This invention relates to a wireless communication system and, in particular, relates to a radio resource management technique in the wireless communication system.
Recent wireless cellular communication systems such as the mobile phone are requested to transmit wide variety of information from that of a relatively small number of bits such as voice and emails in characters to that of a significant number of bits such as emails with pictures attached and motion picture data for the TV phone. To respond to this request, current wireless cellular communication systems employ multiple packet sizes and multiple modulation schemes to be adapted to the amount (the number of bits) of transmitted data. A system includes a terminal whose radio propagation conditions are excellent as it is located near a base station or unobstructed and a terminal whose radio propagation conditions are poor as it is located behind a building where a signal from a base station is blocked or at a place where it receives strong interference power from another cell.
For this reason, a system divides radio resources into small blocks in time, frequency, and space, sequentially determines radio resources to be allocated to each terminal in accordance with its radio propagation conditions, and selects and combines a packet size and a modulation scheme to be used in each radio resource block. These operations improve the frequency use efficiency in the whole system. Functions such as allocating radio resources, reallocating the resources, and deallocating the resources are generally called RRM (Radio Resource Management) functions.
Wireless communication networks standardized by the 3GPP (3rd Generation Partnership Project), in the 3rd to the 3.5th generations, used to have three-layer structures as shown in
With this change in the architecture, most of the RRM functions having been implemented in RNCs have been transferred to eNBs (refer to Chapter 11, 3GPP TR 25.912 V7.2.0 (June 2006)). For example, functions such as radio bearer control, radio admission control, connection mobility control are implemented in eNBs. To implement ICIC (Inter-Cell Interference Coordination) which requires coordination among cells (eNBs), however, there still exist some issues to be discussed.
Now referring to
In a first operative example of the ICIC, eNBs may exchange and coordinate information such as information on load (congestion) in their own cells and information on radio resources allocated to terminals in their own cell-edge area. Then the ICIC modifies scheduling limitations for a scheduler, for example, to limit transmission power in a specific resource block to a certain level or below or to prohibit allocation of a specific resource block (refer to 7.1.2.6, 3GPP TR 25.814 V7.1.0 (September 2006)).
In reconfiguring (enabling, disabling, and modifying) the limitations, two cycles have been proposed: several days (wherein eNBs exchange information on the specifications of the limitations only) and several minutes (wherein eNBs exchange detailed information necessary for determining a change of limitations every tens of seconds to one minute).
A scheduler in each eNB controls scheduling of radio resources to terminals except for the foregoing scheduling limitations. Each eNB determines resource allocation to each of a plurality of terminals communicating in its own cell while considering conditions such as the presence of data to be transmitted to the terminal, the time passed after the last resource allocation to the terminal, the channel quality for the terminal, and the satisfaction level of the terminal to the QoS (Quality of Service) requirement, in the scheduling interval.
The aims of the scheduling are different depending on the policy of the eNB; basically, it is preferable that all radio resources be evenly used to improve the efficiency. On the contrary, the more scheduling limitations by the ICIC, the higher the probability that resources intended to be allocated (in good conditions) will not available, so that the throughput goes down.
As a second operative example of the ICIC, FFR (Fractional Frequency Reuse) proposed for the 3.5th generation is known, which is a method of allocating radio resources under the coordination of the whole system (refer to PCT pamphlet No. WO2006/020032 and “A Study on the Fractional Frequency Reuse for the OFDMA-based Cellular Systems”, by Satoshi KONISHI, p. 381, B-5-59, Proceedings of the 2007 IEICE Communications Society Conference, Sep. 11, 2007). With reference to
In this way, the ICIC places scheduling limitations so as to allocate the same band A to the terminals in cell-center areas for all the eNBs and distribute the remaining bands to the terminals in cell-edge areas so that the allocated bands will not overlap with one another among the cells. Consequently, increase in the number of required frequency bands (subdividing the radio resources in the direction of frequency) can be suppressed.
