The present invention relates generally to wireless communications and more particularly to systems and methods for cell-based wireless communications.
Many wireless systems require techniques allowing a base station to broadcast control messages to one or more users in an unsolicited fashion. The messages must often be sent in the presence of co-channel interference from other base stations. The requirement is driven in part by the increased user density and lower reuse factors, enabled by interference cancellation techniques such as spatial filtering and adaptive beam-forming. These techniques are in turn enabled by modern standards such as IEEE 802.16 (WiMAX). Furthermore many of the newer standards have adopted Orthogonal Frequency-Division Multiplexing (OFDM) technology, which provide unique challenges and opportunities to equipment manufacturers.
Issues include co-channel interference (CCI) that limit performance, especially at the cell edge. For WiMAX, as the performance of the frame control header (FCH) and the media access protocol (MAP) deteriorate, so does system reliability. The only conventional approach to resolving this issue is provided in the WiMAX standard and involves increasing code repetition times and frequency reuse. However, this approach causes a large control channel overhead, and the efficiency of the control channel becomes very poor.
Methods and systems that enhance interference cancellation in communication channels are described. Samples are obtained from stacked carriers in a received signal and a data vector is created from the samples. Stacked carriers are selected using a steering vector received during synchronization of the receiver. The steering vector is calculated to obtain cancellation of interference from another receiver and is calculated based on time domain channel estimation. Specialized time domain training sequences and simple cross correlation are used to obtain a channel estimate for use in stacked carrier beamforming and OFDM based spatial beamforming.
In certain embodiments, a time domain preamble sequence is provided as an alternative to the conventional frequency domain preamble sequence. The use of a time domain preamble can increase channel estimation performance, facilitating cancellation of co-channel interference. In at least certain embodiments, a method and system for estimating performance of a wireless communications channel is disclosed. These embodiments include generating a training sequence preamble in the time domain that is uncorrelated with at least one other training sequence, computing a frequency domain response of the channel using an estimate of its time domain impulse response, and using the frequency domain response of the channel to calculate channel estimation from a cross correlation of data received from the channel against the training sequence. Other embodiments include channel estimation by computing beamforming weights for a plurality of subcarriers in the channel using second order cross correlation statistics from the frequency domain response of the channel to reduce effects of frequency dispersion.
Embodiments of the present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Wherever convenient, the same reference numbers will be used throughout the drawings to refer to same or like parts. Where certain elements of these embodiments can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the components referred to herein by way of illustration.
Although many of the techniques described herein assume the use of OFDM, but the invention is not limited to OFDM. For the purposes of this description, it is assumed that a broadcast channel can or must be transmitted over several narrow band channels, wherein a narrow band antenna assumption readily applies. However, the techniques described are not limited to broadcast channels, but can readily be applied to traffic channels as well.
The narrow band antenna assumption for the received signal at the subscriber unit can be written as:
where xk(n) is the Mxl received complex data vector at sample index n and channel number k, aqk is the Mxl steering vector for source emitter q, frequency channel k, dqk(n) is the transmitted information symbol for emitter q, channel number k and sample index n, ik(n) is the interference vector seen on channel k and M is the number of antennas available to the receiver.
The n index may itself be due to additional frequency subcarriers or due to channel reuses over time. It may be assumed that, in the former case, the frequency subcarriers are closely enough spaced so that the channel can be considered constant. Thus the carrier spacing as indexed by k should be greater than any frequency diversity introduced by n.
Certain embodiments of the invention yield improvements in both control and traffic channels. Certain embodiments address issues associated with co-channel interference (CCI) that limit performance, especially at the cell edge. For the purposes of this description the example of IEEE 802.16e (WiMAX) media access protocol (MAP) will be used. For WiMAX, as the performance of the frame control header (FCH) and the media access protocol (MAP) deteriorate, so does system reliability. The current WiMAX standard provides no options for resolving this issue other than increasing the code repetition times and frequency reuse which can cause a large control channel overhead and significant degradation in control channel efficiency.
To permit multiple accesses for the broadcast channel the transmitters may be constrained such that a type of repetition code may be employed over the channel index. This is convenient because for example the 802.16 standard specifies the use of a repetition code for the downlink map. However, the use of the code according to certain aspects of the invention permits greatly improved performance in the presence of multiple co-channel emitter base stations. The repetition code, concept, referred to herein as stacked carrier, permits the receiver model to take the form of:
where a repetition spreading code given by g=(g1, g2, . . . gK)T is employed and where it is assumed that the same information symbol is used for all k, dqk(n)=gkdq(n). Although the logical carrier indices are numbered consecutively from 1 to K in Equation 2, the actual set of spread frequencies to which they map can be completely arbitrary. However the n indices imply a reuse of the same channel for reception of additional information symbols.
The stacked carrier concept allows for the cancellation of co-channel interferers greatly enhancing the performance over more traditional schemes such as diversity combining or maximum ratio combining. Moreover stacked carrier interference cancellation can be employed with minimal or no changes to the current WIMAX standard. Interference cancellation can be achieved in much the same way that interference cancellation is obtained in linear beam-forming, by placing nulls in the signal subspaces formed by the interfering emitters spreading codes multiplied by the wireless channel.
At the receiver it can be assumed that knowledge of the channel information is in the form of the steering vectors aq, although this knowledge may be uncertain and is typically obtained from synchronization/training sequences transmitted separately. In this regard, channel estimation procedures that can be obtained either in the time or frequency domains, depending on the channel model employed, will be described.
Receiver Processing
An optimum receiver can be derived by conditioning on the assumption of known steering vectors aq and then using an assumption that the transmitted symbols and the interference are Gaussian white noise. The statistics of aq, may then be considered as well as the possibility of non-white but unknown interference and then the possibility of more severe constraints on dq(n), which leads to the deployment of multi-user detection (MUD).
