Wireless digital transmission system for loudspeakers

Information

  • Patent Grant
  • 7206417
  • Patent Number
    7,206,417
  • Date Filed
    Wednesday, December 29, 2004
    20 years ago
  • Date Issued
    Tuesday, April 17, 2007
    17 years ago
Abstract
This invention relates to a wireless digital transmission system for loudspeakers comprising: compression means for the file representing the digital audio signal of the “compact disc” type, a transmission device comprising means of converting this compressed signal into a series signal moving by packets going to a modulator circuit with phase quadrature and means of transmitting the signals exiting the modulator circuit with phase quadrature to the domestic network for feeding electricity;a receiving device comprising means of connecting to this domestic network and of extracting from the feed electrical signal, by a demodulator with phase quadrature, data packets moving the digital audio signal to convert it into a parallelized digital signal sent to a decompression circuit;means of converting the decompressed digital signals into an analog signal intended to feed a loudspeaker after adequate amplification.
Description
BACKGROUND OF THE INVENTION

This invention relates to a wireless digital transmission system for loudspeakers.


Some wireless loudspeaker systems are known in which an analog audio signal is converted into a frequency modulated signal, this frequency modulated signal being transmitted over the alternating current feeders of a household network. The signal received by the domestic network is then reconverted into an audio signal after extraction of the modulated frequency signal.


Such a teaching is disclosed in particular by patent U.S. Pat. No. 4,829,570. This patent further envisions the use of a compression device to make it possible to compress analog signals delivered by a compact disc reader whose wide dynamic range requires a very wide passband to make the frequency modulated transmission possible. The wide band and the significant deviations pose numerous problems that are solved in this document by the use of a compression circuit to reduce the total dynamic range of the audio signal. This document makes it possible for us already to become aware of a first difficulty, which is the limitation of stereophonic systems, especially using frequency modulation and operating with analog systems such as variable frequency oscillators.


When it is desired to improve simple stereophonic quality to stereophonic quality of the “digital CD” type, the amount of data to be transmitted is such that the passband very quickly limits the frequency modulation.


Finally, this type of system taught by patent U.S. Pat. No. 4,829,570 is acceptable for use for private purposes on the domestic network of a personal residence but can be difficult to implement in a building or even less in communities or commercial groupings. In fact, the music broadcast on the feeder network will be picked up at the same instant by all the loudspeakers installed and connected to the network. This poses a problem in the payment of royalties and it is thus desirable to provide a device that makes it possible to avoid general distribution.


Finally, such a device requires, to have the two stereophonic channels, providing a first carrier frequency for the first channel and a second carrier frequency for the second channel. These frequencies will have to be selected according to very precise conditions, which will also limit the passband possibilities.


SUMMARY OF THE INVENTION

A first object of the invention is to propose a wireless digital transmission system for loudspeakers that makes it possible to broadcast stereophonic signals of digital compact disc quality and/or to have remote control.


This first object is achieved by the fact that the wireless digital transmission system for loudspeakers comprises:

    • compression means for the file representing the digital audio signal of the “compact disc” type, a transmission device comprising means of converting this compressed signal into a series signal moving by packets going to a modulator circuit with phase quadrature and means of transmitting the signals exiting the modulator circuit with phase quadrature to the domestic network for feeding electricity;
    • a receiving device comprising means of connecting to this domestic network and of extracting from the fed electrical signal, by a demodulator with phase quadrature, the data packets moving the digital audio signal to convert it into a parallelized digital signal sent to a decompression circuit;
    • means of converting the decompressed digital signals into an analog signal intended to feed a loudspeaker after adequate amplification.


A second object is to make it possible to transmit several musical signals intended for different loudspeakers.


This object is achieved by the fact that the serialization means comprise means of inserting a destination address into the packets of serialized signals; and in that the reception means comprise means of comparing the address appearing in the packet received with the specific address at the receiving device to which the loudspeaker is connected.


According to another feature, the serialization device comprises means of multiplexing several fields of digital files representing a different audio signal intended for different addresses.