To implement FFR to seven cells as shown in
As described above, the efficiency in scheduling in a cell for each eNB and scheduling limitations by the ICIC are controls that conflict with each other in nature. Unless the resource scheduling is limited timely to meet the conditions of load in the cell and to achieve the required effects of the ICIC, the throughput would rather degrade.
For scheduling limitations appropriate for the situation, it is preferable to collect more system information over a wider area so as to assess the situation more accurately. Optimization in a whole system brings about effects of ICIC with less scheduling limitations. In the meanwhile, if it takes much time to assess the situation, management cannot keep up with changes in the situation. Accordingly, the time to collect the information and the cycle of control should be shorter. Collecting and controlling more system information in a shorter cycle cause a problem that the communication traffic between eNBs or in the system increases to put strain on the capacity of the backbone network.
Accordingly, an object of this invention is to provide a method of resource allocation with less strain on the capacity of the backbone network while placing appropriate limitations on resource scheduling to meet traffic distributions at different times and the effects obtained by ICIC with wide variety of system information collected so that the ICIC will not adversely affect the scheduling in a cell.
A representative aspect of this invention is as follows. That is, there is provided a base station for providing a wireless communication area, which is coupled to a core network via a gateway, including: an interface for receiving settings of availability of allocation to terminals located in a border area of the wireless communication area and availability of allocation to terminals located in an area other than the border area of the wireless communication area for each of radio resource blocks which are defined by dividing radio resources available for use in the wireless communication area provided by the base station into predetermined units; and a plurality of profiles for defining scheduling limitations on the radio resources in the number of the profiles of patterns, being set via the interface. The base station applies scheduling limitations defined by the profile designated with the identifier and allocates the radio resources upon designation of one of the plurality of profiles with an identifier.
According to an embodiment of this invention, ICIC control (radio resource scheduling limitations) optimized with information collected over a system is provided to each eNB by a system apparatus at a higher level than eNBs (a maintenance apparatus, an ASGW, a centralized control apparatus, or a specific eNB). Furthermore, the specifications of the scheduling limitations can be changed quickly and in conjunction with system operations to achieve ICIC that efficiently follows changes in traffic distribution in the system without increasing the amount of traffic between eNBs or in the system and is highly efficient.
The present invention can be appreciated by the description which follows in conjunction with the following figures, wherein:
First, the outline of this invention will be explained. This invention has the following three representative aspects:
(1) Each eNB in the system includes an interface for receiving instructions on permission of allocation of radio resources, which is determined using a three-dimensional (3D) structured array, to terminals in a cell-edge area and to terminals elsewhere (in a cell-center area). Here, if the separation between the terminals in a cell-edge area and the terminals in a cell-center area is extremely different depending on the eNB, expected effect may not be achieved even if limitations were placed on resource scheduling. To avoid such a problem, each eNB includes another interface for receiving settings of limitations on the manner and the threshold of separation between the terminals in a cell-edge area and the terminals in a cell-center area, which are determined in one-to-one correspondence with the 3D structured array. The 3D structured array and the corresponding settings on the manner and the threshold of separation are combined and defined as an RRM profile.
The RRM profile may include information indicating that the threshold has not been specified, instead of the threshold.
(2) Through the foregoing interfaces, a system apparatus at a higher level than eNBs (such as a maintenance apparatus, an access gateway (ASGW), a centralized control apparatus, or a specific eNB) installs a plurality of RRM profiles in each eNB in the system to allow for selection of settings of scheduling limitations.
(3) The above-described fixed-point changing of RRM profiles is used together with adaptive control based on coordination among eNBs like the first operative example of ICIC to achieve ICIC that quickly follows changes in the traffic distribution in the system and is efficient.
Hereinafter, an embodiment of this invention will be described with reference to
The wireless communication network system of this embodiment includes a plurality of enhanced node Bs (eNBs) 401 to 405, an access gateway (ASGW) 406, a maintenance apparatus 407, and a centralized control apparatus 412. Terminals 408 and 409 are connected to each of the eNBs 401 to 405.