The receiver can be written in the further compressed form:
x(n)=Ad(n)+i(n) ,
A≡(a1, a2, . . . aQ) (eq. 3)
d(n)≡(d1(n), d2(n), . . . dQ(n))T (eq. 4)
Thus, using Bromberg notation and assuming that the interference is complex Gaussian, i(n)˜CN1MK(0, Rii) and that the information symbols are complex, unit variance, Gaussian white noise, d(n)˜CN1Q(0, I). From this it should be readily apparent that x(n)˜CN1MK(0, AAH+Rii) so that,
px(x|A)=π−MK|AAH+Rii|−1etr(−xH(AAH+Rii)−1x).
In certain embodiments, the conditional probability can be computed as pd(d(n)|x(n), A), from which the optimal least squares estimator for d(n) can be found. Typically, this quantity can be computed from:
where, etr(X)≡exp(Tr(X)) . Therefore,
d(n)|x(n)˜CN1Q(w0Hx(n), (AHRii−1A+I)−1)
w0≡Rii−1A(I+AHRii−1A)−1
and thus the optimal expected least squares estimator is given by,
E(d(n)|x(n))=w0Hx(n).
This can also be written as:
w0=Rxx−1A
Rxx≡Rii+AAH. (eq. 6)
It should be apparent that the estimate is independent and identically distributed over the sample index n. Note that it is possible to incorporate uncertainty in the estimation of A by assuming a tractable noise model for the distribution of A and integrating A out of the estimator in Equation 5.
Co-Channel Interference Cancellation (CCIC)
Code repetition and maximum ratio combining code repetition approach is used in WiMAX to enhance decoding performance. Maximum ratio combining (MRC) is used at a receiver to combine these repeated codes and improve the packet error rate (PER) or bit error rate (BER). MRC is an optimal combining method when the interferences comprise additive white Gaussian noise (AWGN). However, at a cell edge, co-channel interference (CCIs) is generally very strong and cannot be characterized as AWGN. In this case, MRC performance becomes very poor and PER may fall below acceptable thresholds.
Co-Channel Interference Cancellation by using Code Repetition
Certain embodiments employ CCIC methods to improve cell edge performance without losing MAP efficiency. Assuming that the data block Sik is repeated N times as
Xik=[SikSi+MkSi+2Mk. . . Si+(N−1)Mk]T, (eq. 7)
where Sik is a coded and modulated data block with the block size M , Sik=Si+jk. i and i+j are the logical subcarrier indexes of the data block Si+jk, j=0, M, . . . (N−1)M and k is the index of the cells. After PUSC permutation, the logical subcarriers can be mapped to physical subcarriers as:
Xi
where fPUSC( ) means PUSC permutation function and iPUSC is the index of the physical subcarriers. The received signal can be expressed as:
where l is antenna index at receiver, Ψi
Assuming now that all the neighboring cells use the same data block size and code repetition numbers, and Ψi
Zil=fDE−PUSC(Zi
{circumflex over (Ψ)}ilk=fDE−PUSC({circumflex over (Ψ)}i
where fDE−PUSC( ) is the de-permutation function. The estimated channels play the same role as the steering vectors in (eq. 3). Thus:
Zil=[YilYi+Ml. . . Yi+(N−1)Ml]T (eq. 12)
{circumflex over (Ψ)}ilk=[ĤilkĤi+Mlk. . . Ĥi+(N−1)Mlk]T (eq. 13)
and, analogous to (eq. 3),
If M≥K, Sik can be estimated according to the different criteria; for example, if it is assumed that RN
and Equation 6 can be rewritten:
Wk=(RN
where
If it is assumed that there exist L antennas at the receiver, then multi antennas can be used with code repetitions to cancel the CCI if LM≥K is satisfied. Here the number of the cancelled co-channel interference cells is K−1.
For example, if it is assumed that there are 2 receiver antennas and the code repetition is 2, up to 3 interference cells can be cancelled as flows:
A simulated comparison of CCIC and MRC performance is provided in
As will be appreciated from the comparisons, CCIC provides superior performance than MRC at cell edges.
With reference to
In one example of information bits that are modulated symbols, and assuming that Spk is the information symbol packet and k is a transmitter index or cell index, then:
Spk=[s1ks2k. . . sNk] (eq. 21)
where, sik is the information symbol and N is the packet size. Spk can be grouped as:
Spk=SGk=[Sg1kSg2k. . . SgMk] (eq. 22)
Sgik can be referred to as a block and gM is the number of blocks. Each block includes at least one symbol and each symbol in Equation (7) can belong to only one of the blocks. The block size of each block is the same as the number of symbols in the block but block size can differ between blocks. Moreover, different modulation and coding schemes can be used for different blocks. In certain embodiments, grouping order is provided such that a small block number corresponds to a small symbol index. For example, the block Sg1k=[s1ks2k. . . sB1k] and Sg2k=[sB1+1ksB1+2k. . . sB2k], etc. where B1 and B2 are the sizes of block g1 and g2.
Certain embodiments employ symbol interleaving (step 53) wherein two or more types of interleaving may be used for interleaving the symbols in each block. Each block can have a different interleaving function and symbol interleaving in each block may be independent of symbol interleaving in other blocks. However, in at least some embodiments, interleaving of symbols may be performed across plural blocks. Certain embodiments provide block interleaving wherein a plurality of blocks is interleaved.
The output of an interleaver can expressed as:
SIk=[SI1kSI2k. . . SIMk] (eq. 23)
where IM=gM (see signal 54).
In certain embodiments, interleaved blocks may be repeated at step 55 K times, where K is the code repetition number at step 55. The repeated signal 56 can be expressed as in Equation (24):
SRk=[SI1kSI1k. . . SI1kSI2kSI2k. . . SI2k. . . SIMk. . . SlMk]=[SR1kSR2k. . . SRMk], (eq. 24)
and
SRik=[SIik, SIik. . . SIik] (eq. 25)
The number of SIik is determined by the code repetition times for the block. The repetition times for each block can be different, although in these descriptions, a common repetition time is assumed for all blocks.