Another object of the invention is to propose a system that makes it possible to assure that royalties cannot be violated.


This third object is achieved by the fact that the transmission circuits comprise an encryption circuit and the connected receiving device comprises a decryption circuit using a secret key stored in the memory of the deserialization circuit.


According to another feature, the data from the digital signal are serialized according to a protocol comprising a first part consisting of protocol data, a second part consisting of the address of the recipient, a third part consisting of the digital signal or the multiplexed digital signals, and a fourth part consisting of end-of-protocol data.


According to another feature, the protocol comprises a fifth part consisting of control data for the loudspeakers.


According to another feature, the protocol comprises a sixth part consisting of at least one encryption key.


According to another feature, the system comprises means for including control commands in the series signal moving by packet, making it possible to have individual control of each loudspeaker.


According to another feature, the system comprises means of converting an analog signal to a digital signal, placed upstream from the means of compressing the file representing the audio signal, when the audio signal to be transmitted is of the analog type.





BRIEF DESCRIPTION OF THE FIGURES

Other features and advantages of this invention will appear more clearly from reading the following description made with reference to the attached drawings in which:



FIG. 1 represents a diagrammatic view of the electronic circuit that makes it possible to implement the invention;



FIG. 2 represents a diagrammatic view of an audiovisual system of the “jukebox” type in which the device of the invention can be used.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention will now be described in connection with FIG. 1 in which reference (13) designates the two conductors of a domestic network for feeding electric energy to a building or an establishment intended to receive the public or a group, such as, e.g., a bar, a large store, a sports stadium, etc. To this electric feed network is connected a transmission device (10) comprising the primary winding of a first transformer (108) that delivers, by its secondary winding and by a diode rectification circuit, a feed signal to a feed circuit (100) that extracts, from the alternating current signal of the rectified electric network, the signals necessary to feed the various circuits of the device. In parallel, to the primary winding of this first transformer (108), there is connected a second transformer (109) whose secondary winding is fed by a transistor by a modulation circuit (101) with phase quadrature. This circuit (101) has voltage fed to it by circuit (100) and receives, from a microcontroller (102), flows of data-packets (P1, P2) that represent digital data serialized according to a protocol (P) represented below. This protocol (P) comprises a first part (IP) consisting of protocol data, a second part (AD) consisting of the address of the recipient or addresses of each of the recipients, a possible third part (IC) consisting of control information for the loudspeakers, a possible fourth part (CE) consisting of an encryption key or several keys, each for one address, a fifth part (SNA) consisting of the audio digital signal or of multiplexed audio signals, each signal being associated with an address of the recipient and finally, a sixth part (IFP) consisting of the end-of-protocol data.


The signals are modulated in phase quadrature by circuit (101) on a carrier located between 200 and 300 kHz and are superimposed on the alternating signal of the electric network by transformer (109). The digital audio signals coming from the audio source, after compression, represent a digital data speed of 128 kilobits per second and are processed by microcontroller (102) to be sent by successive packets according to protocol (EP) explained above.


Microcontroller program (102) can be adjusted to perform multiplexing of several audio sources, making it possible, e.g., to send a piece of classical music to a first loudspeaker while sending at the same moment a piece of jazz music to a second loudspeaker, each having a specific address and its own decryption key.


In this case, device (10) addresses one or more fields to a user identified by a card or a package (11) connected to the loudspeaker. Transmission device (10) and receiving device(s) (11) are not connected to each other except by electrical conductors of the domestic network for feeding electricity.


Finally, the operating program of microcontroller (102) makes it possible, when it receives commands sent by a remote control box (12) transmitting, e.g., a wave signal to a sensor (1020), to include the commands thus generated by this box (12) in the packet so as to constitute control data for the loudspeaker. These control data make it possible to individually adjust each loudspeaker by adjusting the right channel, the left channel, the base, the treble, the volume etc.


