Embodiments relate to communications technologies, and in particular, to a wireless communications device.
As information technologies develop, the public also pays attention to harm of electromagnetic radiation of wireless communications devices to the human body while enjoying convenience brought by information technologies. A specific absorption rate (hereinafter referred to as SAR for short) value of electromagnetic waves is an important indicator for measuring harm of electromagnetic radiation to the human body, and a larger SAR value indicates greater harm to the human body.
To reduce harm of electromagnetic radiation to the human body, in the prior art, an SAR value is reduced by reducing transmit power of a wireless communications device.
However, transmit power of a wireless communications device is related to communication quality, and reducing transmit power of a wireless communications device is equivalent to degrading communication quality of the wireless communications device. In other words, the method in the prior art degrades communication quality of a wireless communications device while reducing an SAR.
Embodiments provide a wireless communications device, which reduces a SAR without degrading communication quality of the wireless communications device.
A first aspect of the embodiments provides a wireless communications device, including: a printed circuit board; and a first antenna and a second antenna, where an electrical length of the first antenna is N times an electrical length of the second antenna, where N is an integer greater than or equal to 1; and the first antenna and the second antenna are disposed on the printed circuit board by means of common ground connection.
With reference to the first aspect, in a first possible implementation manner, the first antenna and the second antenna are symmetrically disposed in a horizontal direction of the wireless communications device; or the first antenna and the second antenna are symmetrically disposed in a vertical direction of the wireless communications device.
With reference to the first aspect or the first possible implementation manner, in a second possible implementation manner, the wireless communications device further includes: a first parasitic branch disposed at a feed terminal of the first antenna in a detached manner, and a second parasitic branch disposed at a feed terminal of the second antenna in a detached manner.
With reference to the first aspect, or the first possible implementation manner, or the second possible implementation manner, in a third possible implementation manner, the wireless communications device is a mobile phone.
Two antennas, namely, a first antenna and a second antenna, are disposed on the wireless communications device provided in the embodiments of the present invention, where an electrical length of the first antenna is N times an electrical length of the second antenna, where N is an integer greater than or equal to 1; and the first antenna and the second antenna are disposed on a printed circuit board by means of common ground connection, that is, ground points of the first antenna and the second antenna are a same point, which reduces input impedance at the ground point of the first antenna and the second antenna, so that energy fed from the antennas is evenly distributed in a horizontal direction and a vertical direction of the printed circuit board, thereby reducing a SAR without degrading communication quality of the wireless communications device.
To describe the technical solutions in the embodiments of the present invention or in the prior art more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments or the prior art. Apparently, the accompanying drawings in the following description show some embodiments of the present invention, and persons of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
To make the objectives, technical solutions, and advantages of the embodiments of the present invention clearer, the following clearly describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are some but not all of the embodiments of the present invention. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.
In the embodiments, two antennas are disposed on a wireless communications device by means of common ground connection, and an electrical length of one antenna in the two antennas is N times an electrical length of the other antenna, where N is an integer greater than or equal to 1, which reduces input impedance at a ground point of the two antennas, so that energy fed from feed points of the antennas is evenly distributed in a horizontal direction and a vertical direction of a printed circuit board (hereinafter referred to as PCB for short), thereby reducing a SAR without degrading communication quality of the wireless communications device. The horizontal direction and the vertical direction are perpendicular to each other, and are both on a same plane in parallel with a plane of the PCB.
An electrical length of an antenna is different from a physical length and refers to a ratio of a length of a transmission line of the antenna to an operating wavelength, and a transmission line of an antenna includes a radiating branch and a ground cable branch of the antenna (where a detailed example is provided below). When two antennas, of which one has an electrical length N times that of the other, are disposed by means of common ground connection, input impedance at a ground point of the two antennas can be reduced, and the principle is as follows: Assuming that one of two antennas is a first antenna and the other is a second antenna, an electrical length of the second antenna is N times an electrical length of the first antenna, and the first antenna and the second antenna are disposed on a PCB by means of common ground connection, the second antenna is equivalent to an open-circuit microstrip connected in parallel with the first antenna. It can be known from a basic theory of a principle of microwaves that a microstrip can be equivalent to an inductor or a capacitor, input impedance at a terminal (a terminal opposite a ground point) of a microstrip (the second antenna) with an open-circuit terminal is infinitely great, and the input impedance becomes rather small after passing through the first antenna whose electrical length is N times the electrical length of the second antenna, which, therefore, is equivalent that a small impedor is connected in parallel at a ground point of the first antenna. It can be known from a basic circuit theory that shunt impedance mainly depends on a value of the small impedor; therefore, input impedance in the case of common ground connection is reduced.
In the foregoing embodiment, the first antenna and the second antenna may be symmetrically disposed in a horizontal direction of the wireless communications device, or may be symmetrically disposed in a vertical direction of the wireless communications device. The horizontal direction and the vertical direction of the wireless communications device are on a same plane in parallel with a plane of the PCB of the wireless communications device, and the horizontal direction and the vertical direction are perpendicular to each other. In this embodiment, that the first antenna and the second antenna may be symmetrically disposed in a horizontal direction of the wireless communications device refers that the electrical lengths of the first antenna and the second antenna are the same, a position at which the first antenna is disposed is symmetrical, in the horizontal direction, to a position at which the second antenna is disposed, and a structure of the first antenna is also symmetrical to a structure of the second antenna. In this embodiment, that the first antenna and the second antenna may be symmetrically disposed in a vertical direction of the wireless communications device refers that the electrical lengths of the first antenna and the second antenna are the same, a position at which the first antenna is disposed is symmetrical, in the vertical direction, to a position at which the second antenna is disposed, and a structure of the first antenna is also symmetrical to a structure of the second antenna. A specific arrangement depends on a specific specification of the wireless communications device.
Table 1 shows test data of the wireless communications device shown in
Table 1 shows test data of the wireless communications device shown in
Channel 1, channel 2, and channel 3 are located in different frequency bands.
It can be seen from Table 1 that by using the wireless communications device terminal of the present invention, a SAR can be obviously reduced in the case of a same total radiated power (Total Radiated Power, hereinafter referred to as TRP for short).
Table 2 shows test data of the wireless communications device shown in
Channel 1, channel 2, and channel 3 are located in different frequency bands.
It can be seen from Table 2 that by using the wireless communications device terminal, a SAR can be obviously reduced in the case of a same total radiated power (hereinafter referred to as TRP for short).
A SAR reduction effect can be achieved provided that two antennas are disposed on a wireless communications device by means of common ground connection and an electrical length of one antenna in the two antennas is N times an electrical length of the other antenna, where N is an integer greater than or equal to 1.
To describe the electrical lengths in the foregoing embodiments more clearly, the present invention further provides a schematic structural diagram of Embodiment 5 of a wireless communications device shown in
Finally, it should be noted that the foregoing embodiments are merely intended for describing the technical solutions of the present invention, but not for limiting the present invention. Although the present invention is described in detail with reference to the foregoing embodiments, persons of ordinary skill in the art should understand that they may still make modifications to the technical solutions described in the foregoing embodiments or make equivalent replacements to some or all technical features thereof, without departing from the scope of the technical solutions of the embodiments of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201310339216.6 | Aug 2013 | CN | national |
This application is a continuation of International Application No. PCT/CN2014/083788, filed on Aug. 6, 2014, which claims priority to Chinese Patent Application No. 201310339216.6, filed on Aug. 6, 2013, both of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2014/083788 | Aug 2014 | US |
Child | 14961397 | US |