Wireless digital audio music system

Information

  • Patent Grant
  • 9107000
  • Patent Number
    9,107,000
  • Date Filed
    Tuesday, January 24, 2012
    13 years ago
  • Date Issued
    Tuesday, August 11, 2015
    9 years ago
Abstract
A wireless digital audio system includes a portable audio source with a digital audio transmitter operatively coupled thereto and an audio receiver operatively coupled to a headphone set. The audio receiver is configured for digital wireless communication with the audio transmitter. The digital audio receiver utilizes fuzzy logic to optimize digital signal processing. Each of the digital audio transmitter and receiver is configured for code division multiple access (CDMA) communication. The wireless digital audio system allows private audio enjoyment without interference from other users of independent wireless digital transmitters and receivers sharing the same space.
Description
BACKGROUND OF THE INVENTION

This invention relates to audio player devices and more particularly to systems that include headphone listening devices. The new audio system uses an existing headphone jack (i.e., this is the standard analog headphone jack that connects to wired headphones) of a music audio player (i.e., portable CD player, portable cassette player, portable A.M./F.M. radio, laptop/desktop computer, portable MP3 player, and the like) to connect a battery powered transmitter for wireless transmission of a signal to a set of battery powered receiving headphones.


Use of audio headphones with audio player devices such as portable CD players, portable cassette players, portable A.M./F.M. radios, laptop/desktop computers, portable MP3 players and the like have been in use for many years. These systems incorporate an audio source having an analog headphone jack to which headphones may be connected by wire.


There are also known wireless headphones that may receive A.M. and F.M. radio transmissions. However, they do not allow use of a simple plug in (i.e., plug in to the existing analog audio headphone jack) battery powered transmitter for connection to any music audio player device jack, such as the above mentioned music audio player devices, for coded wireless transmission and reception by headphones of audio music for private listening without interference where multiple users occupying the same space are operating wireless transmission devices. Existing audio systems make use of electrical wire connections between the audio source and the headphones to accomplish private listening to multiple users.


There is a need for a battery powered simple connection system for existing music audio player devices (i.e., the previously mentioned music devices), to allow coded digital wireless transmission (using a battery powered transmitter) to a headphone receiver (using a battery powered receiver headphones) that accomplishes private listening to multiple users occupying the same space without the use of wires.


SUMMARY OF THE INVENTION

The present invention is generally directed to a wireless digital audio system for coded digital transmission of an audio signal from any audio player with an analog headphone jack to a receiver headphone located away from the audio player. Fuzzy logic technology may be utilized by the system to enhance bit detection. A battery-powered digital transmitter may include a headphone plug in communication with any suitable music audio source. For reception, a battery-powered headphone receiver may use embedded fuzzy logic to enhance user code bit detection. Fuzzy logic detection may be used to enhance user code bit detection during decoding of the transmitted audio signal. The wireless digital audio music system provides private listening without interference from other users or wireless devices and without the use of conventional cable connections.


These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Some aspects of the present invention are generally shown by way of reference to the accompanying drawings in which:



FIG. 1 schematically illustrates a wireless digital audio system in accordance with the present invention;



FIG. 2 is a block diagram of an audio transmitter portion of the wireless digital audio system of FIG. 1;



FIG. 3 is a block diagram of an audio receiver portion of the wireless digital audio system of FIG. 1; and



FIG. 4 is an exemplary graph showing the utilization of an embedded fuzzy logic coding algorithm according to one embodiment of the present invention.





DETAILED DESCRIPTION

The following detailed description is the best currently contemplated modes for carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention.