Each of the eNBs 401 to 405 has functions of a radio base station and functions of a wireless network control apparatus (for example, a part of the functions of an RNC) and configures a wireless interface with terminals in its own cell (wireless communication area) to provide wireless communication functions for wirelessly transmitting and receiving information to and from the terminals. The eNBs 401 to 405 perform scheduling of radio resources within their own cell, retransmission control, and determination of handover to a different cell.
The ASGW 406 links a core network of mobile network operators 410 with a wireless network 411. The ASGW 406 terminates packets and calls up a terminal by paging. The maintenance apparatus 407 monitors the wireless communication network for failures, controls the wireless communication network, and collects statistics information. Besides the maintenance apparatus 407, a centralized control apparatus 412 may be provided to optimize the whole system. The centralized control apparatus 412 is optional.
The eNBs 401 to 405 are connected with the ASGW 406 to transmit user data. The eNBs 401 to 405 are also connected with other nearby eNBs to exchange control information for handover and ICIC. The eNBs 401 to 405 are also connected with the maintenance apparatus 407. They receive settings of system parameters from the maintenance apparatus 407 and report statistics information to the maintenance apparatus 407. The ASGW 406 is also connected with the maintenance apparatus 407.
This invention particularly relates to the function of scheduling of an eNB and interfaces between the maintenance apparatus and eNBs, between the ASGW and eNBs, between the centralized control apparatus and eNBs, and between eNBs.
In a wireless communication system that employs OFDMA and is capable of multiplexed transmission in spatial directions using multiple transmitting and receiving antennas, radio resources available for communication from an eNB to a plurality of terminals in its own cell are divided three-dimensionally, in the directions of (A) frequency, (B) time, and (C) space, and multiplexed in these three dimensions.
In the example shown in
The first aspect of this invention is setting of scheduling availability of each radio resource to terminals located in a cell-edge area or to terminals elsewhere (located in a cell center area) to each eNB in the system by the maintenance apparatus 407, the ASGW 406, the centralized control apparatus 412, or a specific eNB of the eNBs 401 to 405 using a three-dimensional structured array. In the following descriptions, an example in which the maintenance apparatus 407 sets the availability will be explained, but the ASGW 406, the centralized control apparatus 412, or any one of the eNBs 401 to 405 may do it.
If the ASGW 406 is used, it can advantageously collect much information in a wide area in association with call control of eNBs since the ASGW 406 is connected with a number of eNBs via an existing network. A disadvantage is that the coverage of the ASGW 406 is so wide to cause a delay in collecting information and making determinations.
If any one of the eNBs is used, it can quickly collect information of nearby eNBs for speedy feedback control, although the coverage is narrow in contrast with the ASGW 406.
If the maintenance apparatus 407 is used, it can collect information from a wider area than an eNB and narrower than the ASGW 406 as the maintenance apparatus 407 is connected with the ASGW 406 and eNBs via an existing network.
Moreover, if the centralized control apparatus 412 is optionally added, advanced system optimization, which cannot be achieved by the configuration of an existing maintenance apparatus 407, can be implemented by reinforcement of a high-capacity storage for processing and storing information which the conventional maintenance apparatus 407 had not collected and a CPU for optimized computing that causes great load.
The maintenance apparatus 407 provides each of the eNBs 401 to 405 with scheduling limitations on each radio resource block. The details of the limitations are:
(1) a maximum transmission power in the radio resource block;
(2) scheduling availability of the radio resource block to terminals in the cell-edge area; and
(3) scheduling availability of the radio resource block to terminals elsewhere (in the cell-center area).
To set the limitations, the foregoing 3D structured array R[f][t][s] corresponding to the three dimensions of (A) frequency, (B) time, and (C) space is prepared and the above-listed scheduling limitations (1) to (3) are defined as member variables in each radio resource block.