Certain embodiments provide a permutation process at step 57 that includes regrouping SRk, inserting additional symbols or blocks into SRk and physical channel mapping based on certain predefined rules to obtain signal 58. In certain embodiments, the permutation step 57 includes interleaving. In one example, regrouping SRk can be considered to be a form of interleaving. However, certain embodiments employ a more flexible form of interleaving than permutation. Interleaving can comprise scrambling all of the symbols in Equation (23), scrambling all of the blocks in Equation (23), scrambling part of the symbols in Equation (23) and scrambling part of the block in Equation (23). Different scrambling rules can be provided including random scrambling or following some rules.
At the receiver, the received signal at l-th antenna is expressed as:
where l is antenna index at receiver, Ψi
In Equation (25), it can be assumed that at least one transmitted signal is a desired signal at receiver and all others are undesired signals which are referred to herein as “Co-Channel Interferences (CCI).” In seeking to cancel the CCI, it is assumed that all CCI and desired signals have the same block size and the same repetition number meaning that the size of block Sgik in Equation (22) is the same for any of k, k=1, 2, . . . K.
Referring now to
Certain embodiments include de-permutation and/or de-interleaving functions for both received signal Zi
Zil=fDEP1(Zi
{circumflex over (Ψ)}ilk=fDEPk({circumflex over (Ψ)}i
Assuming here that the target cell index k=1 and considering the correspondence with SRk in Equation (24) and (25):
ZRl=[ZR1lZR2l. . . ZRMl]T (eq. 29)
ZRil=[YIi1lYIi2l. . . YIi(N−1)l]T (eq. 30)
{circumflex over (Ψ)}ilk=[{circumflex over (Ψ)}R1lk{circumflex over (Ψ)}R2lk. . . {circumflex over (Ψ)}RMlk]T (eq. 31)
and
{circumflex over (Ψ)}Rilk=[ĤIi1lkĤIi2lk. . . ĤIi(N−1)k]T (eq. 32)
Regarding the subscript Iij, i refers to the block index used in Equation (23) and j refers to the repeated block index and j=0, 1, . . . , (N−1).
Certain embodiments provide a co-channel interference cancellation function (CCIC) that comprises channel matrix construction, weights calculation and equalization. The channel matrix can be obtained by using Equation (32):
Thus:
where ŜIik is the estimated SIik under some criteria or the output of the equalization function. Assuming that
ŜIiK=[ŜIi1ŜIi2. . . ŜIiK]T, (eq. 35)
the equalization can be expressed as Equation (36):
ŜIiK=WKlZRil (eq. 36)
and the weight WKl can be obtained from:
WKl=Est(ĤIiK), (eq. 37)
where Est( ) is a function consistent with certain of the criteria. The use of different criteria leads to different functions. For example, under MMSE criteria, Equation (37) can be rewritten as:
WKl=(RN
With reference also to
Equations (35-38) can be easily extended to multi receiver antenna case. If LN≥K can be satisfied, (K−1) co-channel interferences can be cancelled.
Certain embodiments of the invention address the issues associated with CCI using a time domain preamble symbol instead of the current frequency domain preamble sequence for estimating the channel. By using a time domain preamble, channel estimation performance can be improved, and the obtained improvements can offset or cancel co-channel interference. MAP performance can also be improved significantly without increasing the overhead.
Multi-User Detection
In certain embodiments multi-user detection techniques may be deployed to improve performance of a receiver. Such techniques can provide useful result when a sufficient number of samples are available. Given the assumption that Q≤Q′, where Q′ is the total number of resolvable base stations, the diagonal components of AHRii−1A are estimates of the signal SINR and can help to determine which signals are the most promising. Each signal is linear beam-formed and passed through a demodulation/remodulation process. In one example, this latter process may involve recovering the nearest constellation point. The signal can then be removed from the received data, a new Rii can be estimated and the process repeated. The steps of the algorithm can be describes as follows:
In certain embodiments, additional steps may be taken to guarantee that newly acquired users are not converging to users that already exist in this blind acquisition process. One technique that can be used applies a constraint that keeps the matrix, AHRii−1A near to diagonal. Other embodiments employ one or more variations related to which set of emitters should remain captured within the A matrix and which emitters can be removed from the data x(n). Certain embodiments limit performance of these steps to a few iterations to avoid overmodeling the received data thereby causing divergence.
Although these methods and systems have been discussed in the context of processing downlink broadcast signals and downlink training signals, certain embodiments employ this same technology for uplink processing in various applications.
Code Repetition in WiMAX
In accordance with WiMAX, the MAP information is repeated between 2 and 6 times after encoding. In certain embodiments, coding repetition can be exploited to cancel CCI. The repetition can be used as the stacking index k in Equation 35 and thereafter. For simple repetition, the transmit stacked carrier gains can simply be gk=1. In a single OFDM symbol, along with K repetitions, there is another factor of Mfec coding blocks each of Nfec subcarriers, making the total number of subcarriers utilized KMfecNfec. However, the ordering of the subcarriers can be randomized, scrambled according to different permutations specified in the WIMAX standard. Thereafter, pilots may be inserted to fill out the remainder of the OFDM symbol.
In certain embodiments, the repetition code concept can be extended by replicating the forward error correcting (FEC) blocks with an additional scaling by the stacked carrier transmit gains gk. Depending upon the permutation employed, the replicated subcarriers can be treated as n indices in Equation 36 or as separate independent receive channels. The subcarriers that are most closely spaced can be considered as reuses of the same channel and therefore qualify as n indices. Widely-spaced subcarriers can be treated as independent channels. The stacked carrier concept can also be generalized to allow the subcarriers to be stacked to become dependent on the subcarrier index. This allows the frequency spacing between stacked carriers to vary slightly, without affecting the basic narrow band antenna model exploited in Equation 36. In an example based on the currently implemented WIMAX standard, a set of weights for each logical subcarrier in the replicated subchannel can be developed, since neighboring logical subcarriers are widely spaced after the permutation map. In this example, the spacing between subcarriers in the stacked carrier concept may also vary and must typically be tracked for other base stations as well as for the current base station in order to fill out the steering vectors with the correct channel estimate values. This approach can be especially useful when the permutation mapping for the downlink map is not allowed to vary from base station to base station.
