISDN) interface card, as well as other components not illustrated in FIG. 4, which may be configured to enable a TCP/IP connection to the WAN 120 (FIG. 1). Site controller 150 may also include a power supply 410 for powering the site controller 150. The power supply 410 may be one of many known power supplies. In addition, the site controller 150 may include an on-site input port 412, which allows a technician to communicate directly with site controller 150. Further information regarding the function, operation, and architecture of the site controller 150 may be found in commonly assigned U.S. patent application “System and Method for Controlling Communication Between a Host Computer and Communication Devices Associated with Remote Devices in an Automated Monitoring System,” (Ser. No. 09/925,786) which is hereby incorporated in its entirety by reference.


The RF transceiver 402 may be configured to receive incoming transmissions via the antenna 400. Each of the incoming transmissions are consistently formatted in the message protocol as described below. The site controller 150 may be configured such that the memory 406 includes a look-up table 414 configured for identifying the various remote and intermediate communication devices used in generating and transmitting the received data transmission. As illustrated in FIG. 4, site controller 150 may include an “Identify Remote Transceiver” memory sector 416 and “Identify Intermediate Transceiver” memory sector 418. Programmed or recognized codes within memory 406 may also be provided and configured for controlling the operation of a CPU 404 to carry out the various functions that are orchestrated and/or controlled by the site controller 150. For example, memory 406 may include program code for controlling the operation of the CPU 404 to evaluate an incoming data packet to determine what action needs to be taken. In this regard, one or more look-up tables 414 may also be stored within the memory 406 to assist in this process. Furthermore, the memory 406 may be configured with program code configured to identify a remote transceiver or identify an intermediate RF transceiver. Function codes and RF transmitter and/or RF transceiver identifiers may all be stored with associated information within the look-up tables 414.


Thus, one look-up table 414 may be provided to associate transceiver identifications with a particular user. Another look-up table 414 may be used to associate function codes associated with the message protocol. For example, a look-up table 414 may include a unique code designating various functions, such as test, temperature, smoke alarm active, security system breach, etc. In connection with the lookup table(s) 414, the memory 406 may also include a plurality of code segments that are executed by the CPU 404, which may in large part control operation of the site controller 150. For example, a first data packet segment may be provided to access a first lookup table 414 to determine the identity of the transceiver that transmitted the received message. A second code segment may be provided to access a second lookup table to determine the proximate location of the transceiver that generated the message. A third code segment may be provided to identify the content of the message transmitted (not shown). Namely, is it a fire alarm, a security alarm, an emergency request by a person, a temperature control setting, etc. In accordance with the present invention, additional, fewer, or different code segments may be provided to carry out different functional operations and data signal transfers.


The site controller 150 may also include one or more network interface devices 408 to facilitate via WAN 120. For example, the site controller 150 may include a network card, which may allow the site controller 150 to communicate across a local area network to a network server. This network server may function as a backup site controller 150 to the WAN 120. Alternatively, the site controller 150 may contain a DSL modem, which may be configured to provide a link to a remote computing system by way of the public switched telephone network (PSTN). In yet another embodiment, the site controller 150 may include an ISDN card configured to communicate via an ISDN connection with a remote system. One of ordinary skill in the art will appreciate that various other communication interfaces may be provided to serve as primary and/or backup links to the WAN 120 (FIG. 1) or to local area networks that might serve to permit local monitoring of the status of the site controller 150 and for data packet control.


Communication between the site controller 150 and the communication devices within coverage area 165 may be implemented using a data packet protocol according to the present invention. FIG. 5 sets forth one embodiment of a message structure for the data packet protocol of the present invention. Messages transmitted within the automated monitoring system 100 may consist of a “to” address 500, a “from” address 510, a packet number 520, a number of packets in a transmission 530, a packet length 540, a message number 550, a command number 560, data 570 (if applicable), and a check sum error detectors (CKH 580 and CKL 590).


The “to” address 500 indicates the intended recipient of the packet. This address can be scalable from one to six bytes based upon the size and complexity of automated monitoring system 100. By way of example, the “to” address 500 may indicate a general message to all transceivers, to only the repeaters, or to a single integrated transceiver. In a six byte “to” address 500, the first byte indicates the transceiver type—to all transceivers, to some transceivers, or a specific transceiver. The second byte may be the identification base, and bytes three through six may be used for the unique transceiver address (either stand-alone or integrated). The “to” address 500 may be scalable from one byte to six bytes depending upon the intended recipient(s).


The “from” address 510 identifies the transceiver originating the transmission and may be a six-byte unique address. The “from” address 510 may be the address of the site controller 150 (FIG. 1) when the site controller 150 (FIG. 1) requests data, or this may be the address of the integrated transceiver responding to a request for information from the site controller 150 (FIG. 1).


The packet number 520, the packet maximum 530, and the packet length 540 may be used to concatenate messages that are greater than a predetermined length. The packet maximum 530 indicates the number of packets in the message. The packet number 520 may be used to indicate a packet sequence number for a multiple-packet message.


The message number 550 may be assigned by the site controller 150. Messages originating from the site controller 150 may be assigned an even number, while responses to the site controller 150 may have a message number equal to the original message number plus one. Thus, the site controller 150 may increments the message number 550 by two for each new originating message. This may enable the site controller 150 to coordinate the incoming responses to the appropriate command message.


The command number 560 may designate a specific data request from the receiving device. One of ordinary skill in the art will appreciate that, depending on the specific implementation of automate monitoring system 100, the types of commands may differ. In one embodiment, there may be two types of commands: device specific and non-device specific. Device specific commands may control a specific device such as a data request or a change in current actuator settings. Commands that are not device specific may include, but are not limited to, a ping, an acknowledge, a non-acknowledgement, downstream repeat, upstream repeat, read status, emergency message, and a request for general data to name a few. General data may include a software version number, the number of power failures, the number of resets, etc.


The data field 570 may contain data as requested by a specific command. The requested data may be any value. By way of example, test data can preferably be encoded in ASCII (American Standard Code for Information Interchange) or other known encoding systems as known in the art. The data field 570 of a single packet may be scalable up to a predetermined length. When the requested data exceeds the predetermined length, the data controller of transceiver 135 may divide the data into an appropriate number of sections and concatenates the series of packets for one message using the packet identifiers as discussed above.


While specific byte lengths for sections of the message are being set forth, it would be obvious to one of ordinary skill in the art to vary the byte lengths based upon system needs. Less complex systems, etc. could use smaller sized sections, whereas more complex systems could increase the byte lengths.


Checksum fields 580 and 590 may be used to detect errors in the transmissions. In one embodiment, any error can be detected via cyclic redundancy check sum methodology. This methodology treats the message as a large binary number and divides the binary number by a generating polynomial (such as CRC-16). The remainder of this division is then sent with the message as the checksum. The receiver then calculates a checksum using the same methodology and compares the two checksums. If the checksums do not match, the packet or message will be ignored. While this error detection methodology is preferred, one of ordinary skill in the art will appreciate that other error detection systems may be implemented.


As stated above, automated monitoring system 100 may employ wireless and/or wired communication technologies for communication between site controller 150 and the various communication devices. In one embodiment, communication between site controller 150 and the communication devices may be implemented via an RF link at a basic rate of 4,800 bits per second (bps) and a data rate of 2400 bps. All the data may be encoded in the Manchester format such that a high to low transition at the bit center point represents a logic zero and a low to high transition represents a logic one. One of ordinary skill in the art will appreciate that other RF formats may be used depending upon design needs. By way of example, a quadature phase shift encoding method may be used, thereby enabling automated monitoring system 100 to communicate via hexadecimal instead of binary.


While the message indicates specific byte length for each section, only the order of the specific information within the message is constant. The byte position number in individual transmissions may vary because of the scalability of the “to” address 500, the command byte 560, and the scalability of the data 570.


The message may further include a preface and a postscript (not shown). The preface and postscripts are not part of the message body but rather serve to synchronize the control system and to frame each packet of the message. The packet begins with the preface and ends with a postscript. The preface may be a series of twenty-four logic ones followed by two bit times of high voltage with no transition. The first byte of the packet can then follow immediately. The postscript may be a transition of the transmit data line from a high voltage to a low voltage, if necessary. It may be less desirable to not leave the transmit data line high after the message is sent. It would be obvious to one of ordinary skill in the art to modify the preface and the postscript as necessary based on specific design needs.