A first example (an RRM profile 1) of scheduling limitations by the maintenance apparatus 407 to an eNB will be described. To implement FFR (add limitations in the direction (A) of frequency) like in the foregoing second example of ICIC, the maintenance apparatus 407 notifies the limitations as follows:
Here, “*” denotes all values of the array element and “-” denotes a default value.
Resources 601 are allocated to the users in the cell-center area. Resources 602 are allocated to the users in the cell-edge area. Resources 603 are not used (allocated) for the cell.
Next, a second example (an RRM profile 2) of scheduling limitations by the maintenance apparatus 407 to an eNB will be described. To perform ICIC that gathers terminals in the cell-edge area to a specific interlace while using different beam patterns that do not overlap among adjacent eNBs, the maintenance apparatus 407 notifies the limitations as follows:
Resources 701 are allocated to the users in the cell-edge area and divided into two chunks with respect to the spatial axis. Resources 702 are not used (allocated) for the cell. Resources 703 are allocated to the users in the cell-center area.
As understood from these examples, the embodiment allows for limitations in three dimensions, so that ICIC limitations in combination of a plurality of axes will be available.
Moreover, for the maintenance apparatus 407, the ASGW 406, the centralized control apparatus 412, or a specific eNB among the eNBs 401 to 405 to implement the scheduling limitations provided in one-to-one correspondence with the 3D structured array and defined by this array, the manner and the threshold of the separation between terminals in the cell-edge area and terminals in the cell-center area are defined and the maintenance apparatus 407, the ASGW 406, the centralized control apparatus 412, or a specific eNB among the eNBs 401 to 405 sets the manner and the threshold of the separation or only the threshold thereof to each eNB in the system. This is another feature of this embodiment.
In accordance with a first example of the manner of separation, in a cell having a radius of Y meters from a geographical center of a base station, terminals within a radius of not more than X meters (<Y meters) may be identified as “terminals in the cell-center area” and terminals within a radius of X meters to Y meters may be identified as “terminals in the cell-edge area”. In practice, it is difficult for the base station to know the exact location of each terminal only through communication with each mobile phone. Some methods are available to know the location, such as determining the location using a GPS receiver additionally built in the terminal or computing the location using trilateration based on the time lags in receiving pilot signals from a plurality of base stations.
In accordance with a second example of the manner of separation, terminals whose received power of a pilot signal, which attenuates in proportion to the distance from the base station, is equal to or higher than a predetermined threshold level (XdBm) may be identified as “terminals in the cell-center area” and terminals whose received power of the pilot signal is lower than the threshold level may be identified as “terminals in the cell-edge area”. Although the received power of the pilot signal is generally proportional to the distance between the terminal and the base station, a terminal at a place where it is hard to receive a radio signal, such as the underground or between buildings, might be identified as a wrong group. However, in terms of limitations on radio resource block scheduling, it can be considered reasonable that terminals whose receiving conditions are worse should have higher priority even though they are not located in the cell-edge area. Accordingly, this manner can be considered effective.
In accordance with a third example of the manner of separation, terminals whose ratios between the received power of a pilot signal and the interference power are a predetermined threshold value (XdB) or more are identified as “terminals in the cell-center area” and terminals whose ratios are less than the threshold value are identified as “terminals in the cell-edge area”. This manner takes account of effects of interference from the periphery, so it can be considered more effective.
In the meanwhile, the threshold need not be specified with absolute values in the foregoing manners of separation. To change the group depending on the distribution of terminals in the cell, all terminals are ordered in accordance with the given manner of separation and a predetermined threshold percentage (X%) of the terminals may be taken in order from the one closest to the base station to be identified as “terminals in the cell-center area” and the rest of the terminals may be identified as “terminals in the cell-edge area”.
In accordance with a fourth example of the manner of separation, each eNB may decide the group of terminals without setting the manner or threshold of the separation. For example, if a frequency band is divided and allocated to cells like in the above-described FFR, separations uneven among eNBs do not affect other cells as far as the transmission power does not exceed the maximum value, so that expected effects can be achieved.