However, in the example of the current WiMAX standard, a base dependent permutation of the subcarriers prevents perfect alignment of the K repetitions of a given information symbol from one base station to another. However, if the number of downlink MAP informational elements are bounded, this imperfection may be accommodated by noting that if a base station's subcarrier does not intersect with the set of K repetitions for a mobile station's assigned base station, then the channel response is effectively zero for that subcarrier and the channel response can be viewed as having a zero value for the spreading code for that subcarrier k, i.e. gk=0 in Equation 37. Therefore in the WIMAX example, for each set of K subcarriers to be despread using the linear weight vector, the permutation mapping from the neighboring interfering base station must be identified, and gk=0 can be applied to the non-intersecting subcarriers with gk=1 being applied to the intersecting subcarriers. The channel, itself in the form of steering vectors, can be estimated using time domain training sequences that employ fixed transmit weights and it can be assumed that any frequency spreading uses gk =1. Also in the specific case of dealing with the downlink MAP, it can be generally assumed that the unmodeled interference is white and proportional to the identity matrix, so that Rii=σn2I in Equation 38.
If a repetition code of length K is used, standard array processing theory suggests that up to K−1 interferers can be cancelled and that the remaining degrees of freedom contribute to the array gain. Thus the array gain will be K-U, where K is number of degrees of freedom and U is the number of strong co-channel emitters. In one example of a receiver, the processing steps 101-104 are shown in
Stacked Carrier Sparse Matrix Inversion Technique
With reference to
x=Ad+i
{circumflex over (d)}=wHx (eq. 40)
w=Rii−1A(I+AHRii−1A)−1. (eq. 41)
The meaning of Q is altered in this section to consider all signals from all interfering base stations, so that dq represents the information symbol associated with the q′th informational element, and where 1:Q, includes all the informational elements from all base stations. Each informational element is spread over R pseudo-random frequency subcarriers, and the R frequencies chosen, are nearly random from one column to the next. It can be expected that R<<K. An interfering base station will have typically more than one informational element. Therefore, for the downlink MAP application, a single base station may be devoted to more than one column of the channel matrix A. Each qth column will typically be very sparse, having nonzero entries only at the R frequencies over which the transmitted information symbol dq is spread.
In certain embodiments, optimal linear despreading weights can be computed from Equation 41. Although both the row and column dimensions of A are potentially large, A is extremely sparse with only a fraction (R/K) of the entries being nonzero. In the limit as K approaches the size of the total number of subcarriers in the OFDM symbol, it can be expected that the column dimension is equal to C≡UK/R, where U is the number of interfering emitters. Thus provided that U<R, an over-determined system results that can be inverted for some signal processing gain. The interference covariance Rii will typically be modeled here as white noise and therefore a scalar of the identity, though a simple extension can also allow for a diagonal covariance matrix.
The inversion in Equation 41 can be achieved by exploiting the sparsity of A. Certain embodiments employ a QR-decomposition on A using Givens rotations such that A=QR, with Q a Unitary matrix and R an upper triangular matrix. Assuming for the purpose of this analysis that Rii=σ2I,
The R1 matrix can be found by employing a sparse QR algorithm (Givens rotations) to obtain the augmented matrix:
Since only the columns of w associated with the informational elements in the base station associated with a given mobile station are required, computations are further reduced to:
{circumflex over (d)}1=I1R+−1R+−HAHx,
where I1 is a C1×C truncated identity matrix with the top C−C1 rows removed corresponding to the out of cell informational elements and where it is assumed that the bottom C1 elements of d contain the in-cell informational elements. Rather than compute the inverse, back substitution can be used to implement multiplication by R+−1R+−H. Back substitution is preferable in this case since R+ should still be relatively sparse. The bottom of d is used so that back substitution can still proceed easily on the truncated {circumflex over (d)} output. At a high level, the steps 110-116 involved in the implementation of the despreader for this case are shown in
Space Time Adaptive Beam-Forming
It is contemplated that certain embodiments may beamform directly in the frequency domain over a narrow frequency band or where the frequencies are spread but incorporated into the channel or steering vector. Wide band beam-forming in the time domain may also be used, where the beam-forming would be facilitated by the transmission of a known training sequence. For example, in OFDM systems training may comprise training of a beam-forming temporal process in the time domain which would permit conventional beam-forming over each subcarrier when transferred to the frequency domain.
The beam-forming problem in the time domain can be formulated as a least squares estimation problem which typically is equivalent to the maximum likelihood estimate under various assumptions. In one example, a time domain beam-former, or space-time adaptive beam-former (STAP) takes the form:
where d(n) is defined in Equation 37, and W(k) is a Ms×Q beam-forming matrix and where Ms=MK is the dimension of the received data vector x(n) . It can be assumed that, in the time domain, the waveform is optionally received over a set of band pass filters, one filter for each stacked carrier. Note also that the filter can be non-causal in order to accommodate the cyclic prefix typically used in OFDM. With the subscriber advancing its transmission gate, to remove propagation delays, important waveform information will be present in the cyclic prefix.
In certain embodiments, it is desirable to minimize the MSE objective function written as the time averaged error over n:
μ≡<∥{circumflex over (d)}(n)−d(n)∥2>n.
Setting the first derivatives to zero, the necessary conditions for a global optimum of the convex problem can be obtained. The derivatives are:
where
Rxx(k′−k)≡<x(n−k)xH(n−k′)>n
Rxd(−k)≡<x(n−k)dH(n)>n.
For OFDM waveforms, the time shifts can be viewed as cyclic shifts. Setting the derivatives to 0, the necessary conditions force a solution of the form:
W=Rxx−1RXd,
where
Because of the Toeplitz structure of Rxx there exist fast algorithms for inverting the Rxx matrix and solving for W. Indeed the necessary conditions,
can be solved by taking the Fast Fourier Transform of both sides (after choosing K1+K2+1 to be a power of 2), so that in the Fourier domain with index m the necessary conditions become:
{tilde over (R)}xx(−m){tilde over (W)}(m)={tilde over (R)}xd(−m) (eq. 58)
where {tilde over ( )} is used to indicate the Fourier transform.