FIG. 6 illustrates one embodiment of a byte assignment for the “to” address 500 of FIG. 5. One of ordinary skill in the art will appreciate that various byte assignments may be used within “to” address field 500. For example, in one embodiment, “to” address 500 consists of six bytes. The first byte (Byte 1) may indicate the device type. The second byte (Byte 2) may indicate the manufacturer or the owner. The third byte (Byte 3) may be a further indication of the manufacturer or owner. The fourth byte (Byte 4) may indicate either that the message is for all devices or that the message is for a particular device. If the message is for all devices, the fourth by may be a particular code. If the message is for a particular device, the fourth, fifth, and sixth bytes (Byte 5 and Byte 6) may include the unique identifier for that particular device.



FIG. 7 illustrates three sample messages using the open data packet protocol described above. The first message 700 illustrates the broadcast of an emergency message “FF” from a central server with an address “0012345678” to a integrated transceiver with an address of “FF.”


The second message 702 illustrates how the first message 700 may be sent to a stand-alone wireless communication device. In this manner, emergency message “FF” from a central server with address “00123456578” is first sent to stand-alone wireless device “FO.” The second message 702, further contains additional command data “A000123456” that may be used by the wireless communication device to identify further wireless communication devices to send the signal through on the way to the destination device.


The third message 704 illustrates how the open data packet protocol of the present invention may be used to “ping” a remote wireless communication device in order to determine the status of the wireless communication device. In this manner, source unit “E112345678” originates a ping request by sending command “08” to a transceiver identified as “A012345678.” The response to the ping request may be as simple as reversing the “to address” and the “from address” of the command such that a healthy wireless communication device may send a ping message back to the originating device. Automated monitoring system 100 may be configured to expect a return ping within a specific time period. Operators of automated monitoring system 100 may use the delay between the ping request and the ping response to model system loads and to determine if specific system parameters might be adequately monitored and controlled with the expected feedback transmission delay.


Returning to FIG. 1, the repeater 125 acts as a communications bridge between a remote device and the site controller 150 when the remote device cannot reliably communicate directly with the site controller 150. In this manner, the repeater 125 may communicate in two or more modes: normal, emergency, etc.


For example, during normal communication, the repeater 125 may have two functions: repeating messages (including repeating upstream messages) and repeating downstream messages. Upstream messages are transmissions to another repeater 125 or remote device. Downstream messages are transmissions to another repeater 125 or site controller 150. Responding to common messages involves taking the appropriate action and sending a response to the site controller 150. The repeater 125 may modify the message depending upon the stream direction. An exemplary format for the data field 570 (FIG. 5) for a downstream repeated message is set forth in FIG. 8. For instance, the data field 570 may have a “Num Index” 810, which may identify the number of indexes being sent with the downstream repeat. The indexes 820 may contain the downstream path including the intended recipient address. The “CMD” field 830 may identify the particular command for the intended receiving device. The “Data for last CMD” field 840 may include either an index table of downstream addresses or upstream addresses.



FIG. 9 sets forth an example of the structure for the data field 570 (FIG. 5) of an upstream message. The “number of repeaters” 910 may indicate the number of upstream repeaters. The “Repeater Retry Counters” 920 may indicate the number of retries by each repeater in the upstream. The “CMD” field 930 may indicate the command sent to the intended remote device. The “Data for last CMD” 940 may indicate the data in response to the original command from the intended remote device.


Examples of commands that are sent directly from the site controller 150 to the repeater 125 include load upstream addresses. This command causes the repeater 125 to store the addresses to which the repeater 125 sends messages when communicating upstream. The loading of the upstream addresses also initiates a transceiver functioning as a repeater 125. The response to a load command may be a status message that is sent to the site controller 150.


Another example of a communication mode is emergency mode. In this mode, emergency messages are automatically transmitted upstream regardless of what other actions may be taking place. Unlike normal communications, emergency messages are sent unsolicited from the integrated transceiver 135 to the site controller 150.


During all modes of communication, each of the communication devices may expect a response message to all messages sent. There may be at least two acknowledgements: a positive acknowledgement, a negative acknowledgement, etc. The positive acknowledgement may be sent whenever a message is received and understood. A negative acknowledgement may be sent whenever the message is not received and understood correctly or whenever an expected message is not received. A negative acknowledgment may be followed by a predetermined number of retries.


Further information regarding the structure and operation of the data packet protocol implemented in automated monitoring system 100 may be found in commonly assigned U.S. patent application “System and Method for Interconnecting Remote Devices in an Automated Monitoring System,” Ser. No. 09/925,445 which is hereby incorporated in its entirety by reference.


Referring again to FIG. 1, during normal operations, the site controller 150 acts as the communications master. Thus, the site controller 150 may initiate all communications with the wireless communications devices, except emergency messages described below. In addition to initiating command messages, the site controller 150 also tracks response messages. This tracking allows the site controller 150 to monitor the operational status of the wireless communication devices.


In addition to orchestrating communications with the wireless communication devices, the site controller 150 maintains current databases of information regarding the automated monitoring system 100, such as, for example, the function of the wireless communication devices, the unique address for each of the wireless communication devices, and current data contained in response messages. One of ordinary skill in the art will appreciate that site controller 150 may contain information related to any of a variety of other aspects of automated monitoring system 100.


As stated above, the site controller 150 also controls communications with the applications server 110. When communicating with the applications server 110, the site controller 150 receives requests for information, commands, etc. and sends the appropriate response. The applications server 110 maintains the requested information and/or commands in such a way that a user can access the information via a remote desktop 155, remote laptop 160, or any other device configured for communication with WAN 120.


Furthermore, the site controller 150 may be configured to maintain a database of the wireless communication devices and their unique addresses. The unique addresses may be assigned such that the site controller 150 may easily send messages to one wireless communication device, a group of wireless communication devices, or all of the wireless communication devices.


Using the site controller 150 as a communications master and maintaining individual device information at the site controller 150 enables the wireless communication devices to be simplified. The simplification of the wireless communication devices has two main advantages: (1) simplifying the construction of the wireless communication device and (2) decreasing cost. The wireless communication device may be simplified because of a reduced need for large memory and/or storage devices. As well-known in the art, memory and storage devices increase in cost as they increase in size. Therefore, decreasing the size of the memory and/or storage reduces the construction and operating costs of the wireless communication devices.


The site controller 150 sends messages to the wireless communication devices using the open data packet protocol described above. Initially, the site controller 150 maps all of the wireless communication devices so as to “learn” all the unique addresses and the necessary communication paths. To do this mapping, the site controller 150 issues a command to document the down-stream addresses and the up-stream addresses for each communication path associated with a wireless communication device. The site controller 150 logs the response data from the wireless communication devices into the appropriate databases. Messages from the site controller 150 travel downstream to the intended wireless communication device(s). Messages from the wireless communication devices(s) travel upstream to the site controller 150. When mapping the communication paths for each of the wireless communication devices, the site controller 150 “learns” the unique address of each wireless communication device, the addresses of each wireless communication device that can directly and reliably communicate with each transceiver/repeater(s) 125 in a downstream path, the unique address of each transceiver/repeater(s) 125 in a downstream path, the upstream addresses for the wireless communication device, and the downstream addresses for the wireless communication device.


When sending command messages, the site controller 150 expects an acknowledgement to each command. A command is considered to be not acknowledged when either the site controller 150 fails to receive a positive acknowledgement from the addressed wireless communication device within a first time period, fails to detect the re-transmission of the command message by a transceiver/repeater 125 within a second time period, or receives a negative acknowledgement from a transceiver/repeater 125 in the communication path of the wireless communication device. If the site controller 150 receives a negative acknowledgement, the site controller 150 can then log the failed message and retransmit the message. This re-transmission can occur a predetermined number of times. It should be noted the first time period may be longer than the second time period. In the above cases, the first time period is long enough to ensure receipt of the preamble of the response message when there are multiple transceiver/repeater(s) 125 in the communications path. The second time period is long enough to either receive the preamble of the response message (if no repeaters are in the communications path) or to hear the preamble of the command message being re-transmitted by the first transceiver/repeater 125 in the communication path of the wireless communication device.