When it is desired to protect audio data being moved on the domestic network so as to make it possible to collect royalties and prevent the same musical piece being able to be heard by persons not having paid the royalties, an encryption circuit (103) is added to the device, placed between compression circuit (104) and microcontroller (102). In the case where the source of the musical signals is not of the “digital” type, an analog-digital converter (106) is connected to the device and it receives at its input the output signals of an analog amplifier (107) that receives the analog audio signals.


Receiving device (11) consists as before of a first transformer (118) making it possible, with the help of a rectification circuit, to feed a feed circuit (110) intended to generate the feed signals necessary for the operation of the various circuits of receiving device (11). A second transformer (119), connected to the primary winding of the first transformer with the help of a decoupling capacitor, feeds a demodulator (111) with phase quadrature, which provides, at its series output, the signals of the protocol and the protocol packets to a microcontroller (112) that converts these series signals into parallel signals going to a decryption circuit (113) whose output is connected to a decompression circuit (114). The output of decompression circuit (114) is itself connected to a digital-analog conversion circuit (115) whose output is intended to feed a loudspeaker (LS). The compression and decompression circuits, by an amplifier (116), use an algorithm of the “MPEG” type at level 3 and encryption circuit (103) and decryption circuit (113) use an algorithm of the “MMPP” type (Multimedia Protection Protocol).


The memory of microcontroller (112) of package (11) has stored in it the identification address that makes it possible to compare its address to the address received in the packet to identify if the digital audio data are intended for it or for another loudspeaker. Likewise, the memory of the microcontroller has stored in it, during initialization or manufacture, the decryption key. Storing the decryption key during initialization can be done thanks to a fourth zone of the protocol.


The analog-digital conversion circuits (CAD/or CDA) for encryption compression and amplification of transmitting device (10) can be made, e.g., of a digital signal processor sold by MOTOROLA under reference 563XX and generally called “D.S.P” (Digital Signal Processor).


Likewise, decryption, decompression, and digital-analog conversion circuits of receiving device (11) can be made of a digital signal processor sold by MOTOROLA under reference 563XX and generally called “D.S.P.” (Digital Signal Processor).


Thus it can be possible, thanks to such a device, to install multiple loudspeakers in different locations provided that they be fed by the same phase of the network to which transmission device (10) will be connected. This transmission device (10) will have to be connected, on the one hand, to an audio signals source that could be, e.g., the digital output of a compact disc reader or even the digital output of a hard disc of a jukebox such as the one described in FIG. 2 and corresponding to patent application-PCT FR 95 01333 published under number WO 96/ 12 256 and, on the other hand, to conductors of the electric feed network of the building or of the establishment. The jukebox of FIG. 2 consists of a central unit (1), a microprocessor that is a system compatible with a high performance PC. When implemented, the choice went to a system of the “Intel 80486 DX/2” type that has the following storage means and characteristics:

    • compatibility with local bus Vesa,
    • cache memory of the processor: 256 kO,
    • high performance serial and parallel ports,
    • SVGA graphics adapter with microprocessor,
    • bus controller of the SCSI/2 type,
    • static, automatically fed read-write RAM memory.


Any other central unit having equivalent or higher performance could be used in the invention.


This central unit commands and manages a sound command circuit (5), a telecommunications command circuit (4), an input command circuit (3), a mass storage command circuit (2), a display means command circuit (6). The display means comprise mainly a video monitor (62) with a 14 inch (35.56 cm) flat screen without interlacing of the SVGA type with high resolution and low radiation, it is this monitor that is used to reproduce images (e.g., album covers of musical selections), graphics or video clips.


Means of mass storage (21) using high speed, high capacity, hard discs of the “SCSI” type are connected to storage means already present in the microprocessor device. These means are used to store digitized and compressed audiovisual data.


A high speed, 28.8 kpbs telecommunications modem adaptor (41) is integrated to make possible the connection with the audiovisual data distribution network controlled by a central server.


To reproduce the audio data of musical selections, the system comprises loudspeakers (54) receiving amplifier-tuner signal (53) connected to an electronic circuit (5) of the “music synthesizer” type provided to support a large number of input sources while providing an output having “CD” (compact disc) quality, such as, e.g., multimedia audio adapter with microprocessor of the “Sound Blaster card” type SBP32AWE of Creative Labs Inc. to which two memory buffers (56, 57) are added for the purpose explained later.