In this way, a system apparatus at a higher level than eNBs (such as the ASGW 406, the maintenance apparatus 407, or the centralized control apparatus 412) is configured to be capable of setting the manner and the threshold of separation of a cell to prevent the separation between “terminals in the cell-edge area” and “terminals in the cell-center area” from excessively differing depending on the eNB, so that intended ICIC effects can be obtained.
The second aspect of this invention is that the maintenance apparatus 407, the ASGW 406, the centralized control apparatus 412, or any one of the eNBs 401 to 405 installs a plurality of foregoing RRM profiles in each eNB in the system to allow for selection of settings of scheduling limitations.
In the following descriptions, an example in which the maintenance apparatus 407 sets scheduling limitations will be explained, but the ASGW 406, the centralized control apparatus 412, or any one of the eNBs 401 to 405 may do it.
With reference to
The maintenance apparatus 407 sends settings on the parts with limitations in the structured array and settings on the manner and the threshold of separation (or only the threshold or information indicating the threshold is not determined) to the eNB 401 as an RRM profile #N (step 1001). The eNB 401 writes the received RRM profile #N to the memory area for #N in its RRM profile table (step 1002). When the RRM profile has been written, the eNB 401 reports the completion of the write of the RRM profile #N to the maintenance apparatus 407 (step 1003). It should be noted that the areas for #1 to #4 may be handled collectively as shown in the drawing, but each area may be processed separately in sequence of the steps 1001, 1002, and 1003.
When the RRM profiles have been installed, the maintenance apparatus 407 designates an RRM profile to be enabled with its RRM profile number. In the drawing, the profile #2 is designated (step 1004).
The eNB 401 reads the area of the RRM profile table corresponding to the designated number (step 1005) and applies the read RRM profile to the limitations on the radio resource scheduling in its own cell (step 1006).
Then, the eNB 401 reports the enabling of the designated RRM profile #2 to the maintenance apparatus 407 (step 1007).
Although the maintenance apparatus 407 installs RRM profiles in the other eNBs 402 to 405 through the same operations, the contents of the installed RRM profiles may be different depending on the eNB (even if the RRM profiles have the same RRM profile number). Besides, the number designated for enabling may be different depending on the eNB.
That is to say, to change RRM profiles, the maintenance apparatus 407 designates the RRM profile to be enabled with its RRM profile number. In
The eNB 401 reads the area #1 of the RRM profile table corresponding to the designated number (step 1102) and applies the read RRM profile to the limitations on the radio resource scheduling in its own cell (step 1103).
The eNB 401 then reports the enabling of the designated RRM profile #1 to the maintenance apparatus 407 (step 1104).
To change RRM profiles, a method may be used that the maintenance apparatus 407 presets the profile number to be enabled and the time of change through the interface and when the time of change preset by the timer of the eNB 401 has come, it changes the scheduling limitations to those corresponding to the preset profile number, in addition to the method shown in the drawing that the maintenance apparatus 407 designates the profile number to be enabled to the eNB 401 at the time of change.
That is to say, the maintenance apparatus 407 sends an RRM profile to be updated to the eNB 401. In the drawing, the RRM profile #1 is sent (step 1201). The eNB 401 writes the received RRM profile #1 to the area of #1 in its RRM profile table (step 1202). When the RRM profile has been written, the eNB 401 reports the completion of the write of the RRM profile #1 to the maintenance apparatus 407 (step 1203).
After the RRM profile has been updated, the maintenance apparatus 407 designates an RRM profile to be enabled with its RRM profile number. In the drawing, the updated profile #1 is designated (step 1204).
The eNB 401 reads the area of the RRM profile table corresponding to the designated number (step 1205) and applies the read RRM profile to the limitations on the radio resource scheduling in its own cell (step 1206).
The eNB 401 then reports the enabling of the designated RRM profile #1 to the maintenance apparatus 407 (step 1207).