After initializing and during normal operation, the site controller 150 may poll each of the remote sensor/actuators according to a predetermined schedule. During this process, the site controller 150 requests the current operating status of each of the sensors/actuators 135. The status of a sensor/actuator device 135 depends upon the type of device. For example, a smoke detector's status may be operational/non-operational. In contrast, a utility meter's status may be the utility usage that has occurred since the last polling. A thermostat's status response may be the actual temperature and the desired temperature. The information sent in response to a status poll may vary depending upon the particular configuration of the sensor/actuator 135. This information is maintained by the site controller 150 and may be sent to the applications server 110 upon request. The predetermined schedule has flexibility based upon the number of failed attempts and any emergency messages. To poll the device, the site controller 150 sends a “read status” message. The command message is considered complete upon receipt of the response message. The command message is considered failed upon receipt of a negative acknowledgement. After a negative acknowledgement, the site controller 150 retries the command six more times and logs all failed attempts.


To facilitate communications with the applications server 110, the site controller 150 may maintain database files of information. The site controller 150 may maintain communication databases that store the device failures, as discussed above, and that store the emergency messages. These database stored logs can contain the unique address of the wireless communication device, a code representing a present condition, and a date/time stamp. Any failures to communicate with the applications server 110 are also logged into the appropriate database. These databases may have a predetermined size and may be forwarded to the applications server 110 when the databases are a specific percentage full or upon request by the applications server 110. Once forwarded to and acknowledged by the applications server 110, the entries in the communications databases are deleted. One of ordinary skill in the art will appreciate that the contents, size, and scheduling of database entries may be varied in a variety of ways.


After mapping the wireless communication devices, the site controller 150 develops and maintains a database that includes the unique address for each wireless communication device, the number of transceiver/repeaters 125 in the downstream path, the address of each transceiver/repeater 125 in the downstream path, the upstream addresses, and the downstream addresses. The site controller 150 does not necessarily respond to the messages from wireless communication devices not listed in this database.


In addition to mapping the wireless communication devices, the site controller 150 may update the device database via the applications server 110. This update may add/delete wireless communication devices from the automated monitoring system 100, change the communications path of any or all of the wireless communication devices, or change the unique addresses of any or all of the wireless communication devices. Upon request of the applications server 110, the site controller 150 may transmit the device database to the applications server 110.


It should be noted that the databases enumerated above are merely exemplary, and other databases may be included as would be obvious to one of ordinary skill in the art.


The “normal” operating procedure described above is continued unless the site controller 150 receives an emergency message from a wireless communication device. The emergency message is transmitted unsolicited. The emergency message can be received by the site controller 150 either directly, via a repeater, or via a plurality of repeaters. Upon receipt of an emergency message, the site controller 150 immediately notifies the applications server 110 of the emergency message. In addition, the site controller 150 suspends the above polling for a predetermined time period. This suspension insures the receipt of any additional emergency messages. After the time period expires with no additional messages, the site controller 150 resumes polling.


To facilitate communications between the applications server 110 and the site controller 150, the site controller 110 maintains a database of contact information. By way of example, if the site controller 150 communicates via a network interface device 408, the site controller 150 can maintain a database of telephone numbers and IP addresses of the applications server 110.


During normal communications, the applications server 110 sends response messages. As stated above, one of ordinary skill in the art will appreciate that the applications server 110 and the site controller 150 may communicate via TCP/IP protocol or any other protocol. Exemplary requests include a “get file” request of the database and a “put file” request, which sends a file to the site controller 150.


Normal communications between the site controller 150 and the applications server 110 may also be interrupted by an emergency message. The emergency message originates at the site controller 150 and may include an emergency message from a remote device, a “file too large” message, and a site controller status change message to name a few. In the case of safety and security system devices such as smoke detectors, glass break alarms, etc., the site controller 150 may immediately generate an emergency message to the applications server 110 in the event a safety/security device fails to respond to a poll message.



FIG. 10 sets forth an alternate embodiment of an automated monitoring system 100. Automated monitoring system 100 of FIG. 1 is shown with an additional sensor 180 and transceiver 185. The additional sensor 180 and transceiver 185 are shown to be communicating with, but outside of, the coverage area 165. In this example, the additional sensor 180 and transceiver 185 may be placed outside of the original control system. In order to communicate, the coverage area of transceiver 185 need only overlap the coverage area 165. By way of example only, the original installation may be an automated monitoring system 100 that monitors electricity usage via the utility meters in an apartment complex. Later a neighbor in a single family residence nearby the apartment complex may remotely monitor and control their thermostat by installing a sensor/actuator transceiver according to the present invention. The transceiver 185 then communicates with the site controller 150 of the apartment complex. If necessary, repeaters (not shown) can also be installed to communicate between the transceiver 185 and the apartment complex site controller 150. Without having the cost of the site controller 150, the neighbor may enjoy the benefits of the control system.



FIG. 11 illustrates an automated monitoring network 1100 according to the present invention for enabling multiple groups of remote devices associated with multiple wireless communication networks to be monitored and/or controlled via a common connection to a wide area network, such as a WAN 120. As illustrated in FIG. 11, automated monitoring network 1100 comprises a primary automated monitoring system, such as automated monitoring system 100, and a secondary wireless communication network 1110 in communication with automated monitoring system 100. Automated monitoring system 100 may operate and be configured as described above.


For example, automated monitoring system 100 may comprise a plurality of remote devices to be monitored and/or controlled, a plurality of communication devices, such as transceivers 125 and 135, a site controller 150, a WAN 120, and a host computer, such as an applications server 110, a laptop 155, or a workstation 160. Each of the plurality of remote devices may be in communication with one of the plurality of communication devices such that a primary wireless communication network is defined within coverage area 165. In this manner, the primary wireless communication network associated with automated monitoring system 100 provides communication between each of the remote devices within coverage area 165 and the site controller 150. Hereinafter, the remote devices associated with automated monitoring system 100 will be referred to as the first group of remote devices.


Secondary wireless communication network 1110 may comprise a second group of remote devices to be monitored and/or controlled and a plurality of communication devices, such as transceivers 125 and 135. Each of the second group of remote devices in secondary wireless communication network 1110 may be in communication with one of the plurality of communication devices such that the secondary wireless communication network 1110 is defined within coverage area 1120. Secondary wireless communication network 1110 may operate and be configured in a manner similar to the primary wireless communication network of automated monitoring system 100. For example, secondary wireless communication network 1110 may employ transceivers 125 and 135 as described above. Secondary wireless communication network 1110 may also employ the communication protocol described above. Nonetheless, one of ordinary skill in the art will appreciate that other transceivers and other communication protocols may be employed.


As illustrated in FIG. 11, automated monitoring system 100 includes one or more site controllers 150 that manage communications with applications server 110 via WAN 120. Significantly, automated monitoring network 1100 according to the present invention enables the secondary wireless communication network 1110 to access WAN 120 via the primary wireless communications network. Thus, the secondary wireless communication network 1110 does not have to use a separate site controller 150 in order to communicate with applications servers 110, laptop 155, workstation 160, or other computing devices connected to WAN 120. Instead, the secondary wireless communication network 1110 may access the site controller 150 in automated monitoring system 100 via the primary wireless communication network. For example, at least one of the communication devices in the secondary wireless communication network 1110 may communicate with at least one of the communication devices in automated monitoring system 100. In this manner, messages may be exchanged between the site controller 150 of the primary wireless communication network and the second group of remote devices, thereby enabling the second group of remote devices to be monitored and/or controlled via the site controller 150 and/or the various computing devices connected to WAN 120.


The transceivers in automated monitoring system 100 and secondary wireless communication network 1110 may be configured to receive data signals from other devices and/or appliances via other wireless technologies, such as Bluetooth and the 802.11 (b) standard adopted by the Institute of Electrical and Electronics Engineers (IEEE), which is hereby incorporated by reference in its entirety. For instance, the transceivers may be configured to implement the technology described in “Specification of the Bluetooth System: Specification Volume 1,” Feb. 22, 2001, which is hereby incorporated by reference in its entirety. In addition, infrared, ultrasonic, and other types of wireless transceivers may be employed as one of ordinary skill in the art will appreciate.


One of ordinary skill in the art will appreciate that automated monitoring network 1100 provides a number of advantages for monitoring and/or controlling remote devices. For example, automated monitoring network 1100 reduces the expense associated with monitoring and/or controlling the second group of remote devices in the secondary wireless communication network 1110. Specifically, the automated monitoring network 1100 according to the present invention eliminates the need for a separate site controller 150 and separate access to WAN 120. Furthermore, automated monitoring network 1100 promotes cooperative relationships between organizations providing remote monitoring.