Likewise, the command circuit of the display means also comprises two buffer memories (66, 67) for the purpose explained below.


A distributed, thermally regulated feed of 240 watts provides the energy of the system. This feed is protected against surges and over-oscillations.


The audiovisual reproduction system manages, by its input controller circuit (3), a 14-inch (35.56 cm) tactile screen (33) “Intelli Touch” from Elo Touch Systems Inc., which includes a screen covering panel using “advanced surface wave” technology and a bus controller of the “AT” type. This tactile screen makes it possible, after having displayed on video monitor (62) or a television screen (61) various selection data used by the clients and some selection data used by the clients and command and management control data used by the manager or the proprietor of the system. It is also used for maintenance purposes in combination with an external keyboard (34) that can be connected to the system that has, for this purpose, a keyboard connector, controlled by a key lock (32) through an interface circuit (3).


Input circuit (3) also interfaces with remote control system (31) consisting of, e.g.,:

    • an infrared remote control from Mind Path Technologies Inc., a transmitter that has 16 control keys for the microprocessor system and 8 control keys for the projection device,
    • an infrared receiver with series adapter from Mind Path Technologies Inc.


A device for royalties payment (35) from National Rejectors Inc. is also connected to input interface circuit (3). It is also possible to use any other device that makes it possible to receive any type of payment by coins, bills, tokens, magnetic cards with chips or a combination of payment means.


To support the system, a frame or a stand made of steel with external fittings that can be personalized is provided.


Besides these elements, a wireless microphone (55) is connected to sound controller (5), which makes it possible to transform the latter into a powerful system for announcements and information intended for the public or possibly for a karaoke machine. Likewise, a wireless loudspeaker system can be used by the system.


Remote control unit (31) makes it possible for the manager, e.g., behind the bar, to access and control various commands such as:

    • start-stop command for the microphone,
    • mute command for the loudspeakers,
    • the sound volume control command,
    • the command to cancel the musical selection being listened to.


Two buffers (56, 57) are connected to sound controller circuit (5) to make it possible to store, each in alternation, data corresponding to a quarter of a second of sound. Likewise, two buffers (66, 67) are connected to video controller circuit (6) each capable alternately of storing a tenth of a second of images. Finally, a respective buffer (46, 36, 26) is connected to each communication controller circuit (4) for input (3) and storage (2) interface.


The digitized and compressed audiovisual data are stored in memory means (21).


These data are transmitted by a central unit (1) to card (105) on which elements have been added that correspond to circuit (10), encryption circuit (103) having been directly connected to buffer circuits (56, 57) in the case where the data are already compressed, either by a first connector (1021), bypassing encryption circuit (103), if the data are already encrypted or do not need to be, or by a second connector (1031) using encryption circuit (103), if the data are to be encrypted. In the case where the data are not compressed, buffers (56, 57) will be connected to a third connector (1041) to use the compression circuit.


Thus, by connecting the output of transformer (108) to the electric network, it will be possible, by connecting receiving circuits (11) at different points in the network, to feed various loudspeakers remotely, besides loudspeakers normally provided in jukebox system (54). This will make it possible to have good quality sound broadcasting in various places while assuring the manager the possibility of regulating the volumes according to the locations or according to the arrangements of the loudspeakers.


In the case where the invention is used in another device such as a compact disc reader, a radio for receiving specialized stations, etc., it is possible to equip the payment device with the help of one of the payment means mentioned above for jukebox application which, like for the jukebox, does not allow the receiving device to operate except when the royalty has been paid and for the time allotted for the royalty. This period is determined by a clock connected to the receiving device.


Other modifications within the reach of one skilled in the art are also part of the spirit of the invention.