An specific configuration example of RRM profiles will be described where a first example of scheduling limitations is provided by the maintenance apparatus 407 to the eNB 401 as RRM profile #1 and a second example of scheduling limitations is provided by the maintenance apparatus 407 to the eNB 402 as RRM profile #2.
In the RRM profile 1, only a half of all the radio resources are used as shown in
The first quadrant 801 of
The second quadrant 802 of
The third quadrant 803 of
The fourth quadrant 804 of
The above-described RRM profile 1 is the type of the fourth quadrant and the RRM profile 2 is the type of the second quadrant. Accordingly, the RRM profile 1 is suitable to be set in an eNB placed in an office, a school, or in an apartment (collective housing). It is appropriate that in a place where many users are present during working time on working days, such as an office or a school, the RRM profile 2 be applied during working time on working days and the RRM profile 1 be applied during night time and on nonworking days. It is appropriate that in a place where many users are present during night time and on nonworking days, such as an apartment area, the RRM profile 1 be applied during working time on working days and the RRM profile 2 be applied during night time and on nonworking days.
The third aspect of this invention is to use the above-described fixed-point changing of RRM profiles together with adaptive control based on the coordination among eNBs like in the first operative example of ICIC.
For example, the maintenance apparatus 407 obtains statistics information including the amount of traffic in the cell and the mobility of terminals periodically (for example, at intervals of one to two hours) from each of the eNBs 401 to 405. The maintenance apparatus 407 may measure the radio propagation conditions in the periphery of the cell with a measurement vehicle. The system administrator statistically processes and analyzes the obtained information in each time slot, each day of the week, each season, and each weather to predict the tendency of the traffic in the cell in every time slot. The system administrator decides a plurality of RRM profiles and the time of changing the RRM profile and sets the determined RRM profiles and the time of changing the RRM profiles to eNBs 401 to 405. The eNBs 401 to 405 superimpose the scheduling limitations by the RRM profiles designated by the maintenance apparatus 407 on the scheduling limitations exchanged among the eNBs 401 to 405 as the time passes, perform scheduling of the resources within the both limitations. Upon receipt of an instruction to change the RRM profile from the maintenance apparatus 407, the eNB does not abruptly change the scheduling limitations for calls with strict QoS limitations (for example, voice calls) of the active calls to allow continuous communication. On the other hand, it allocates the resources for calls newly generated and packet communications based on best effort in accordance with the settings of the new profile.
The variation 902 in the amount of traffic under the adaptive control based on coordination among the eNBs 401 to 405 like in the first operative example of ICIC follows the actual variation 901 in the amount of traffic with a certain time lag. Accordingly, it cannot keep up with an abrupt change and causes an overshoot in control. On the other hand, in the fixed-point changing of RRM profiles, the time slot and the tendency of drastic change in the amount of traffic is preliminarily predicted from statistics information. The RRM profile is changed from the RRM profile 1 to the RRM profile 2 at 9:00 (903) to increase the available radio resources and is changed again to the RRM profile 1 at 17:00 (904) to support the terminals in the cell-edge area. The combination of the fixed-point changing and adaptive control achieves ICIC that quickly follows changes in traffic distribution in the system and is efficient as shown in the thin line 905.
The maintenance apparatus 407 may survey the traffic periodically after setting the RRM profiles and the time of change and coordinate the contents of the profiles and the time to change the profiles; thereby, more accurate fixed-point changing becomes available. When a new base station is added, the maintenance apparatus 407 may set an existing RRM profile for the initial settings, operate base stations with adaptive control to cover changes, survey statistics information during the operation, and coordinate the contents and the change time of RRM profiles based on the analysis of the surveillance
This invention is, as to a multidimensional structured array and setting of parameters, applicable to a wireless communication system that allocates radio resources to terminals. In particular, this invention is preferably applicable to a radio resource management in a wireless communication system including radio base stations having wireless network control functions.
Number | Date | Country | Kind |
---|---|---|---|
PCT/JP2008/064674 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/054819 | 3/6/2009 | WO | 00 | 2/9/2011 |