By way of example, automated monitoring system 100 may be used by an organization to enable customers to monitor and/or control a first group of remote devices. For instance, automated monitoring system 100 may be used to provide individual residences in a managed apartment complex with the ability to remotely monitor and/or control a residential application, such as a residential security system. As described above and illustrated in FIG. 1, in this example automated monitoring system 100 may enable residents of the apartment complex to monitor and/or control the status of their residential security system via a laptop 155, workstation 160, or other computing device in communication with WAN 120.


Automated monitoring network 1100 enables a second group of remote devices associated with secondary wireless communication network 1110 to be monitored and/or controlled without obtaining a separate site controller 150 and separate access to WAN 120. As stated above, the secondary wireless communication network 1110 may access WAN 120 via the primary automated monitoring system 100. For example, in the above example, the second group of remote devices associated with secondary wireless communication network 1110 may be the electric meters for each of the residences in the managed apartment complex. The electric utility company that provides service to the managed apartment complex may desire to provide remote monitoring to the residents. Automated monitoring network 1100 according to the present invention enables the electric utility company to easily provide remote monitoring of the electric meters to the residents.


For instance, the electric utility company does not have to establish an independent automated monitoring system 100. Rather, the electric utility company only needs to establish a secondary wireless communication network 1110 as described above. Each of the electric meters may be communicatively coupled to a wireless transceiver, such as a transceiver 125 and transceiver 135 described above. In order to ensure communication throughout the entire coverage area 1120 of the electric meters associated with the secondary wireless communication network 1110, it may be necessary to implement additional wireless transceivers and/or repeaters as described above. In this manner, the collection of wireless transceivers associated with the electric meters defines the secondary wireless communication network 1110. As mentioned above, secondary wireless communication network 1110 may operate and be configured in a manner similar to the primary wireless communication network of automated monitoring system 100.


Given the existence of the secondary wireless communication network 1110, the electric utility company may provide remote monitoring of the electric meters to the residents via the automated monitoring system 100 for monitoring and/or controlling the residential security systems. The only requirement is that at least one of the wireless transceivers associated with the electric meters is in communication with at least one of the wireless transceivers associated with the residential security systems. Data messages related to the secondary wireless communication system 1110 may be passed through the primary wireless communication network to the site controller 150 and on to applications server 110 via WAN 120, thereby enabling the electric meters to be monitored and/or controlled via the site controller 150 and/or the various computing devices connected to WAN 120.


One of ordinary skill in the art will appreciate that the secondary wireless communication network 1110 and the automated monitoring system 100 may employ any of a variety of types of remote devices. Accordingly, the specific needs of the secondary wireless communication network 1110 and the automated monitoring system 100 may differ. For example, secondary wireless communication network 1110 and the automated monitoring system 100 may differ only in the type of devices being monitored and/or controlled. As in the above example of one of many possible embodiments, coverage area 165 of automated monitoring system 100 and coverage area 1120 of secondary wireless communication network 1110 may be substantially overlapping. However, in other embodiments of automated monitoring network 1100, coverage area 165 and coverage area 1120 only have to overlap such that at least one transceiver from both secondary wireless communication network 1110 and automated monitoring system 100 communicate.


One of ordinary skill in the art will appreciate that what has been described herein is a very top-level illustration of a system constructed in accordance with the automated monitoring system 100 and the automated monitoring network 1100 of the present invention. In accordance with the invention, a variety of remote devices, such as utility meter devices, personal security devices, household devices and appliances, and other remote devices employing a sensor and/or an actuator, may be monitored and/or controlled from a remote location via a computing device connected to WAN 120. The data and command transmissions may be transmitted and received by the site controller 150 connected to WAN 120. Site controller 150 is further in communication with the wireless communication devices within coverage area 165. The data and command transmissions may be relayed via the various wireless communication devices defining the communication path until they reach a designated destination or the site controller 150.


It will be further appreciated that automated monitoring system 100 in accordance with the present invention may be used in a variety of environments. In one embodiment, automated monitoring system 100 may be employed to monitor and record utility usage by residential and industrial customers, to transfer vehicle diagnostics from an automobile via a wireless transceiver integrated with the vehicle diagnostics bus to a local transceiver that further transmits the vehicle information through a local gateway onto a WAN, to monitor and control an irrigation system, to automate a parking facility, to monitor and control a residential security system, etc, which are described in more detail in the commonly assigned U.S. patent application entitled, “System and Method for Monitoring and Controlling Residential Devices,” issued Ser. No. 09/704,150.


Automated monitoring system 100 may be adapted to monitor and apply control signals in an unlimited number of applications. By way of example only, the wireless communication devices may be adapted for use with any associated device, such as, for example, pay type publicly located telephones, cable television set top boxes, utility meters, and residential appliances and/or devices to enable a remote controllable home automation and security system.


In a geographic area appropriately networked with permanently located stand-alone transceivers 125, personal transceivers (not shown) may be used to monitor and control personnel access and egress from specific rooms or portions thereof within a controlled facility. Personal transceivers may further be configured to transfer personal information to public emergency response personnel, to transfer personal billing information to vending machines, or to monitor individuals within an assisted living community.


Wireless communication devices using the open data packet protocol of the present invention may be integrated to monitor and control a host of industrial and business applications as well. By way of example only, building automation systems, fire control systems, alarm systems, industrial trash compactors, and building elevators may be monitored and controlled. In addition, courier drop boxes, time clock systems, automated teller machines, self-service copy machines, and other self-service devices may be monitored and controlled as appropriate. By way of further example, a number of environment variables that require monitoring may be integrated with automated monitoring system 100 to permit remote monitoring and control. For instance, light levels in the area adjacent to automated teller machines must meet minimum federal standards. Also, the water volume transferred by water treatment plant pumps, smokestack emissions from a coal burning power plant, or a coke fueled steel plant oven may be remotely monitored.


The wireless communication devices using the open data packet protocol of the present invention may be further integrated with a voice-band transceiver having multiple function buttons. As a result, when a person presses, for example, the emergency button on his/her transmitter, medical personnel, staff members, or others may respond by communicating via two-way radio with the party in distress. In this regard, each transceiver may be equipped with a microphone and a speaker that would allow a person to communicate information such as their present emergency situation, their specific location, etc.


The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, it should be appreciated that, in some implementations, the transceiver unique address is not necessary to identify the location of the transceiver. Indeed, in implementations where the transceiver is permanently integrated into an alarm sensor other stationary device within a system, then the applications server 110 and/or the site controller 150 may be configured to identify the transmitter location by the transmitter unique address alone. It will be appreciated that, in embodiments that do not utilize wireless transceiver/repeaters 125, the wireless transmitters 145 and/or wireless transceivers 135 may be configured to transmit at a higher power level, in order to effectively communicate with the site controller 150.


The embodiment or embodiments discussed were chosen and described to illustrate the principles of the invention and its practical application to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.