Referring to FIGS. 1 through 3, a wireless digital audio music system 10 may include a battery powered transmitter 20 connected to a portable music audio player or music audio source 80. The battery powered wireless digital audio music transmitter 20 utilizes an analog to digital converter or ADC 32 and may be connected to the music audio source 80 analog headphone jack 82 using a headphone plug 22. The battery powered transmitter 20 may have a transmitting antenna 24 that may be omni-directional for transmitting a spread spectrum modulated signal to a receiving antenna 52 of a battery powered headphone receiver 50. The battery powered receiver 50 may have headphone speakers 75 in headphones 55 for listening to the spread spectrum demodulated and decoded communication signal. In the headphone receiver 50, fuzzy logic detection may be used to optimize reception of the received user code. The transmitter 20 may digitize the audio signal using ADC 32. The digitized signal may be processed downstream by an encoder 36. After digital conversion, the digital signal may be processed by a digital low pass filter. To reduce the effects of channel noise, the battery powered transmitter 20 may use a channel encoder 38. A modulator 42 modulates the digital signal to be transmitted. For further noise immunity, a spread spectrum DPSK (differential phase shift key) transmitter or module 48, is utilized. The battery powered transmitter 20 may contain a code generator 44 that may be used to create a unique user code. The unique user code generated is specifically associated with one wireless digital audio system user, and it is the only code recognized by the battery powered headphone receiver 50 operated by a particular user. The radio frequency (RF) spectrum utilized (as taken from the Industrial, Scientific and Medical (ISM) band) may be approximately 2.4 GHz. The power radiated by the transmitter adheres to the ISM standard.


Particularly, the received spread spectrum signal may be communicated to a 2.4 GHz direct conversion receiver or module 56. Referring to FIGS. 1 through 4, the spread spectrum modulated signal from transmit antenna 24 may be received by receiving antenna 52 and then processed by spread spectrum direct conversion receiver or module 56 with a receiver code generator 60 that contains the same transmitted unique code, in the battery powered receiver 50 headphones. The transmitted signal from antenna 24 may be received by receiving antenna 52 and communicated to a wideband bandpass filter (BPF). The battery powered receiver 50 may utilize embedded fuzzy logic 61 (as graphically depicted in FIGS. 1, 4) to optimize the bit detection of the received user code. The down converted output signal of direct conversion receiver or module 56 may be summed by receiver summing element 58 with a receiver code generator 60 signal. The receiver code generator 60 may contain the same unique wireless transmission of a signal code word that was transmitted by audio transmitter 20 specific to a particular user. Other code words from wireless digital audio systems 10 may appear as noise to audio receiver 50. This may also be true for other device transmitted wireless signals operating in the wireless digital audio spectrum of digital audio system 10. This code division multiple access (CDMA) may be used to provide each user independent audible enjoyment. The resulting summed digital signal from receiving summary element 58 and direct conversion receiver or module 56 may be processed by a 64-Ary demodulator 62 to demodulate the signal elements modulated in the audio transmitter 20. A block de-interleaver 64 may then decode the bits of the digital signal encoded in the block interleaver 40. Following such, a Viterbi decoder 66 may be used to decode the bits encoded by the channel encoder 38 in audio transmitter 20. A source decoder 68 may further decode the coding applied by encoder 36.


Each receiver headphone 50 user may be able to listen (privately) to high fidelity audio music, using any of the audio devices listed previously, without the use of wires, and without interference from any other receiver headphone 50 user, even when operated within a shared space. The fuzzy logic detection technique 61 used in the receiver 50 could provide greater user separation through optimizing code division in the headphone receiver.


The battery powered transmitter 20 sends the audio music information to the battery powered receiver 50 in digital packet format. These packets may flow to create a digital bit stream rate less than or equal to 1.0 Mbps.


The user code bits in each packet may be received and detected by a fuzzy logic detection sub-system 61 (as an option) embedded in the headphone receiver 50 to optimize audio receiver performance. For each consecutive packet received, the fuzzy logic detection sub-system 61 may compute a conditional density with respect to the context and fuzziness of the user code vector, i.e., the received code bits in each packet. Fuzziness may describe the ambiguity of the high (1)/low (0 or −1) event in the received user code within the packet. The fuzzy logic detection sub-system 61 may measure the degree to which a high/low bit occurs in the user code vector, which produces a low probability of bit error in the presence of noise. The fuzzy logic detection sub-system 61 may use a set of if-then rules to map the user code bit inputs to validation outputs. These rules may be developed as if-then statements.


