This application claims priority under 35 USC 119 from a Japanese patent application No. 2008-242822 filed on Sep. 22, 2008.
1. Technical Field
The present invention relates to a wireless communications apparatus, a processing apparatus, and a wireless communications system.
2. Related Art
A semiconductor chip (referred to below as a “wireless tag”) that performs wireless communications is used in various articles. One feature of the wireless tag is that because the wireless tag is capable of performing communications even without contact, the wireless tag can perform communications at any position within a range where wireless communications is possible.
It is an object of the present invention to suppress wireless communications from being performed with an unintended wireless tag.
According to an aspect of the invention, a wireless communications apparatus, comprising: a second communications unit that uses electromagnetic waves to perform wireless communications with a recording medium having a first communications unit that stores information; and a housing that houses a portion of the recording medium, the portion including the first communications unit, wherein the second communications unit is provided at a position that faces the first communications unit housed in the housing; and the housing has a first electromagnetic wave suppressing member that suppresses radiation of electromagnetic waves from inside to outside, and suppresses radiation of electromagnetic waves from the second communications unit in a direction other than towards the first communications unit of the recording medium in a state housed in the housing.
Exemplary embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
The wireless communications apparatus 100 includes a controller 110, an acquisition unit 120, a wireless communications unit 130, a write unit 140, and a detection unit 150. The controller 110 includes a processor such as a CPU (Central Processing Unit) and a memory. The controller 110 controls operation of the wireless communications apparatus 100 by executing a program that has been stored in advance. The acquisition unit 120 acquires information used for operation of the wireless communications apparatus 100. The acquisition unit 120 may acquire information from a memory such as a flash memory, or may acquire information from an external network such as the Internet. Information to be displayed on the display medium 220 is also included in the information that the acquisition unit 120 acquires. Below, this is referred to as “display information”.
The wireless communications unit 130 includes an antenna 131 described below, and performs wireless communications with the wireless tag 210 of the recording medium 200. The wireless communications unit 130 is able to send or receive information, but in this exemplary embodiment, receives information by reading information from the wireless tag 210. In this exemplary embodiment, the information that the wireless communications unit 130 receives is identification information that identifies respective recording mediums 200. However, the information that the wireless communications unit 130 receives is not limited thereto, and for example, may be information that identifies display information that is displayed on the display medium 220 of the recording medium 200.
The write unit 140 controls the display medium, for example, to display display information on the display medium 220 of the recording medium 200, or to erase display information that has been displayed on the display medium 220. That is, the write unit 140 writes or rewrites the display of the display medium 220. The write unit 140 has a configuration according to the display method of the display medium 220, but in this exemplary embodiment, is configured to irradiate light and supply voltage to the display medium 220. The detection unit 150 includes a sensor 151 that detects that the recording medium 200 has been installed in the wireless communications apparatus 100 in a predetermined manner. The controller 110 determines whether the recording medium 200 has been installed in the wireless communications apparatus 100 based on the detection results of the detection unit 150, and when determined that the recording medium 200 has been installed, causes the write unit 140 to perform rewriting.
As described above, the recording medium 200 includes the wireless tag 210 and the display medium 220. The wireless tag 210 is an example of a first communications unit, and includes a CPU, an EEPROM (Electrically Erasable and Programmable Read-Only Memory), an antenna, and the like. The wireless tag 210 performs wireless communications with the wireless communications unit 130 of the wireless communications apparatus 100. The wireless tag 210 of this exemplary embodiment stores identification information in the EEPROM. Note that the wireless tag 210 may also store other information, and may rewrite stored information. Also, operation of the wireless tag 210 may be performed using electrical power extracted from electromagnetic waves emitted from the antenna 131, or power may be supplied from a battery provided in the recording medium 200. The display medium 220 includes a display area where information is displayed in a rewritable manner. The display medium 220 of this exemplary embodiment displays information using cholesteric liquid crystal display elements. However, the display medium in the invention is not limited to this, and for example, may be a display medium that employs a leuco dye.
The color layer 224 is a layer that is observed when the display element layer 225 transmits light, and has a predetermined color (black in this exemplary embodiment). The display element layer 225 is a layer that includes a display element that causes the light reflection state to differ according to the voltage that is applied. In the display element layer 225 of this exemplary embodiment, microcapsule cholesteric liquid crystal display elements have been dispersed in a binder resin. The orientation state of the cholesteric liquid crystal display elements can be a planar orientation or a focal conic orientation. When the cholesteric liquid crystal display elements are in a planar orientation, light is reflected (Bragg reflection) and a predetermined color (white in this exemplary embodiment) is shown, and when the cholesteric liquid crystal display elements are in a focal conic orientation, light is transmitted and the color of the color layer 224 is shown. Which of these orientations the cholesteric liquid crystal display elements are in is determined by the potential difference that occurs in the cholesteric liquid crystal display elements. The potential difference that occurs in the cholesteric liquid crystal display elements changes according to the conductivity of the opposing photoconductive layer 223.