Claims
  • 1. A wireless communication network adapted for use in an automated monitoring system for monitoring and controlling a plurality of remote devices via a host computer connected to a wide area network, the wireless communication network comprising: a plurality of wireless transceivers having unique identifiers, each of the plurality of wireless transceivers configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol, the original data message comprising the corresponding unique identifier and sensor data signal, and further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal and the corresponding unique identifier; anda site controller in communication with at least one of the plurality of wireless transceivers, the site controller configured to receive the original data messages and the repeated data messages, identify the remote device associated with the corresponding sensor data signal, and provide information related to the sensor data signal to the wide area network for delivery to the host computer.
  • 2. The wireless communication network of claim 1, further comprising a plurality of repeaters having unique identifiers, each of the plurality of repeaters in communication with at least one of the plurality of wireless transceivers and configured to receive the original data message transmitted by the at least one of the plurality of wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal from the original data message and the unique identifier corresponding to the repeater.
  • 3. The wireless communication network of claim 1, wherein the site controller is further configured to provide a command message to one of the plurality of wireless transceivers and each of the plurality of wireless transceivers are further configured to transmit, in response to the command message, the original data message, wherein the original data message corresponds to the command message.
  • 4. The wireless communication network of claim 1, wherein the predefined communication protocol comprises a data packet comprising: a receiver address identifying the receiver of the data packet;a sender address identifying the sender of the data packet; anda command indicator specifying a predefined command code.
  • 5. The wireless communication network of claim 4, wherein the data packet further comprises: a packet length indicator which indicates a total number of bytes in the current packet;a total packet indicator which indicates the total number of packets in the current message;a current packet indicator which identifies the current packet; anda message number identifying the current message.
  • 6. The wireless communication network of claim 1, wherein the plurality of wireless transceivers are further configured to receive signals via Bluetooth technology.
  • 7. The wireless communication network of claim 1, wherein the plurality of wireless transceivers are further configured to receive signals via IEEE standard 802.11(b).
  • 8. A wireless communication network adapted for use in an automated monitoring system for monitoring and controlling a plurality of remote devices via a host computer connected to a wide area network, the wireless communication network comprising: a plurality of wireless communication means having unique identifiers, each of the plurality of wireless communication means configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol, the original data message comprising the corresponding unique identifier and sensor data signal, and further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal and the corresponding unique identifier;a means for receiving each of the original data messages and the repeated data messages;a means for identifying, for each received message, the remote device associated with the corresponding sensor data signal; anda means for providing information related to the sensor data signal to the wide area network for delivery to the host computer.
  • 9. The wireless communication network of claim 8, further comprising a plurality of repeating means having unique identifiers, each of the plurality of repeating means in communication with at least one of the plurality of wireless communication means and comprising a means for receiving the original data message transmitted by the at least one of the plurality of wireless transceivers and a means for transmitting a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal from the original data message and the unique identifier corresponding to the repeater.
  • 10. The wireless communication network of claim 8, further comprising a means for providing a command message to one of the plurality of wireless communication means, wherein each of the wireless communication means further comprise a means for transmitting, in response to the command message, the original data message, wherein the original data message corresponds to the command message.
  • 11. The wireless communication network of claim 8, wherein the predefined communication protocol comprises a data packet comprising: a means for identifying the receiver of the data packet;a means for identifying the sender of the data packet; anda command means for specifying a predefined command code.
  • 12. The wireless communication network of claim 11, wherein the data packet further comprises: a means for indicating a total number of bytes in the current packet;a means for indicating the total number of packets in the current message;a means for identifying the current packet; anda means for identifying the current message.
  • 13. A wireless communication network for monitoring and controlling a plurality of remote devices via a host computer connected to a wide area network, the wireless communication network comprising: a plurality of wireless transceivers having unique identifiers, each of the plurality of wireless transceivers configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol, the original data message comprising the corresponding unique identifier and sensor data signal, and further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal and the corresponding unique identifier;wherein at least one of the plurality of wireless transceivers is further configured to provide the original data messages and the repeated data messages to a site controller connected to the wide area network.
  • 14. The wireless communication network of claim 13, further comprising a plurality of repeaters having unique identifiers, each of the plurality of repeaters in communication with at least one of the plurality of wireless transceivers and configured to receive the original data message transmitted by the at least one of the plurality of wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal from the original data message and the unique identifier corresponding to the repeater.
  • 15. The wireless communication network of claim 13, wherein the at least one of the plurality of wireless transceivers is further configured to receive a command message for one of the plurality of wireless transceivers from the site controller and transmit the command message to the one of the plurality of wireless transceivers.
  • 16. The wireless communication network of claim 13, wherein the predefined communication protocol comprises a data packet comprising: a receiver address identifying the receiver of the data packet;a sender address identifying the sender of the data packet; anda command indicator specifying a predefined command code.
  • 17. The wireless communication network of claim 16, wherein the data packet further comprises: a packet length indicator which indicates a total number of bytes in the current packet;a total packet indicator which indicates the total number of packets in the current message; anda current packet indicator which identifies the current packet; anda message number identifying the current message.
  • 18. The wireless communication network of claim 13, wherein the plurality of wireless transceivers are further configured to receive signals via Bluetooth technology.
  • 19. The wireless communication network of claim 13, wherein the plurality of wireless transceivers are further configured to receive signals via IEEE standard 802.11(b).
  • 20. A wireless communication network for monitoring and controlling a plurality of remote devices via a host computer connected to a wide area network, the wireless communication network comprising: a plurality of wireless transceivers having unique identifiers, each of the plurality of wireless transceivers configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol, the original data message comprising the corresponding unique identifier and sensor data signal, and further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal and the corresponding unique identifier;wherein at least one of the plurality of wireless transceivers is further configured to provide the original data messages and the repeated data messages to a primary wireless communication network associated with an automated monitoring system.
  • 21. The wireless communication network of claim 20, further comprising a plurality of repeaters having unique identifiers, each of the plurality of repeaters in communication with at least one of the plurality of wireless transceivers and configured to receive the original data message transmitted by the at least one of the plurality of wireless transceivers and transmit a repeated data message using the predefined communication protocol, the repeated data message including the sensor data signal from the original data message and the unique identifier corresponding to the repeater.
  • 22. The wireless communication network of claim 20, wherein the at least one of the plurality of wireless transceivers is further configured to receive a command message for one of the plurality of wireless transceivers from the primary wireless communication network and transmit the command message to the one of the plurality of wireless transceivers.
  • 23. The wireless communication network of claim 20, wherein the predefined communication protocol comprises a data packet comprising: a receiver address identifying the receiver of the data packet;a sender address identifying the sender of the data packet; anda command indicator specifying a predefined command code.
  • 24. The wireless communication network of claim 23, wherein the data packet further comprises: a packet length indicator which indicates a total number of bytes in the current packet;a total packet indicator which indicates the total number of packets in the current message;a current packet indicator which identifies the current packet; anda message number identifying the current message.
  • 25. The wireless communication network of claim 20, wherein the plurality of wireless transceivers are further configured to receive signals via Bluetooth technology.
  • 26. The wireless communication network of claim 20, wherein the plurality of wireless transceivers are further configured to receive signals via IEEE standard 802.11(b).
  • 27. A method for enabling customers to monitor remote devices via a wide area network (WAN), the method comprising the steps of: establishing a wireless communication network that enables each of a plurality of customers to monitor at least one remote device via a wide area network, the wireless communication network comprising: a plurality of wireless transceivers each integrated with one of the plurality of remote devices and having a unique identifier and configured to receive a sensor data signal from the remote device and transmit an original data message using a predefined wireless communication protocol, the original data message comprising the corresponding unique identifier for the originating wireless transceiver, each wireless transceiver further configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data messaging using the predefined communication protocol, the repeated data message including the original sensor data signal and the corresponding unique identifiers for the originating wireless transceiver and the repeating wireless transceiver; anda site controller in communication with at least one of the plurality of wireless transceivers, the site controller configured to receive the original data messages and the repeated data messages, identify the remote device associated with the corresponding sensor data signal, and provide information related to the sensor data signal to a WAN for delivery to a host computer; andproviding an organization access to the wireless communication network.
  • 28. The method of claim 27, further comprising the step of receiving compensation for providing the organization access to the wireless communication network.
  • 29. The method of claim 28, wherein the step of providing the organization access to the wireless communication network comprises enabling at least one remote device corresponding to a customer of the organization to communicate with the wireless communication network so that the remote device may be monitored via the WAN.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of the following U.S. utility patent applications: U.S. patent application Ser. No. 09/812,809, filed Mar. 20, 2001 now abandoned, and entitled “System and Method for Monitoring the Light Level in a Lighted Area,” which is a continuation-in-part of U.S. patent application Ser. No. 09/412,895, filed Oct. 5, 1999 now U.S. Pat. No. 6,218,953, and entitled, “System and Method for Monitoring the Light Level Around an ATM,” which is a continuation-in-part of U.S. patent application Ser. No. 09/172,554, filed Oct. 14, 1998 now U.S. Pat. No. 6,028,522, and entitled “System for Monitoring the Light Level Around an ATM;” U.S. patent application Ser. No. 09/271,517, filed Mar. 18, 1999 now abandoned, and entitled, “System For Monitoring Conditions in a Residential Living Community;” and U.S. patent application Ser. No. 09/439,059, filed Nov. 12, 1999 now U.S. Pat. No. 6,437,692, and entitled, “System and Method for Monitoring and Controlling Remote Devices.” Each of the identified U.S. patent applications is incorporated herein by reference in its entirety.