Fuzzy logic detection sub-system 61 in battery-powered headphone receiver 50 utilizes the if-then fuzzy set to map the received user code bits into two values: a low (0 or −1) and a high (1). Thus, as the user code bits are received, the “if” rules map the signal bit energy to the fuzzy set low value to some degree and to the fuzzy set high value to some degree. FIG. 4 graphically shows that x-value −1 equals the maximum low bit energy representation and x-value 1 equals the maximum high bit energy representation. Due to additive noise, the user code bit energy may have some membership to a low and high as represented in FIG. 4. The if-part fuzzy set may determine if each bit in the user code, for every received packet, has a greater membership to a high bit representation or a low bit representation. The more a user code bit energy fits into the high or low representation, the closer its subsethood, i.e., a measure of the membership degree to which a set may be a subset of another set, may be to one.


The if-then rule parts that make up the fuzzy logic detection sub-system 61 must be followed by a defuzzifying operation. This operation reduces the aforementioned fuzzy set to a bit energy representation (i.e., −1 or 1) that is received by the transmitted packet. Fuzzy logic detection sub-system 61 may be used in battery-powered headphone receiver 50 to enhance overall system performance.


The next step may process the digital signal to return the signal to analog or base band format for use in powering speaker(s) 75. A digital-to-analog converter 70 (DAC) may be used to transform the digital signal to an analog audio signal. An analog low pass filter 72 may be used to filter the analog audio music signal to pass a signal in the approximate 20 Hz to 20 kHz frequency range and filter other frequencies. The analog audio music signal may then be processed by a power amplifier 74 that may be optimized for powering headphone speakers 75 to provide a high quality, low distortion audio music for audible enjoyment by a user wearing headphones 55. A person skilled in the art would appreciate that some of the embodiments described hereinabove are merely illustrative of the general principles of the present invention. Other modifications or variations may be employed that are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations may be utilized in accordance with the teachings herein. Accordingly, the drawings and description are illustrative and not meant to be a limitation thereof.


Moreover, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Thus, it is intended that the invention cover all embodiments and variations thereof as long as such embodiments and variations come within the scope of the appended claims and their equivalents.