A summary of the steps 121-127 required to obtain the linear STAP beam-former from the signal received at antennae 120 is provided in
Channel Estimation
Turning now to
For the purpose of this description, it can be assumed that a known wideband training sequence 134 is transmitted from a given base station. This assumption may be generalized to include training sequences from several nearby base stations. Base stations that are further out can be modeled as quasi-stationary noise processes. For this scenario, there is a space-time model in the time domain:
where h(n) is an M×1 impulse response sequence, sj(n) is a training sequence and i(n) is an interference plus noise process. Note that in this formulation hj(n) includes both the channel propagation and any transmit linear combining weights used at a given emitter.
The interference process may comprise a sum of many out of cell transmissions and can be modeled as a Gaussian MA process. Therefore, it is assumed that:
where it can be assumed that B(0)=I and that u(n) is a complex Gaussian noise process independent over n and u(n)˜CN1M(0, Ruu). It is further assumed that there are 1-1 mappings between the processes, x(n)⇄i(n)⇄u(n). From this the conditional distribution is:
where
H(k)≡(h1(k), h2(k), . . . , hJ(k))
s(n)=(s1(n), s2(n), . . . , sJ(n))T.
The joint distribution can be written from this as:
where
Therefore, for maximum likelihood (ML) estimation purposes the log likelihood is:
Although ML estimation is used in this example for channel estimates, it will be assumed that u(n−q)=0 for large enough q. For the environment of this example, this assumption is nearly valid, since the training sequences have finite extent. However, the primary reason for taking the assumption is to obtain a generalized version of the Yule-Walker equations, which are consistent and stable solutions to the channel estimation problem. ρML is differentiated by the unknown channel matrices to obtain the necessary conditions.
The necessary conditions for the estimation of H(k), and B(k) are:
It will be appreciated that the inverse spatial covariance matrix Ruu−1 can be canceled from both sides of the necessary conditions. By changing variables n′=n−q and sum over n′ and divide both sides by the time support length of the training sequences, then:
where
Rxs(k)≡<x(n+k)sH(n)>n
Rss(k)≡<s(n+k)sH(n)>n
Rsu(k)≡<s(n+k)uH(n)>n
Rxu(k)≡<x(n+k)uH(n)>n
Ruu(k)≡<u(n+k)uH(n)>n
and where the time averages are taken over the support (non-zero elements) of s(n) and u(n) . Further, the convention that the data components x(n) are defined to be 0 when indexed outside of the collection interval may be adopted. This may be expressed as:
Rxv<CRvv,
where
Rxv is an M×(KM+KJ+K) matrix, C is a M×(KM+KJ+K) matrix and Rvv is an (KM+KJ+K)×(KM+KJ+K) matrix. If all of the second order statistics are available, then a solution to the problem would be to compute:
C=RxvRvv−1. (eq. 46)
Wherein, the Rxv matrix includes components of Rxs and Rxu. Rxs is the cross correlation between the receiver data and the reference signal as defined above. An example of such a correlator is depicted as Xcorrelator 132 in
However, a causality dilemma exists with regards to the temporally whitened noise process u(n) . In order to apply the autoregressive (AR) filter B(k) to x(n) to get u(n) in Equation 43 it is necessary to know both B(k) and H(k) . This can be accomplished using a bootstrapping technique that provides initial estimates for these quantities. The bootstrapping technique employs the assumption that the cross correlation terms between s(n) and u(n) are zero, Rsu(k)=0. This immediately decouples the estimation of H(k) from B(k) and thus the H(k) can be determined by direct correlation of the training sequences s(n) with x(n) .
Given H(k) the signal component excited by the s(n) can be subtracted out of x(n) , leaving i(n). The latter can be temporarily whitened using standard blind linear system identification techniques as described by Orfandis, independently applied to each antenna feed.
Once initial channel matrices H(k) and B(k) are obtained, the inverse filter in Equation 43 can be applied to obtain the u(n) process. The normal equations in Equation 46 can then be solved using fast recursive techniques for block Toeplitz matrices. This in turn permits improved estimation of the channel matrices.
Certain embodiments use ML estimation to obtain R:
{circumflex over (R)}uu=<u(n)u(n)H>n.
Once the channel estimates are obtained, they can be used to create models for A and Rii in the frequency domain for any subcarrier of an OFDM system. For frequency subcarrier f the channels can be written as:
where N is the length of the discrete Fourier transform and D(f)≡−B−1(f). All of the frequency components can be found using fast Fourier transforms (FFT). If an AR model is used for i(n), D(f) can be computed directly, making it possible to find the inverse covariance for all fusing a single matrix inverse.
Observation of the magnitudes of the elements of H(k) facilitates the “thresholding” of these values to obtain an estimate of the time support (number of nonzero samples) and an indication of which users are transmitting. For the latter, the peak lag (the largest magnitude of H(k)) can be used as a screen to determine which emitters are actually transmitting during a given transmission block or OFDM symbol, since each training sequence will be associated with a unique emitter.
A high level block diagram of the channel estimation process is shown in
Bootstrapping H(k) and B(k).
Certain embodiments employ a bootstrapping procedure that may be summarized in the following steps:
where D(0)=−I . The Yule Walker equations for this problem yield:
where Rjj(q)≡<i(n+q)i(n)H>n. In matrix form this can be written as:
rJ=RJJD
RJJ−1rJ=D,
where
Once D(k) is obtained, an estimate for B(k) can be obtained by using the inverse filter to generate u(n), or by exciting the filter with a unit impulse and then obtaining the first K terms of the impulse response. u(n) can also be used directly in the estimation procedure in Equation 46.
In certain embodiment, only the bootstrap method is used to model the interference process and to train the FIR filter responses H(k) . For the frequency domain modeling B(f)=−D−1(f).
Multiple Transmit Antennas
A channel estimation procedure according to certain aspects of the invention can be extended to handle the case where the emitters have multiple antennas. One receiver model can be extended such that:
where hjm(n) is the channel seen from the m′th transmit antenna and the j′th emitter and sjm(n) is the complex information symbol transmitted from emitter j out of antenna m at time sample n. It becomes apparent that the m and j indices play the same role as the j indices played in the prior analysis. A simple Cartesian product mapping (j, m)→j′ to a new set of indices j′ yields the equation:
Since this is essentially the same framework as provided in the previous analysis, all of the previous results of the previous framework can apply. If knowledge of the full channel matrices is required, then this approach puts a stronger limit on how many emitters can be processed, due to both computational constraints and due to array loading constraints, depending on the number of samples or time bandwidth product (TBP) collected.