US Referenced Citations (517)
Number Name Date Kind
3665475 Gram May 1972 A
3705385 Batz Dec 1972 A
3723876 Seaborn, Jr. Mar 1973 A
3742142 Martin Jun 1973 A
3848231 Wooten Nov 1974 A
3892948 Constable Jul 1975 A
3906460 Halpern Sep 1975 A
3914692 Seaborn, Jr. Oct 1975 A
3922492 Lumsden Nov 1975 A
3925763 Wadwhani et al. Dec 1975 A
4025315 Mazelli May 1977 A
4056684 Lindstrom Nov 1977 A
4083003 Haemmig Apr 1978 A
4120452 Kimura et al. Oct 1978 A
4124839 Cohen Nov 1978 A
4135181 Bogacki et al. Jan 1979 A
4204195 Bogacki May 1980 A
4213119 Ward et al. Jul 1980 A
4277837 Stuckert Jul 1981 A
4354181 Spletzer Oct 1982 A
4396910 Enemark et al. Aug 1983 A
4396915 Farnsworth et al. Aug 1983 A
4417450 Morgan, Jr. et al. Nov 1983 A
4436957 Mazza Mar 1984 A
4446454 Pyle May 1984 A
4454414 Benton Jun 1984 A
4468656 Clifford et al. Aug 1984 A
4488152 Arnason et al. Dec 1984 A
4495496 Miller, III Jan 1985 A
4551719 Carlin et al. Nov 1985 A
4605844 Haggan Aug 1986 A
4611198 Levinson et al. Sep 1986 A
4621263 Takenaka et al. Nov 1986 A
4630035 Stahl et al. Dec 1986 A
4631357 Grunig Dec 1986 A
4670739 Kelly, Jr. Jun 1987 A
4707852 Jahr et al. Nov 1987 A
4731810 Watkins Mar 1988 A
4742296 Petr et al. May 1988 A
4757185 Onishi Jul 1988 A
4800543 Lyndon-James et al. Jan 1989 A
4825457 Lebowitz Apr 1989 A
4829561 Matheny May 1989 A
4849815 Streck Jul 1989 A
4851654 Nitta Jul 1989 A
4856046 Steck et al. Aug 1989 A
4857912 Everett, Jr. et al. Aug 1989 A
4875231 Hara et al. Oct 1989 A
4884132 Morris et al. Nov 1989 A
4897644 Hirano Jan 1990 A
4906828 Halpern Mar 1990 A
4908769 Vaughan et al. Mar 1990 A
4918690 Markkula, Jr. et al. Apr 1990 A
4918995 Pearman et al. Apr 1990 A
4928299 Tansky et al. May 1990 A
4940976 Gastouniotis et al. Jul 1990 A
4949077 Mbuthia Aug 1990 A
4952928 Carroll et al. Aug 1990 A
4962496 Vercellotti et al. Oct 1990 A
4967366 Kaehler Oct 1990 A
4968970 LaPorte Nov 1990 A
4968978 Stolarczyk Nov 1990 A
4972504 Daniel, Jr. et al. Nov 1990 A
4973957 Shimizu et al. Nov 1990 A
4973970 Reeser Nov 1990 A
4977612 Wilson Dec 1990 A
4980907 Raith et al. Dec 1990 A
4989230 Gillig et al. Jan 1991 A
4991008 Nama Feb 1991 A
4998095 Shields Mar 1991 A
4999607 Evans Mar 1991 A
5032833 Laporte Jul 1991 A
5038372 Elms et al. Aug 1991 A
5055851 Sheffer Oct 1991 A
5057814 Onan et al. Oct 1991 A
5061997 Rea et al. Oct 1991 A
5086391 Chambers Feb 1992 A
5091713 Horne et al. Feb 1992 A
5111199 Tomoda et al. May 1992 A
5113183 Mizuno et al. May 1992 A
5113184 Katayama May 1992 A
5115224 Kostusiak et al. May 1992 A
5115433 Baran et al. May 1992 A
5124624 de Vries et al. Jun 1992 A
5128855 Hilber et al. Jul 1992 A
5130519 Bush et al. Jul 1992 A
5131038 Puhl et al. Jul 1992 A
5134650 Blackmon Jul 1992 A
5136285 Okuyama Aug 1992 A
5155481 Brennan, Jr. et al. Oct 1992 A
5159317 Brav Oct 1992 A
5162776 Bushnell et al. Nov 1992 A
5177342 Adams Jan 1993 A
5189287 Parienti Feb 1993 A
5191192 Takahira et al. Mar 1993 A
5191326 Montgomery Mar 1993 A
5193111 Matty et al. Mar 1993 A
5195018 Kwon et al. Mar 1993 A
5197095 Bonnet et al. Mar 1993 A
5200735 Hines Apr 1993 A
5204670 Stinton Apr 1993 A
5212645 Wildes et al. May 1993 A
5216502 Katz Jun 1993 A
5221838 Gutman et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5231658 Eftechiou Jul 1993 A
5235630 Moody et al. Aug 1993 A
5239575 White et al. Aug 1993 A
5241410 Streck et al. Aug 1993 A
5243338 Brennan, Jr. et al. Sep 1993 A
5245633 Schwartz et al. Sep 1993 A
5252967 Brennan et al. Oct 1993 A
5253167 Yoshida et al. Oct 1993 A
5265150 Heimkamp et al. Nov 1993 A
5265162 Bush et al. Nov 1993 A
5266782 Alanara et al. Nov 1993 A
5272747 Meads Dec 1993 A
5282204 Shpancer et al. Jan 1994 A
5282250 Dent et al. Jan 1994 A
5289165 Belin Feb 1994 A
5295154 Meier et al. Mar 1994 A
5305370 Kearns et al. Apr 1994 A
5315645 Matheny May 1994 A
5317309 Vercellotti et al. May 1994 A
5319364 Waraksa et al. Jun 1994 A
5319698 Glidewell et al. Jun 1994 A
5319711 Servi Jun 1994 A
5323384 Norwood et al. Jun 1994 A
5325429 Kurgan Jun 1994 A
5331318 Montgomery Jul 1994 A
5334974 Simms et al. Aug 1994 A
5343493 Karimullah Aug 1994 A
5345231 Koo et al. Sep 1994 A
5347263 Carroll et al. Sep 1994 A
5354974 Eisenberg Oct 1994 A
5355513 Clarke et al. Oct 1994 A
5365217 Toner Nov 1994 A
5371736 Evan Dec 1994 A
5382778 Takahira et al. Jan 1995 A
5383134 Wrzesinski Jan 1995 A
5406619 Akhteruzzman et al. Apr 1995 A
5412192 Hoss May 1995 A
5412760 Peitz May 1995 A
5416475 Tolbert et al. May 1995 A
5416725 Pacheco et al. May 1995 A
5418812 Reyes et al. May 1995 A
5424708 Ballesty et al. Jun 1995 A
5432507 Mussino et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5439414 Jacob Aug 1995 A
5442553 Parrillo Aug 1995 A
5445287 Center et al. Aug 1995 A
5451929 Adelman et al. Sep 1995 A
5451938 Brennan, Jr. Sep 1995 A
5452344 Larson Sep 1995 A
5465401 Thompson Nov 1995 A
5467074 Pedtke Nov 1995 A
5467082 Sanderson Nov 1995 A
5467345 Cutler et al. Nov 1995 A
5468948 Koenck et al. Nov 1995 A
5471201 Cerami et al. Nov 1995 A
5473322 Carney Dec 1995 A
5475689 Kay et al. Dec 1995 A
5481259 Bane Jan 1996 A
5484997 Haynes Jan 1996 A
5493273 Smurlo et al. Feb 1996 A
5493287 Bane Feb 1996 A
5506837 Sollner et al. Apr 1996 A
5509073 Monnin Apr 1996 A
5513244 Joao et al. Apr 1996 A
5515419 Sheffer May 1996 A
5517188 Carroll et al. May 1996 A
5522089 Kikinis et al. May 1996 A
5528215 Siu et al. Jun 1996 A
5539825 Akiyama et al. Jul 1996 A
5541938 Di Zenzo et al. Jul 1996 A
5542100 Hatakeyama Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5544784 Malaspina Aug 1996 A
5548632 Walsh et al. Aug 1996 A
5550358 Tait et al. Aug 1996 A
5550359 Bennett Aug 1996 A
5550535 Park Aug 1996 A
5553094 Johnson et al. Sep 1996 A
5555258 Snelling et al. Sep 1996 A
5555286 Tendler Sep 1996 A
5562537 Zver et al. Oct 1996 A
5565857 Lee Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5573181 Ahmed Nov 1996 A