Claims
  • 1. A digital transmission system for playing music through audio speakers which uses AC power lines as an audio network, comprising: a digital compression device for compressing digital music data into a compressed digital music data;a digital transmission device including a series conversion circuit for converting the compressed digital music data into series compressed digital signal packets;a digital modulator which controls a transmitter for transmitting the series compressed digital signal packets onto the AC power lines using one carrier frequency; anda digital receiver device connected to the AC power lines for receiving the transmitted packets over the AC power lines, wherein the digital receiving device includes: a digital demodulator for demodulating the series compressed digital signal packets modulated on one carrier frequency;a serial/parallel digital converter for converting the demodulated series compressed digital signals into demodulated parallel compressed digital signals;a digital decompressor for decompressing the demodulated parallel compressed signals into demodulated parallel decompressed digital signals;a digital/analog converter for converting the demodulated parallel decompressed digital signals into analog signals; anda loudspeaker for receiving the analog signals and generating music corresponding thereto;wherein the series conversion circuit is operable to encode a destination address into the series compressed digital signal packets, and further wherein the digital receiving device is operable to compare the destination address to an address of the receiving device in order to determine if the signal is addressed to the receiving device.
  • 2. The digital transmission system of claim 1, wherein the digital modulator is a phase quadrature digital modulator.
  • 3. The digital transmission system of claim 1, wherein the series conversion circuit is operable to multiplex several digital files representing a different music signal intended for reception by various receiving devices having different addresses associated therewith.
  • 4. The digital transmission system of claim 1, wherein the transmitter comprises an encryption device which encrypts the digital signal, and the receiving device includes a decryption circuit which uses a decryption key to decrypt the encrypted digital signal.
  • 5. The digital transmission system of claim 4, wherein the digital signal is serialized according to a protocol including a part for starting protocol data, a part for an address of an intended recipient, a part for digital signal or multiplexed digital signal, and a part for ending protocol data.
  • 6. The digital transmission system of claim 5, wherein the protocol further includes part for control data for the loudspeaker.
  • 7. The digital transmission system of claim 6, wherein the protocol further includes a part for an encryption key for use in decrypting the digital data.
  • 8. The digital transmission system of claim 5, wherein the protocol further includes a part for an encryption key for use in decrypting the digital data.
Priority Claims (1)
Number Date Country Kind
97 12007 Sep 1997 FR national
Parent Case Info

This application is a continuation of application Ser. No. 09/161,584, filed Sep. 28, 1998, now abandoned the entire content of which is hereby incorporated by reference in this application.