In most cases of interest, it can be assumed that a fixed set of transmit weights will be used at each transmitter and channel estimates can be performed by treating those weights as though they were part of the channel. This then provides a starting point of the analysis in Equation 42.
Data Covariance Approach
In certain embodiments the received data process may be modeled directly as a colored Gaussian noise process without attempting to estimate the interference noise process. This approach may provide the advantage in that it does not require coupling the estimation of the interference process to the estimation of the individual channels from each emitter. The received data vector may be modeled directly in the same way that the interference is modeled, using either the MA model:
or the easier to estimate AR model:
where Dx(0)=−I . As in the interference case, the AR mode coefficients can be solved directly from the Yule Walker equations:
where
Rxx(q)≡<x(n+q)x(n)H>n. (eq. 50)
In matrix form:
rX=RXXD
RXX−1rX=D, (eq. 51)
where
Once the data process is estimated in the time domain, the frequency domain version can be obtained by noting the following relationships:
where Ru
This approach can be further extended by applying the same process to bandlimited signals at the output of a band pass filter. Thus independent sets of signals can be considered at the output of multiple band pass filters. If there are K band pass filters then there would be needed only K matrix inversions of Ru
A data AR model estimator is illustrated in
Non Causal Filters
In certain embodiments, the implementation of a “localized” non-causal model for the temporal filters is of interest because of the use of a cyclic prefix in most OFDM waveforms. The cyclic prefix can create channels that appear to have non-causal impulse responses. Indeed a bandlimited unit impulse will have energy at negative time values prior to transmission, once the cyclic prefix is added. The received data model can be examined and extended to handle this situation. Thus, from Equation 49:
where Dx(0)=−I . Minimizing the variance of ux(n), and using Equation 50, the Yule Walker equations are:
It is apparent then, that these relations hold independent of the ux(n) spatial coloring or non identity value of Ru
It will be appreciated that the entries corresponding to the zero index are omitted. The equations can then be solved from Equation 51. A similar extension to the direct estimation of non-causal channel responses can be employed.
Adopting the multi-user non-causal channel model from Equation 42:
the Yule-Walker equations can then be written as:
The equations are solved by H=RxSRSS−1.
Frequency Domain Versions
In certain embodiments, the Yule Walker Equations can be solved in the frequency domain by noting that a convolution is just a multiply in the frequency domain. However, FFTs of different sizes and/or decimation may be required because the cross correlations and the convolutions with the channels can have different time support. For example, by taking the DFT of both sides of Equation 54:
{circumflex over (R)}xs(ejω)=Ĥ(ejω){circumflex over (R)}ss(ejω), (eq. 55)
where {circumflex over (·)} the notation is used to indicate the transform. In this example, it is assumed that a truncated transform for
as though the support for H(k) was confined to [−K1, K2]. Using the Discrete Fourier Transform yields:
{circumflex over (R)}xs(ejω)={circumflex over (X)}(ejω)ŝH(ejω)
{circumflex over (R)}ss(ejω)=ŝ(ejω)ŝH(ejω)
{circumflex over (X)}(ejω)=Ĥ(ejω)ŝ(ejω). (eq. 56)
The latter equation is undetermined unless constraints are put on Ĥ(ejω), (e.g. finite time support). The easiest way to handle a finite time support constraint in the frequency domain is to solve Equation 55 in the frequency domain using a DFT of length K1+K2+1. Then:
Ĥ(ejω)={circumflex over (R)}xs(ejω){circumflex over (R)}ss−1(ejω)
can be set for ω=2πq/ N, q=−K1. . . K2 . This is computationally cheaper than solving Equation 54 directly in the time domain. The simplifications in Equation 56 typically cannot be applied here because the DFT is truncated. It is also possible to use FFT techniques to solve the received data modeling problem by taking the DFT of both sides of Equation 53.
Precomputations and Single Emitter Analysis
In certain embodiments, certain computations related to the computation of H(k) can be computed in advance of any received data and stored in memory. To further simplify the analysis the assumption of computing the channel for a single emitter can be considered, because this assumption is likely to be sufficient to obtain a near optimal linear beam-former. The latter assertion arises from the fact that this is true in the absence of multipath. The joint steering vector estimate is not needed to obtain optimal beam-forming weights.
Assuming a single emitter, then the cross correlation statistic may be written:
where X is the M×N received (non-conjugated) data matrix. The n′th column of X is the data vector over M antennas received at time sample n. Dk is the circular shift operator corresponding to a delay or right shift of k samples and s is the N×1 conjugated training signal whose n′th element is s*(n). Defining
S≡[D−K
the channel estimator becomes:
H=XS(SHS)−1.
Typically, the matrix S(SHS)−1 can be precomputed. A straightforward extension to the multiple user case can also be made and the channel estimating matrix may also be precomputed in that case.
Waveform Design
Certain embodiments address a number of design parameters when determining what training waveforms should be used to obtain channel estimates. Parameters that are addressed include constraints imposed by standards such as WiMAX, and the efficiency of the estimation procedure. In one embodiment, design criteria include
In certain circumstances, some of these criteria and goals may conflict with other criteria and goals. In certain embodiments, criteria are weighted according to the design priorities of the system. Each goal may offer a mathematical and in some cases linear constraint and may be associated with a mathematical objective function. The constraints and objectives can be summed together with an appropriate weighting. Thus the design of these waveforms can be obtained using parameter optimization. One approach for doing this is to deploy stochastic global parameter optimization techniques.