5574111 Brichta et al. Nov 1996 A
5583850 Snodgrass et al. Dec 1996 A
5587705 Morris Dec 1996 A
5589878 Cortjens et al. Dec 1996 A
5590038 Pitroda Dec 1996 A
5590179 Shincovich et al. Dec 1996 A
5592491 Dinks Jan 1997 A
5594431 Sheppard et al. Jan 1997 A
5602843 Gray Feb 1997 A
5604414 Milligan et al. Feb 1997 A
5604869 Mincher et al. Feb 1997 A
5606361 Davidsohn et al. Feb 1997 A
5608786 Gordon Mar 1997 A
5613620 Center et al. Mar 1997 A
5615277 Hoffman Mar 1997 A
5619192 Ayala Apr 1997 A
5625410 Washino et al. Apr 1997 A
5628050 McGraw et al. May 1997 A
5629687 Sutton et al. May 1997 A
5629875 Adair, Jr. May 1997 A
5630209 Wizgall et al. May 1997 A
5631554 Briese et al. May 1997 A
5644294 Ness Jul 1997 A
5655219 Jusa et al. Aug 1997 A
5657389 Houvener Aug 1997 A
5659300 Dresselhuys et al. Aug 1997 A
5659303 Adair, Jr. Aug 1997 A
5668876 Falk et al. Sep 1997 A
5673252 Johnson et al. Sep 1997 A
5673304 Connor et al. Sep 1997 A
5673305 Ross Sep 1997 A
5682139 Pradeep et al. Oct 1997 A
5682476 Tapperson et al. Oct 1997 A
5689229 Chaco et al. Nov 1997 A
5699328 Ishizaki et al. Dec 1997 A
5701002 Oishi et al. Dec 1997 A
5704046 Hogan Dec 1997 A
5704517 Lancaster, Jr. Jan 1998 A
5706191 Bassett et al. Jan 1998 A
5706976 Purkey Jan 1998 A
5708223 Wyss Jan 1998 A
5708655 Toth Jan 1998 A
5712619 Simkin Jan 1998 A
5712980 Beeler et al. Jan 1998 A
5714931 Petite et al. Feb 1998 A
5717718 Roswell et al. Feb 1998 A
5726634 Hess et al. Mar 1998 A
5726984 Kubler et al. Mar 1998 A
5732074 Spaur et al. Mar 1998 A
5732078 Arango Mar 1998 A
5736965 Mosebrook et al. Apr 1998 A
5740232 Pailles et al. Apr 1998 A
5742509 Goldberg et al. Apr 1998 A
5745849 Britton Apr 1998 A
5748104 Argyroudis et al. May 1998 A
5748619 Meier May 1998 A
5754111 Garcia May 1998 A
5754227 Fukuoka May 1998 A
5757783 Eng et al. May 1998 A
5757788 Tatsumi et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764742 Howard et al. Jun 1998 A
5771274 Harris Jun 1998 A
5774052 Hamm et al. Jun 1998 A
5781143 Rossin Jul 1998 A
5790644 Kikinis Aug 1998 A
5790662 Valerij et al. Aug 1998 A
5790938 Talarmo Aug 1998 A
5796727 Harrison et al. Aug 1998 A
5798964 Shimizu et al. Aug 1998 A
5801643 Williams et al. Sep 1998 A
5815505 Mills Sep 1998 A
5818822 Thomas et al. Oct 1998 A
5822273 Bary et al. Oct 1998 A
5822544 Chaco et al. Oct 1998 A
5826195 Westerlage et al. Oct 1998 A
5828044 Jun et al. Oct 1998 A
5832057 Furman Nov 1998 A
5838223 Gallant et al. Nov 1998 A
5838237 Revell et al. Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5841118 East et al. Nov 1998 A
5841764 Roderique et al. Nov 1998 A
5842976 Williamson Dec 1998 A
5844808 Konsmo et al. Dec 1998 A
5845230 Lamberson Dec 1998 A
5852658 Knight et al. Dec 1998 A
5854994 Canada et al. Dec 1998 A
5862201 Sands Jan 1999 A
5864772 Alvarado et al. Jan 1999 A
5873043 Comer Feb 1999 A
5874903 Shuey et al. Feb 1999 A
5880677 Lestician Mar 1999 A
5884184 Sheffer Mar 1999 A
5884271 Pitroda Mar 1999 A
5886333 Miyake Mar 1999 A
5889468 Banga Mar 1999 A
5892690 Boatman et al. Apr 1999 A
5892758 Argyroudis Apr 1999 A
5892924 Lyon et al. Apr 1999 A
5896097 Cardozo Apr 1999 A
5897607 Jenney et al. Apr 1999 A
5898369 Godwin Apr 1999 A
5905438 Weiss et al. May 1999 A
5907291 Chen et al. May 1999 A
5907491 Canada et al. May 1999 A
5907540 Hayashi May 1999 A
5907807 Chavez, Jr. et al. May 1999 A
5914672 Glorioso et al. Jun 1999 A
5914673 Jennings et al. Jun 1999 A
5917405 Joao Jun 1999 A
5917629 Hortensius et al. Jun 1999 A
5923269 Shuey et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926529 Hache et al. Jul 1999 A
5926531 Petite Jul 1999 A
5933073 Shuey Aug 1999 A
5941363 Partyka et al. Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5949779 Mostafa et al. Sep 1999 A
5949799 Grivna et al. Sep 1999 A
5953371 Roswell et al. Sep 1999 A
5955718 Levasseur et al. Sep 1999 A
5960074 Clark Sep 1999 A
5963146 Johnson et al. Oct 1999 A
5963452 Etoh et al. Oct 1999 A
5963650 Simionescu et al. Oct 1999 A
5969608 Sojdehei et al. Oct 1999 A
5973756 Erlin Oct 1999 A
5978364 Melnik Nov 1999 A
5978371 Mason, Jr. et al. Nov 1999 A
5986574 Colton Nov 1999 A
5987421 Chuang Nov 1999 A
5991639 Rautiola et al. Nov 1999 A
5994892 Turino et al. Nov 1999 A
5995592 Shirai et al. Nov 1999 A
5995593 Cho Nov 1999 A
5997170 Brodbeck Dec 1999 A
5999094 Nilssen Dec 1999 A
6005759 Hart et al. Dec 1999 A
6005963 Bolle et al. Dec 1999 A
6021664 Granato et al. Feb 2000 A
6023223 Baxter, Jr. Feb 2000 A
6028522 Petite Feb 2000 A
6028857 Poor Feb 2000 A
6031455 Grube et al. Feb 2000 A
6032197 Birdwell et al. Feb 2000 A
6035266 Williams et al. Mar 2000 A
6036086 Sizer, II et al. Mar 2000 A
6038491 McGarry et al. Mar 2000 A
6044062 Brownrigg et al. Mar 2000 A
6054920 Smith et al. Apr 2000 A
6060994 Chen May 2000 A
6061604 Russ et al. May 2000 A
6064318 Kirchner, III et al. May 2000 A
6067030 Burnett et al. May 2000 A
6069886 Ayerst et al. May 2000 A
6073169 Shuey et al. Jun 2000 A
6073266 Ahmed et al. Jun 2000 A
6073840 Marion Jun 2000 A
6075451 Lebowitz et al. Jun 2000 A
6087957 Gray Jul 2000 A
6088659 Kelley et al. Jul 2000 A
6094622 Hubbard et al. Jul 2000 A
6100817 Mason et al. Aug 2000 A
6101427 Yang Aug 2000 A
6101445 Alvarado et al. Aug 2000 A
6112983 D'Anniballe et al. Sep 2000 A
6119076 Williams et al. Sep 2000 A
6121593 Mansbery et al. Sep 2000 A
6121885 Masone et al. Sep 2000 A
6124806 Cunningham et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128551 Davis et al. Oct 2000 A
6130622 Hussey et al. Oct 2000 A
6133850 Moore Oct 2000 A
6137423 Glorioso et al. Oct 2000 A
6140975 Cohen Oct 2000 A
6141347 Shaughnessy et al. Oct 2000 A
6150936 Addy Nov 2000 A
6150955 Tracy et al. Nov 2000 A
6157464 Bloomfield et al. Dec 2000 A
6157824 Bailey Dec 2000 A
6163276 Irving et al. Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6174205 Madsen et al. Jan 2001 B1
6175922 Wang Jan 2001 B1
6177883 Jennetti et al. Jan 2001 B1