The portion that is housed in the housing 160 is a portion of the recording medium 200 that includes the wireless tag 210. The portion that includes the wireless tag 210, for example, is the portion indicated by the broken line in
The electromagnetic wave absorbing members 170 and 230 are examples of an electromagnetic wave suppressing member that suppresses radiation of electromagnetic waves from inside to outside. Here, “inside” refers to the side where electromagnetic waves occur, viewed from the electromagnetic wave absorbing members 170 and 230. The electromagnetic wave absorbing members 170 and 230, by absorbing electromagnetic waves that are radiated from the antenna 131, prevent these electromagnetic waves from being radiated to the outside, i.e. prevent these electromagnetic waves from being irradiated from the portion covered by the electromagnetic wave absorbing members 170 and 230 to the outside. Dielectric absorbent material such as carbon rubber, magnetic absorbent material such as ferrite, or the like is used for the electromagnetic wave absorbing members 170 and 230.
The electromagnetic wave absorbing member 170 is at least provided on the upper face (the face on the side not facing the wireless tag 210) of the antenna 131. It is comparatively difficult for the antenna 131 to radiate electromagnetic waves in the lateral direction in
Also, in order to prevent electromagnetic waves from being radiated to the outside, it is desirable that the gap between the electromagnetic wave absorbing members 170 and 230 is made small. For example, the housing 160 may have a shape such that excess space does not occur between the housing 160 and the recording medium 200.
The sensor 151 detects whether the recording medium 200 is housed in the housing 160. The sensor 151, for example, is a sensor that detects contact of the recording medium 200, and detects that the recording medium 200 has been inserted into the housing 160. Note that the sensor 151 may also be a sensor that optically detects the recording medium 200.
The configuration of the wireless communications system 10 of this exemplary embodiment is as described above. Based on this configuration, a user installs the recording medium 200 in the wireless communications apparatus 100 when rewriting of the recording medium 200 becomes necessary. When the wireless communications apparatus 100 detects that the recording medium 200 has been installed using the detection unit 150, the wireless communications apparatus 100 performs rewriting of the recording medium 200.
When performing rewriting of the recording medium 200, the wireless communications apparatus 100 acquires identification information of the installed recording medium 200 via the wireless communications unit 130, and stores the acquired identification information. When the wireless communications apparatus 100 performs rewriting of the recording medium 200, information corresponding to the rewriting results and identification information are stored in association with each other. Here, information corresponding to the rewriting results is, for example, information (such as a file name) that identifies display information after rewriting. Also, when the wireless communications apparatus 100 has erased the recording medium 200, information indicating that display information was erased and identification information may be stored in association with each other.
According to the wireless communications system 10 of this exemplary embodiment, wireless communications with a wireless tag other than the wireless tag 210 of the recording medium 200 that has been installed in the wireless communications apparatus 100 is avoided. For example, even when, as shown in
Accordingly, with the wireless communications system 10 of this exemplary embodiment, a mismatch between the target of wireless communications and the target of rewrite processing, such as in which the recording medium whose display was rewritten is the recording medium 200a but the recording medium with which wireless communications was performed is the recording medium 200b, is avoided, so the correctness of the association of information according to rewriting results and identification information is further guaranteed. Thus, with the wireless communications system 10 of this exemplary embodiment, mistaken communications or disguising behavior in which, for example, a recording medium to which rewriting was not performed is deceptively presented as a recording medium to which rewriting was performed is suppressed.
The exemplary embodiment described above is merely an example of the invention. In the invention, the following modified examples are applicable, for example. Also, the above exemplary embodiment and the below modified examples may be applied in combination.
The above write unit 140 performs processing to rewrite to the recording medium 200, and is one example of a processing unit. However, in the invention, processing to rewrite to a different article than the recording medium 200 may be performed, and in this case, the processing unit may be changed according to that article. For example, the processing unit may optically read an image displayed on an article, a barcode, or the like, or the processing unit may perform a deformation process or the like on the article.
Note that the processing unit may be realized with an external apparatus other than the wireless communications apparatus.
The wireless communications apparatus may perform wireless communications with multiple predetermined recording mediums; the number of recording mediums is not limited to one. In a case where the wireless communications apparatus performs wireless communications with multiple recording mediums, any configuration may be adopted as long as it is possible to distinguish between those multiple recording mediums and another recording medium.
In the configuration shown in
On the other hand, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2008-242822 | Sep 2008 | JP | national |