Time Domain Preamble Symbol Design
Certain embodiments provide systems compliant with promulgated standards. In one example, consistent with requirements of the WiMAX standard, one possible time domain preamble symbol 150 comprises a pseudo-noise (PN) sequence having a length of 512 as illustrated in
Synchronization Procedure with Time Domain Preamble
Certain embodiments provide a mobile station (MS) that stores a sufficient number of PN sequences to cover those used by interfering base stations. Each BS can use a unique PN sequence. Initially, the MS searches for the strongest PN sequence in order to obtain frame timing information. When the MS obtains the frame timing information and decodes control channel information successfully, the MS can setup a connection with this BS. During the initial synchronization search, the MS can not only search the strongest PN sequence, but also can search the second “strongest” and third “strongest” paths. After the connection between the MS and BS has been established, the BS may provide the PN sequences used by the neighboring cells to the MS. The number of PN sequences, the PN generator and the neighboring cell messages are typically chosen according to the network geometry and by the criterion suggested earlier.
Channel Interpolation and Extrapolation in Time Varying Channels
Certain embodiments extend the technique to handle time varying channels by proposing various schemes that permit the interpolation of the channel from one time block to the next. This is readily accomplished by further parameterizing the channel matrices, Ruu, B(k), H(k) and D(k) by a continuous time offset t. It can be assumed that the channel is sampled at discrete times tq. The channel is assumed to be quasi-stationary during the training burst at time tq. Possible interpolation or extrapolation schemes include:
Certain embodiments use model based interpolation, moving specular reflectors and their known effects on the channel are modeled. Each of these types of interpolation and extrapolation can also be performed as needed in the frequency domain.
Simplifications and Additional Embodiments
Certain embodiments employ one or more simplifications of the techniques described above. Some simplifications allow a reduction in hardware complexity. Also channel models used as downlink channels can be deployed for use in uplink applications. In one example, time division duplex systems (TDD) can exploit channel reciprocity including the use of receiver weights as transmit weights. Thus knowledge of the channel as a function of frequency can greatly facilitate linear beam-forming/stacked carrier spreading at both ends of the link. Uplink processing may proceed using the same basic signal processing structure.
Many simplifications can be considered in the area of reducing the complexity of channel estimation. In certain embodiments, it may be assumed that Rsu(k)=0, so that the estimation of the individual channels, H(k), and the estimation of the interference statistics B(k) or D(k) would decouple. Further simplifications along these lines assume that the training signals sj(n) are orthonormal or even that they are white, that is orthogonal to shifts, sj(n−k) ⊥sq(n) . This would completely diagonalize Rss in Equation 48 making the solution of the Yule Walker equations trivial, requiring only cross correlations with sj(n−k).
In certain embodiments, Hadamard codes can be used for sq(n), making the correlation over multiple emitters (q), much more rapid, whilst maintaining orthogonality. In certain embodiments, fast convolution algorithms may be employed to quickly obtain the correlations over multiple lags. To further simplify processing, certain embodiments also attempt to learn the channels of all the nearby emitters and then treat the interference process as white noise, thereby eliminating the need for certain estimations.
Additional Descriptions of Certain Aspects of the Invention
The foregoing descriptions of the invention are intended to be illustrative and not limiting. For example, those skilled in the art will appreciate that the invention can be practiced with various combinations of the functionalities and capabilities described above, and can include fewer or additional components than described above. Certain additional aspects and features of the invention are further set forth below, and can be obtained using the functionalities and components described in more detail above, as will be appreciated by those skilled in the art after being taught by the present disclosure.
With reference to
Certain embodiments of the invention provide specialized time domain training sequences 1901 for use in channel estimation at 1902 adhering to one or more design criterion. In some of these embodiments, global stochastic parameter estimation techniques are used to facilitate the design of the training sequences. In some of these embodiments, time domain training sequences that perform simple cross correlation are used to obtain a channel estimate for use in stacked carrier beamforming and/or for use in OFDM based spatial beamforming at 1906.
Certain embodiments of the invention provide systems and methods that use time domain training sequences to solve Yule Walker equations. In some of these embodiments, estimation of the interference noise process is provided. In some of these embodiments, bootstrapping techniques enable a first attempt to estimate the interference process and remove it from the environment, prior to solving the joint Yule Walker equations. In some of these embodiments, direct data process estimation is used including an inverse and/or an AR model.
In some of these embodiments, at least one of fast convolution and FFT techniques facilitate an economical solution of the Yule Walker equations and/or multiple cross correlations. In some of these embodiments, data process AR model facilitate direct computation of an inverse covariance matrix, in the frequency domain over some or many subcarriers, without having to perform additional matrix inversions. In some of these embodiments, an inverse interference process AR model is used to directly compute the inverse interference covariance matrix, in the frequency domain over one or more subcarriers, without having to perform additional matrix inversions.
In some of these embodiments, one or more of a data process and an interference process AR model is used to directly compute inverse covariance matrices for facilitating computation of beamforming weights at 1904 in
Certain embodiments of the invention provide systems and methods for interpolating or extrapolating matrix channel estimates and whitening matrix filter estimates over time and frequency. Some of these embodiments include the use of one or more of linear interpolation, log linear interpolation, linear interpolation of the logarithm of channel quantities, polynomial interpolation, log polynomial interpolation, spline interpolation and log spline interpolation. In some of these embodiments, interpolation and extrapolation is used for maintaining linear beamforming weights as a function of time or frequency.
Certain embodiments of the invention provide systems and methods that use state space or filter based modeled interpolators in the frequency domain or time domain to interpolation of the channels, or whitening matrix-filters over time or frequency, for maintaining linear beamforming weights as a function of time or frequency. In some of these embodiments, a linear weight computation procedure models all important emitter channels, and treats unmodeled interference as white noise. In some of these embodiments, a linear weight computation procedure models one or more important emitter channels, and models either the interference process or the entire data process using inverse modeling or even direct modeling using standard system identification procedures. In some of these embodiments, a deinterleaver is used for facilitating the use of stacked carrier processing by forming vectors in stacks and clustering vectors that are adjacent in frequency. In some of these embodiments, the system is an IEEE 802.16 compliant system. In some of these embodiments, the system uses subcarrier permutations in repetition codes.