6181255 Crimmins et al. Jan 2001 B1
6181284 Madsen et al. Jan 2001 B1
6181981 Varga et al. Jan 2001 B1
6188354 Soliman et al. Feb 2001 B1
6192390 Berger et al. Feb 2001 B1
6198390 Schlager et al. Mar 2001 B1
6199068 Carpenter Mar 2001 B1
6208266 Lyons et al. Mar 2001 B1
6215404 Morales Apr 2001 B1
6218953 Petite Apr 2001 B1
6218983 Kerry et al. Apr 2001 B1
6219409 Smith et al. Apr 2001 B1
6229439 Tice May 2001 B1
6233327 Petite May 2001 B1
6234111 Ulman et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6243010 Addy et al. Jun 2001 B1
6246677 Nap et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6286756 Stinson et al. Sep 2001 B1
6288634 Weiss et al. Sep 2001 B1
6288641 Casais Sep 2001 B1
6295291 Larkins Sep 2001 B1
6301514 Canada et al. Oct 2001 B1
6305602 Grabowski et al. Oct 2001 B1
6308111 Koga Oct 2001 B1
6311167 Davis et al. Oct 2001 B1
6314169 Schelberg, Jr. et al. Nov 2001 B1
6317029 Fleeter Nov 2001 B1
6334117 Covert et al. Dec 2001 B1
6351223 DeWeerd et al. Feb 2002 B1
6356205 Salvo et al. Mar 2002 B1
6357034 Muller et al. Mar 2002 B1
6362745 Davis Mar 2002 B1
6363057 Ardalan et al. Mar 2002 B1
6366217 Cunningham et al. Apr 2002 B1
6369769 Nap et al. Apr 2002 B1
6370489 Williams et al. Apr 2002 B1
6373399 Johnson et al. Apr 2002 B1
6380851 Gilbert et al. Apr 2002 B1
6384722 Williams May 2002 B1
6393341 Lawrence et al. May 2002 B1
6393381 Williams et al. May 2002 B1
6393382 Williams et al. May 2002 B1
6396839 Ardalan et al. May 2002 B1
6400819 Nakano et al. Jun 2002 B1
6401081 Montgomery et al. Jun 2002 B1
6411889 Mizunuma et al. Jun 2002 B1
6415245 Williams et al. Jul 2002 B1
6422464 Terranova Jul 2002 B1
6424270 Ali Jul 2002 B1
6424931 Sigmar et al. Jul 2002 B1
6430268 Petite Aug 2002 B1
6431439 Suer et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6438575 Khan et al. Aug 2002 B1
6445291 Addy et al. Sep 2002 B1
6456960 Williams et al. Sep 2002 B1
6457038 Defosse Sep 2002 B1
6462644 Howell et al. Oct 2002 B1
6462672 Besson Oct 2002 B1
6477558 Irving et al. Nov 2002 B1
6483290 Hemminger et al. Nov 2002 B1
6484939 Blaeuer Nov 2002 B1
6489884 Lamberson et al. Dec 2002 B1
6491828 Sivavec et al. Dec 2002 B1
6492910 Ragle et al. Dec 2002 B1
6504357 Hemminger et al. Jan 2003 B1
6507794 Hubbard et al. Jan 2003 B1
6509722 Lopata Jan 2003 B1
6519568 Harvey et al. Feb 2003 B1
6538577 Ehrke et al. Mar 2003 B1
6542076 Joao Apr 2003 B1
6542077 Joao Apr 2003 B1
6543690 Leydier et al. Apr 2003 B1
6560223 Egan et al. May 2003 B1
6574603 Dickson et al. Jun 2003 B1
6600726 Nevo et al. Jul 2003 B1
6608551 Anderson et al. Aug 2003 B1
6618578 Petite Sep 2003 B1
6618709 Sneeringer Sep 2003 B1
6628764 Petite Sep 2003 B1
6628965 LaRosa et al. Sep 2003 B1
6653945 Johnson et al. Nov 2003 B1
6671586 Davis et al. Dec 2003 B1
6674403 Gray et al. Jan 2004 B1
6678255 Kuriyan Jan 2004 B1
6678285 Garg Jan 2004 B1
6731201 Bailey et al. May 2004 B1
6735630 Gelvin et al. May 2004 B1
6747557 Petite et al. Jun 2004 B1
6771981 Zalewski et al. Aug 2004 B1
6891838 Petite May 2005 B1
6914533 Petite Jul 2005 B1
6914893 Petite Jul 2005 B1
6959550 Freeman et al. Nov 2005 B1
20010002210 Petite May 2001 A1
20010003479 Fujiwara Jun 2001 A1
20010021646 Antonucci et al. Sep 2001 A1
20010024163 Petite Sep 2001 A1
20010034223 Rieser et al. Oct 2001 A1
20010038343 Meyer et al. Nov 2001 A1
20020002444 Williams et al. Jan 2002 A1
20020012323 Petite et al. Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020019725 Petite Feb 2002 A1
20020027504 Petite Mar 2002 A1
20020031101 Petite Mar 2002 A1
20020032746 Lazaridis Mar 2002 A1
20020072348 Wheeler et al. Jun 2002 A1
20020089428 Walden et al. Jul 2002 A1
20020095399 Devine et al. Jul 2002 A1
20020098858 Struhsaker Jul 2002 A1
20020109607 Cumeralto et al. Aug 2002 A1
20020158774 Johnson et al. Oct 2002 A1
20020163442 Fischer Nov 2002 A1
20020169643 Petite Nov 2002 A1
20020193144 Belski et al. Dec 2002 A1
20030001754 Johnson et al. Jan 2003 A1
20030028632 Davis Feb 2003 A1
20030030926 Aguren et al. Feb 2003 A1
20030034900 Han Feb 2003 A1
20030036822 Davis et al. Feb 2003 A1
20030046377 Daum et al. Mar 2003 A1
20030058818 Wilkes et al. Mar 2003 A1
20030069002 Hunter et al. Apr 2003 A1
20030078029 Petite Apr 2003 A1
20030093484 Petite May 2003 A1
20030133473 Manis et al. Jul 2003 A1
20030169710 Fan et al. Sep 2003 A1
20030210638 Yoo Nov 2003 A1
20040053639 Petite Mar 2004 A1
20040183687 Petite Sep 2004 A1
20050190055 Petite Sep 2005 A1
20050195768 Petite Sep 2005 A1
20050195775 Petite Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050243867 Petite Nov 2005 A1
Foreign Referenced Citations (41)
Number Date Country
0718954 Jun 1996 EP
07144 Feb 1998 EP
1096454 May 2001 EP
2817110 May 2002 FR
002052521 Jul 2002 FR
2229302 Sep 1990 GB
2247761 Mar 1992 GB
2262683 Jun 1993 GB
2297663 Aug 1996 GB
2310779 Sep 1997 GB
2326002 Dec 1998 GB
2336272 Oct 1999 GB
2352004 Jan 2001 GB
2352590 Jan 2001 GB
60261288 Dec 1985 JP
01255100 Oct 1989 JP
11353573 Dec 1999 JP
200113590 Apr 2000 JP
2001063425 Mar 2001 JP
2001088401 Apr 2001 JP
2001309069 Nov 2001 JP
2001319284 Nov 2001 JP
2001357483 Dec 2001 JP
2002007672 Jan 2002 JP
2002007826 Jan 2002 JP
2002085354 Mar 2002 JP
2002171354 Jun 2002 JP
2001025431 Apr 2001 KR
03021877 Mar 2003 NO
WO 9013197 Nov 1990 WO
WO 9800056 Jan 1998 WO
WO 9837528 Aug 1998 WO
WO 9913426 Mar 1999 WO
WO 0115114 Aug 2000 WO
WO 0124109 Apr 2001 WO
WO 0208725 Jan 2002 WO
WO 0208866 Jan 2002 WO
WO 02052521 Jul 2002 WO
WO 03007264 Jan 2003 WO
WO03007264 Jan 2003 WO
WO 03021877 Mar 2003 WO
Related Publications (1)
Number Date Country
20020019725 A1 Feb 2002 US
Continuation in Parts (5)
Number Date Country
Parent 09812809 Mar 2001 US
Child 09925269 US
Parent 09412895 Oct 1999 US
Child 09812809 US
Parent 09172554 Oct 1998 US
Child 09412895 US
Parent 09271517 Mar 1999 US
Child 09172554 US
Parent 09439059 Nov 1999 US
Child 09271517 US