US Referenced Citations (164)
Number Name Date Kind
3982620 Kortenhaus Sep 1976 A
4186438 Benson Jan 1980 A
4232295 McConnell Nov 1980 A
4335809 Wain Jun 1982 A
4335908 Burge Jun 1982 A
4412292 Sedam Oct 1983 A
4521014 Sitrick Jun 1985 A
4528643 Freeny Jul 1985 A
4558413 Schmidt Dec 1985 A
4572509 Sitrick Feb 1986 A
4582324 Koza Apr 1986 A
4593904 Graves Jun 1986 A
4597058 Izumi Jun 1986 A
4636951 Harlick Jan 1987 A
4652998 Koza Mar 1987 A
4654799 Ogaki Mar 1987 A
4658093 Hellman Apr 1987 A
4667802 Verduin May 1987 A
4675538 Epstein Jun 1987 A
4677311 Morita Jun 1987 A
4677565 Ogaki Jun 1987 A
4703465 Parker Oct 1987 A
4704804 Leal Nov 1987 A
4722053 Dubno Jan 1988 A
4761684 Clark Aug 1988 A
4766581 Korn Aug 1988 A
4787050 Suzuki Nov 1988 A
4792849 McCalley Dec 1988 A
4811325 Sharples Mar 1989 A
4825054 Rust Apr 1989 A
4829570 Schotz May 1989 A
4868832 Marrington Sep 1989 A
4920432 Eggers Apr 1990 A
4922420 Nakagawa May 1990 A
4924378 Hershey May 1990 A
4926485 Yamashita May 1990 A
4937807 Weitz Jun 1990 A
4949187 Cohen Aug 1990 A
4956768 Sidi Sep 1990 A
4958835 Tashiro Sep 1990 A
4999806 Chernow Mar 1991 A
5012121 Hammond Apr 1991 A
5041921 Scheffler Aug 1991 A
5058089 Yoshimara Oct 1991 A
5138712 Corbin Aug 1992 A
5155847 Kirouac Oct 1992 A
5163131 Row Nov 1992 A
5166886 Molnar Nov 1992 A
5191573 Hair Mar 1993 A
5191611 Lang Mar 1993 A
5192999 Graczyk Mar 1993 A
5197094 Tillery Mar 1993 A
5203028 Shiraishi Apr 1993 A
5237157 Kaplan Aug 1993 A
5237322 Heberle Aug 1993 A
5239480 Huegel Aug 1993 A
5250747 Tsumura Oct 1993 A
5252775 Urano Oct 1993 A
5260999 Wyman Nov 1993 A
5262875 Mincer Nov 1993 A
5276866 Paolini Jan 1994 A
5289476 Johnson et al. Feb 1994 A
5315161 Robinson May 1994 A
5339413 Koval Aug 1994 A
5341350 Frank Aug 1994 A
5355302 Martin Oct 1994 A
5357276 Banker Oct 1994 A
5369778 SanSoucie Nov 1994 A
5375206 Hunter Dec 1994 A
5406634 Anderson et al. Apr 1995 A
5418713 Allen May 1995 A
5420923 Beyers May 1995 A
5428252 Walker Jun 1995 A
5431492 Rothschild Jul 1995 A
5445295 Brown Aug 1995 A
5455926 Keele Oct 1995 A
5457305 Akel Oct 1995 A
5465213 Ross Nov 1995 A
5475835 Hickey Dec 1995 A
5481509 Knowles Jan 1996 A
5495610 Shing Feb 1996 A
5496178 Back Mar 1996 A
5499921 Sone Mar 1996 A
5511000 Kaloi Apr 1996 A
5513117 Small Apr 1996 A
5548729 Akiyoshi Aug 1996 A
5550577 Verbiest Aug 1996 A
5554968 Lee Sep 1996 A
5555244 Gupta Sep 1996 A
5557541 Schulhof Sep 1996 A
5559505 McNair Sep 1996 A
5559549 Hendricks Sep 1996 A
5561709 Remillard Oct 1996 A
5566237 Dobbs Oct 1996 A
5570363 Holm Oct 1996 A
5583994 Rangan Dec 1996 A
5592551 Lett Jan 1997 A
5594509 Florin Jan 1997 A
5612581 Kageyama Mar 1997 A
5613909 Stelovsky Mar 1997 A
5619247 Russo Apr 1997 A
5619698 Lillich Apr 1997 A
5623666 Pike Apr 1997 A
5636276 Brugger Jun 1997 A
5642337 Oskay Jun 1997 A
5644714 Kikinis Jul 1997 A
5644766 Coy Jul 1997 A
5668592 Spaulding Sep 1997 A
5668788 Allison Sep 1997 A
5684716 Freeman Nov 1997 A
5691778 Song Nov 1997 A
5697844 Von Kohorn Dec 1997 A