Claims
  • 1. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising: a direct conversion module configured to capture packets and a correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said receiver virtually free from interference from transmission and reception device signals operating in the shared spectrum.
  • 2. A wireless digital audio headphone for receipt of a unique user code and a digital audio signal representation in the form of a packet, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said headphone independent of the operation of another headphone, said wireless digital audio headphone comprising: a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said digital audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation;a digital-to-analog converter generating an audio output of said original audio signal representation; anda module adapted to produce said generated audio output, wherein each user has their audio headphone configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in a shared wireless headphone spectrum.
  • 3. A wireless digital audio headphone comprising: a digital audio headphone receiver configured to receive an unique user code bit sequence and a original audio signal representation in the form of packets, said digital audio headphone receiver, capable of mobile operation and configured for direct digital coded wireless spread spectrum communication with a mobile digital audio transmitter, and said user has their headphone configured to communicate with their own transmitter; a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a digital demodulator configured for independent CDMA communication operation wherein a user has their own transmitter and receiver;a decoder operative to decode the reduced intersymbol interference coding of original audio signal representation;a digital-to-analog converter (DAC) generating an audio output of said original audio signal representation; anda module responsive to the unique user code bit sequence to produce said generated audio output wherein each user has their audio headphone configured to communicate with their own separate audio transmitter, said output virtually free from interference from transmission and reception device signals operating in the shared wireless headphone spectrum.
  • 4. The wireless digital audio headphone of claim 3, wherein the audio output is music.
  • 5. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread the spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising: a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation respective to said mobile digital audio receiver, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation;a digital-to-analog converter generating an audio output of said original audio signal representation; anda module adapted to produce said generated audio output, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in the shared spectrum.
  • 6. A mobile wireless digital audio receiver, configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread the spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said mobile wireless digital audio receiver comprising: fuzzy set membership functionality to enhance detection of said unique user code;a direct conversion module configured to capture packets and the correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a decoder operative to decode reduced intersymbol interference coding of said original audio signal representation;a digital-to-analog converter generating an audio output of said original audio signal representation; anda module adapted to produce said generated audio output, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in a shared spectrum.
  • 7. A wireless digital audio receiver, configured to receive an unique user code and a original audio signal representation, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said wireless digital audio receiver comprising: fuzzy set membership functionality to enhance detection of said unique user code;a direct conversion module configured to capture the correct bit sequence embedded in the received spread spectrum signal;a module adapted to produce said original audio signal representation, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals.
  • 8. A wireless digital coded music audio spread spectrum transmitter operatively coupled to a music audio source and configured to transmit a unique user code and an original audio signal representation in the form of packets, wherein said digital coded music audio transmitter coupled to said music audio source, and configured to be directly communicable with a mobile digital audio spread spectrum receiver, is capable of being moved in any direction during operation, said wireless digital coded audio transmitter comprising: encoding operative to encode said original audio signal representation to reduce intersymbol interference and aid in lowering signal detection error of said audio representation signal respective to said receiver and mobile said transmitter coupled to said music audio source;a digital modulator module configured for independent code division multiple access communication operation, wherein each user has their own separate transmitter configured to communicate with their receiver, said transmitter configured to wirelessly transmit said audio to be reproduced virtually free from interference from transmission and reception device signals operating in the wireless digital audio transmitter shared spectrum.
  • 9. A mobile wireless digital audio receiver capable of being moved in any direction during operation and configured to receive a unique user code and an original audio signal representation in the form of packets, said unique user code used to spread a spectrum of said signal and further configured for independent CDMA communication operation, said receiver independent of the operation of another receiver, said wireless digital audio receiver comprising: a spread spectrum receiver module configured to capture packets and a correct bit sequence within the packets aided by lowering signal detection error through reduced intersymbol interference coding of said original audio signal representation, said packets embedded in the received spread spectrum signal, the captured packets corresponding to the unique user code;a decoder operative to decode the reduced intersymbol interference coding of said original audio signal representation, wherein each user has their audio receiver configured to communicate with their own separate audio transmitter, and said audio virtually free from interference from transmission and reception device signals operating in the shared spectrum.
  • 10. A wireless digital coded audio spread spectrum transmitter operatively coupled to a audio source and configured to transmit a unique user code and an original audio signal representation in the form of packets, wherein said digital coded audio transmitter coupled to said audio source, and configured to be directly communicable with a mobile digital audio spread spectrum receiver, is capable of being moved in any direction during operation, said wireless digital coded audio transmitter comprising: an encoding module operative to encode said original audio signal representation to reduce intersymbol interference and aid in lowering signal detection error of said audio signal representation, said transmitter coupled to said audio source;a digital modulator module configured for independent code division multiple access communication operation, each user has their own separate transmitter configured to communicate with their receiver, said transmitter configured to wirelessly transmit said audio to be reproduced virtually free from interference from transmission and reception device signals operating in the wireless digital audio transmitter shared spectrum.
  • 11. The wireless digital audio receiver of claim 8, wherein the spread spectrum receiver module is further configured to utilize differential phase shift keying (DPSK) to demodulate said audio signal representation.
  • 12. The wireless digital audio receiver of claim 10, wherein the spread spectrum receiver module is further configured to utilize differential phase shift keying (DPSK) to demodulate said audio signal representation.
Parent Case Info

This continuation application claims the benefit of U.S. patent application Ser. No. 12/940,747, which was a continuation application claiming the benefit of U.S. patent application Ser. No. 12/570,343 filed Sep. 30, 2009, now U.S. Pat. No. 7,865,258, which was a continuation claiming the benefit of U.S. patent application Ser. No. 12/144,729 filed Jul. 12, 2008, now U.S. Pat. No. 7,684,885, which was a continuation claiming benefit of U.S. patent application Ser. No. 10/648,012 filed Aug. 26, 2003, now U.S. Pat. No. 7,412,294, which was a continuation-in-part claiming benefit from U.S. patent application Ser. No. 10/027,391, filed Dec. 21, 2001, for “Wireless Digital Audio System,” published under US 2003/0118196 A1 on Jun. 26, 2003, now abandoned, the disclosures of which are incorporated herein in their entireties by reference.