Certain embodiments of the invention provide systems and methods of interference cancellation comprising a stacked carrier for enhancing interference cancellation for a set of repetition codes spread over frequency subcarriers in an arbitrary manner. Some of these embodiments further comprise identification of interfering spread waveforms that have at least two carriers that overlap. In some of these embodiments, non-overlapping subcarriers are treated as zeros in the measured steering vectors. In some of these embodiments, a stacked carrier is used to enhance interference cancellation for large spreading factor and for exploiting sparse channels to affect a matrix inverse when computing linear beamforming/despreading weights. In some of these embodiments, backsubstitution is used to simplify processing wherein data is ordered such that the in-cell data is at the bottom of the vector.
In some of these embodiments, space time adaptive processing (STAP) is used to facilitate beamforming of communications signals for OFDM waveforms. In some of these embodiments, a processing chain is provided for estimating communication signals, comprising a collection of first and second order statistics, using a matrix fast filter estimation, using a bank of bandpass filters to support stacked carrier, and using FFTs to improve computational complexity to facilitate beamforming in the frequency domain for OFDM waveforms. In some of these embodiments, non-causal filters provide fast matrix valued adaptive space time processing for interference cancellation in OFDM and 802.16 (WiMax) systems.
Although the present invention has been described with reference to specific exemplary embodiments, it will be evident to one of ordinary skill in the art that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Although the present invention has been described with reference to specific exemplary embodiments, it will be evident to one of ordinary skill in the art that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. Embodiments may include various operations as set forth above or fewer or more operations, or operations in an order different from the order described.
Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow as well as the legal equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 13/411,510 filed Mar. 2, 2012, entitled “Wireless Communications Systems and Methods,” now U.S. Pat. No. 9,088,446, which is a divisional application of U.S. patent application Ser. No. 12/276,261 filed Nov. 21, 2008, entitled “Systems and Methods for Channel Based Beamforming for Stacked Carrier Multiple Access,” now U.S. Pat. No. 8,300,742, which claims priority from U.S. Provisional Patent Application No. 60/989,802 filed Nov. 21, 2007, entitled “Systems and Methods for Channel Based Beamforming for Stacked Carrier Multiple Access,” which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5982327 | Vook et al. | Nov 1999 | A |
6128276 | Agee | Oct 2000 | A |
6512737 | Agee | Jan 2003 | B1 |
6598014 | Rabideau et al. | Jul 2003 | B1 |
6788661 | Ylitalo et al. | Sep 2004 | B1 |
7269238 | Lee et al. | Sep 2007 | B2 |
7327800 | Oprea et al. | Feb 2008 | B2 |
7970081 | Guey | Jun 2011 | B2 |
8064532 | Maltsev et al. | Nov 2011 | B2 |
8761312 | Stamoulis | Jun 2014 | B2 |
20020027957 | Paulraj et al. | Mar 2002 | A1 |
20020176485 | Hudson | Nov 2002 | A1 |
20040001554 | Sun | Jan 2004 | A1 |
20040174940 | Kim | Sep 2004 | A1 |
20050111538 | Wernaers | May 2005 | A1 |
20050276355 | Chow | Dec 2005 | A1 |
20060023799 | Kang et al. | Feb 2006 | A1 |
20060274841 | Wang et al. | Dec 2006 | A1 |
20060294170 | Matsuoka et al. | Dec 2006 | A1 |
20070041475 | Koshy et al. | Feb 2007 | A1 |
20070195974 | Li et al. | Aug 2007 | A1 |
20070201349 | McCoy | Aug 2007 | A1 |
20070211809 | Kim | Sep 2007 | A1 |
20070280367 | Nakao et al. | Dec 2007 | A1 |
20070281640 | Coupain et al. | Dec 2007 | A1 |
20080037691 | Papathanasiou | Feb 2008 | A1 |
20080076477 | Hedayat | Mar 2008 | A1 |
20080089396 | Zhang et al. | Apr 2008 | A1 |
20080144730 | Akella et al. | Jun 2008 | A1 |
20080273639 | Mikhael et al. | Nov 2008 | A1 |
20090052514 | Sampath | Feb 2009 | A1 |
20110026578 | Chen et al. | Feb 2011 | A1 |
20110182241 | Hansen et al. | Jul 2011 | A1 |
20110317683 | Branlund et al. | Dec 2011 | A1 |
20120033618 | Wallace et al. | Feb 2012 | A1 |
20120057080 | Kim et al. | Mar 2012 | A1 |
20130089052 | Kim | Apr 2013 | A1 |
Entry |
---|
Bromberg, et al., The Use of Programmable DSPs in Antenna Array Processing, Oct. 2001, pp. 57-95, John Wiley and Sons Ltd. |
Golub, et al., Matrix Computations, 1996, The John Hopkins University Press, Baltimore Maryland. |
Haykin, Simon, Adaptive Filter Theory, 2002, Prentice Hall Inc., Upper Saddle River, New Jersey. |
Maryak, et al., Global Optimization via SPSA, 1999, The John Hopkins University Applied Physics Laboratory, Laurel, Maryland. |
Myers, Douglas, G., Digital Signal Processing, Efficient Convolution and Fourier Transform Techniques, 1990, pp. 85-112, Prentice Hall of Australia Pty. Ltd. |
Orfanidis, S.J., Optimum Signal Processing: An Introduction, 1988, McGraw Hill Publishing, New York, New York. |
Struckman, et al., A Multidimensional Bayesian Global Search Method Which Incorporates Knowledge of an Upper Bound, University of Louisville, 1989, pp. 591-596. |
Thirumalai, S., High Performance Algorithms to Solve Toeplitz and Block Toeplitz Matrices, 1996, Ph.D. Thesis—University of Illinois, Urbana-Champaign. |
Verdu, S., Multiuser Detection, 1998, Cambridge University Press, New York, New York. |
Yoshii, et al.,“Interference Mitigation with Coordinated Symbol Repetition”, IEEE, S802.16M—Jul. 2011, Nov. 7, 2007, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20150381259 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
60989802 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12276261 | Nov 2008 | US |
Child | 13411510 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13411510 | Mar 2012 | US |
Child | 14804094 | US |