5703795 Mankowitz Dec 1997 A
5708811 Arendt Jan 1998 A
5712976 Falcon Jan 1998 A
5726909 Krikorian Mar 1998 A
5734719 Tsevdos Mar 1998 A
5757936 Lee May 1998 A
5761655 Hoffman Jun 1998 A
5762552 Vuong Jun 1998 A
5774668 Choquier Jun 1998 A
5774672 Funahashi Jun 1998 A
5781889 Martin Jul 1998 A
5790172 Imanaka Aug 1998 A
5790671 Cooper Aug 1998 A
5790856 Lillich Aug 1998 A
5793980 Glaser Aug 1998 A
5798785 Hendricks Aug 1998 A
5802599 Cabrera Sep 1998 A
5808224 Kato Sep 1998 A
5809246 Goldman Sep 1998 A
5832024 Schotz et al. Nov 1998 A
5832287 Atalla Nov 1998 A
5835843 Haddad Nov 1998 A
5845104 Rao Dec 1998 A
5848398 Martin Dec 1998 A
5854887 Kindell Dec 1998 A
5862324 Collins Jan 1999 A
5864870 Guck Jan 1999 A
5867714 Todd Feb 1999 A
5884028 Kindell Mar 1999 A
5884298 Smith Mar 1999 A
5887193 Takahashi Mar 1999 A
5913040 Rakavy Jun 1999 A
5915094 Kouloheris Jun 1999 A
5915238 Tjaden Jun 1999 A
5917537 Lightfoot Jun 1999 A
5917835 Barrett Jun 1999 A
5923885 Johnson Jul 1999 A
5930765 Martin Jul 1999 A
5931908 Gerba Aug 1999 A
5949688 Montoya Sep 1999 A
5953429 Wakai et al. Sep 1999 A
5959869 Miller Sep 1999 A
5959945 Kleiman Sep 1999 A
5966495 Takahashi Oct 1999 A
5978855 Metz Nov 1999 A
6002720 Yurt Dec 1999 A
6009274 Fletcher Dec 1999 A
6018337 Peters Jan 2000 A
6018726 Tsumura Jan 2000 A
6072982 Haddad Jun 2000 A
6151634 Glaser Nov 2000 A
6407987 Abraham Jun 2002 B1
Foreign Referenced Citations (66)
Number Date Country
199954012 Apr 2000 AU
3723737 Jan 1988 DE
3820835 Jan 1989 DE
4244198 Jun 1994 DE
19610739 Sep 1997 DE
A0082077 Jun 1983 EP
0140593 May 1985 EP
0256921 Feb 1988 EP
0283304 Sep 1988 EP
A 0283350 Sep 1988 EP
0309298 Mar 1989 EP
A 0313359 Apr 1989 EP
0340787 Nov 1989 EP
0363186 Apr 1990 EP
0 425 168 May 1991 EP
0464562 Jan 1992 EP
0480558 Apr 1992 EP
0498130 Aug 1992 EP
0498130 Aug 1992 EP
0 507 110 Oct 1992 EP
0538319 Apr 1993 EP
A 0631283 Dec 1994 EP
0632371 Jan 1995 EP
0786122 Jul 1997 EP
0817103 Jan 1998 EP
0841616 May 1998 EP
0919964 Jun 1999 EP
0959570 Nov 1999 EP
0 974896 Jan 2000 EP
0982695 Mar 2000 EP
A 2602352 Feb 1988 FR
A 2122799 Jan 1984 GB
2166328 Apr 1986 GB
2170943 Aug 1986 GB
2193420 Feb 1988 GB
2 238680 Jun 1991 GB
2259398 Mar 1993 GB
2262170 Jun 1993 GB
57-173207 Oct 1982 JP
58-179892 Oct 1983 JP
60-253082 Dec 1985 JP
62-192849 Aug 1987 JP
62-284496 Dec 1987 JP
63-60634 Mar 1988 JP
2-153665 Jun 1990 JP
5-74078 Mar 1993 JP
07281682 Oct 1995 JP
08-279235 Oct 1996 JP
10-098344 Apr 1998 JP
WO 86 01326 Feb 1986 WO
WO A 90 07843 Jul 1990 WO
WO 9108542 Jun 1991 WO
WO A 91 20082 Dec 1991 WO
WO 9316557 Aug 1993 WO
WO A 93 18465 Sep 1993 WO
WO A 94 03894 Feb 1994 WO
WO 9414273 Jun 1994 WO
WO 9415306 Jul 1994 WO
WO 94 15416 Jul 1994 WO
WO 95 03609 Feb 1995 WO
9529537 Nov 1995 WO
9612256 Apr 1996 WO
WO 9612255 Apr 1996 WO
WO 9612257 Apr 1996 WO
WO 96 12258 Apr 1996 WO
WO 0100290 Jan 2001 WO
Related Publications (1)
Number Date Country
20050111671 A1 May 2005 US
Continuations (1)
Number Date Country
Parent 09161584 Sep 1998 US
Child 11023390 US