US Referenced Citations (59)
Number Name Date Kind
5048057 Saleh Sep 1991 A
5175558 DuPree Dec 1992 A
5420585 Adams May 1995 A
5491839 Schotz Feb 1996 A
5506861 Bottomley Apr 1996 A
5539769 Kosko Jul 1996 A
5668880 Alajajian Sep 1997 A
5721783 Anderson Feb 1998 A
5771441 Altstatt Jun 1998 A
5778022 Walley Jul 1998 A
5781542 Tanaka et al. Jul 1998 A
5822440 Oltman Oct 1998 A
5946343 Schotz et al. Aug 1999 A
5963583 Davidovici Oct 1999 A
6028764 Richardson Feb 2000 A
6072770 Ho Jun 2000 A
6097711 Okawa Aug 2000 A
6104913 McAllister Aug 2000 A
6115478 Schneider Sep 2000 A
6130643 Trippett et al. Oct 2000 A
6236862 Erten et al. May 2001 B1
6317039 Thomason Nov 2001 B1
6339706 Tillgren Jan 2002 B1
6366662 Giordano Apr 2002 B1
6373791 Ukita Apr 2002 B1
6381053 Fathallah Apr 2002 B1
6418558 Roberts et al. Jul 2002 B1
6424820 Burdick et al. Jul 2002 B1
6456645 Kurrat Sep 2002 B1
6678892 Lavelle et al. Jan 2004 B1
6781977 Li Aug 2004 B1
6898585 Benson et al. May 2005 B2
6978162 Russell Dec 2005 B2
6982132 Goldner et al. Jan 2006 B1
7035788 Nakajima Apr 2006 B1
7047474 Rhee et al. May 2006 B2
7099413 Chuang et al. Aug 2006 B2
7187948 Alden Mar 2007 B2
7215269 Lee May 2007 B2
7272410 Ito Sep 2007 B2
7277520 Kusubashi Oct 2007 B2
7292880 Lehtonen Nov 2007 B2
7295809 Moore Nov 2007 B2
7369532 Silvester May 2008 B2
7460477 Yata et al. Dec 2008 B2
7467344 Banerjee Dec 2008 B2
7505823 Bartlett Mar 2009 B1
7890661 Spurgat Feb 2011 B2
20010025358 Eidson et al. Sep 2001 A1
20020039424 Watanuki Apr 2002 A1
20020068610 Anvekar Jun 2002 A1
20020080288 Davies Jun 2002 A1
20020098878 Mooney Jul 2002 A1
20030130016 Matsuura Jul 2003 A1
20030223604 Nakagawa Dec 2003 A1
20040107271 Ahn Jun 2004 A1
20040215808 Homma Oct 2004 A1
20040223622 Lindemann et al. Nov 2004 A1
20040242278 Tomoda Dec 2004 A1
Foreign Referenced Citations (2)
Number Date Country
0840465 May 1998 EP
2261347 May 1993 GB
Non-Patent Literature Citations (6)
Entry
Bluetooth Specification version 1.1, Bluetooth SIG, www.bluetooth.com, Feb. 22, 2001.
Bluetooth Specification Version 1.0b, www.bluetooth.com, Dec. 1, 1999.
Mettala, Riku, Bluetooth Protocol Architecture version 1.0 White Paper, www.bluetooth.com.
Haartsen, Jaap, Bluetooth—The universal radio interface for ad hoc wireless connectivity, Ericsson Review No. 3, 1998.
Haartsen, Jaap, Bluetooth Radio System, Ericsson Radio Systems, B.V. Feb. 2000.
Anthony Ephremides, WTEC Study on Wireless Technologies and Information Systems, Jul. 2000.
Related Publications (1)
Number Date Country
20120128171 A1 May 2012 US
Continuations (4)
Number Date Country
Parent 12940747 Nov 2010 US
Child 13356949 US
Parent 12570343 Sep 2009 US
Child 12940747 US
Parent 12144729 Jul 2008 US
Child 12570343 US
Parent 10648012 Aug 2003 US
Child 12144729 US
Continuation in Parts (1)
Number Date Country
Parent 10027391 Dec 2001 US
Child 10648012 US