1. Field of the Invention
The present invention relates to a petroleum well for producing petroleum products. In one aspect, the present invention relates to systems and methods of electrically controlling downhole well interval inflow and/or injection for producing petroleum products.
2. Description of the Related Art
Attainment of high recovery efficiency from thick hydrocarbon reservoirs, requires uniform productivity from wells completed over long intervals.
In vertical wells, the open intervals typically include a number of geologic layers having a variety of petrophysical properties and initial reservoir conditions. Variations in permeability and initial reservoir pressure especially, result in uneven depletion of layers, if the layers are produced as a unit with a single draw-down pressure. As the field is produced, high permeability layers are depleted faster than tight layers, and high pressure layers may even cross-flow into lower pressure layers.
In horizontal wells, the open completion interval is usually contained in a single geologic layer. However, uneven inflow can result from a pressure drop along the well. This effect is particularly evident in long completion intervals where the reservoir pressure is nearly equal to the pressure in the well at the far end (the toe). In such a case, almost no inflow occurs at the toe. At the other end of the open interval near the vertical part of the well (the heel), the greater difference between the reservoir pressure and the pressure in the well results in higher inflow rates there. High inflow rates near the heel can lead to early gas breakthrough from gas coning down, or early water breakthrough from water coning up.
Productivity profiles of vertical wells are described by the steady state Darcy flow equation for radial flow:
where
Each flowing fluid may be described by this equation. In most wells, we need to account for flow of the gas, oil, and water. In the initial phase of production of a field, reservoir pressure is usually large. If large draw-down pressures are applied, inflow profiles will be uniform for layers with similar permeabilities because variations in initial reservoir pressure of layers are usually smaller than the draw-down pressure. As the well is produced and layers are depleted, the reservoir pressure affects the productivity profiles to a greater extent because some layers may have a small draw-down, even if the well is produced at its lowest pressure. Variations in permeability among layers may arise from (1) differences in grain size, sorting, and packing, or (2) from interference of flowing fluids, i.e., the relative permeability. The former—grain mineral framework—is not expected to change the productivity profile very much during the life of the well because the grain framework remains unchanged, except for compaction. But compaction can equalize layer permeabilities. The effects of fluid saturation on permeability lead to poor productivity profiles because, for example, a high permeability layer is likely to have a high specific fluid saturation, which makes that layer even more productive. During the life of a well these saturation effects can lead to even poorer profiles because, for example, gas or water breakthrough into a well results in increasing breakthrough fluid saturation and even higher productivity of that fluid relative to the other layers.
Productivity profiles in horizontal wells may be affected by layering if the well intersects dipping beds or if the horizontal well is slightly inclined and crosses an impermeable bed. However, the major effect is expected to be the difference in draw-down pressure between the toe and the heel.
The problems associated with poor productivity profiles in wells with long interval completions have been addressed in a recent patent application entitled “Minipumps in a Drainhole Section of a Well”, filed 15 Sept. 1999, inventors M. E. Amory, R. Daling, C. A. Glandt, R. N. Worrall, EPC Patent Application no. 99203017.1, herewith incorporated by reference. This method proposes the use of several annular pumping devices located along the open interval of the well to offset the pressure drop due to flow in the well and thereby increase the inflow at the toe of the well.
Wells may also be used for fluid injection. For example, water flooding is sometimes used to displace hydrocarbons in the formation towards producing wells. In water flooding, it is desirable to have uniform injection. Hence with fluid injection, the same issues arise with respect to ensuring uniform injection as those mentioned above for seeking uniform inflow, and for the same reasons.
Conventional packers are known such as described in U.S. Pat. Nos. 6,148,915, 6,123,148, 3,566,963 and 3,602,305.
All references cited herein are incorporated by reference to the maximum extent allowable by law. To the extent a reference may not be fully incorporated herein, it is incorporated by reference for background purposes, and indicative of the knowledge of one of ordinary skill in the art.
The problems and needs outlined above are largely solved and met by the present invention. In accordance with one aspect of the present invention, a petroleum well for producing petroleum products, is provided. The petroleum well comprises a well casing, a production tubing, a source of time-varying current, and a downhole controllable well section. The well casing extends within a wellbore of the well, and the production tubing extends within the casing. The source of time-varying current is at the surface, and electrically connected to the tubing and/or the casing, such that the tubing and/or the casing acts as an electrical conductor for transmitting time-varying electrical current from the surface to a downhole location. The downhole controllable well section comprises a communications and control module, a sensor, an electrically controllable valve, and an induction choke. The communications and control module is electrically connected to the tubing and/or the casing. The sensor and the electrically controllable valve are electrically connected to the communications and control module. The electrically controllable valve is adapted to regulate flow between an exterior of the tubing and an interior of the tubing. The induction choke is located about a portion of the tubing and/or the casing. The induction choke is adapted to route part of the current through the communications and control module by creating a voltage potential within the tubing and/or the casing between one side of the induction choke and another side of the induction choke. The communications and control module is electrically connected across this voltage potential. The downhole controllable well section may further comprise a flow inhibitor located within the casing and about another portion of the tubing such that fluid flow within the casing from one side of the flow inhibitor to another side of the flow inhibitor is hindered by the flow inhibitor. In an embodiment with multiple well sections, a flow inhibitor may be used to define a boundary between the well sections. The sensor may be a fluid flow sensor, a fluid pressure sensor, a fluid density sensor, or an acoustic waveform transducer.
In accordance with another aspect of the present invention, a method of producing petroleum from a petroleum well is provided. The method comprises the following steps, the order of which may vary: (i) providing a plurality of downhole controllable well sections of the well for. at least one petroleum production zone, each of the well sections comprising a communications and control module, a flow sensor, an electrically controllable valve, and a flow inhibitor, the flow inhibitor being located within a well casing and about a portion of a production tubing of the well, the communications and control module being electrically connected to the tubing and/or the casing, and the electrically controllable valve and the flow sensor being electrically connected to the communications and control module; (ii) hindering fluid flow between the well sections within the casing with the flow inhibitor; (iii) measuring fluid flow between the at least one petroleum production zone and an interior of the tubing at each of the well sections with its respective flow sensor; (iv) regulating fluid flow between the at least one petroleum production zone and the interior of the tubing at each of the well sections with its respective electrically controllable valve, based on the fluid flow measurements; and (v) producing petroleum products from the well via the tubing.
The method may further comprise the following steps, the order of which may vary: (vi) inputting a time-varying current into the tubing and/or the casing from a current source at the surface; (vii) impeding the current with an induction choke located about the tubing and/or the casing; (viii) creating a voltage potential between one side of the induction choke and another side of the induction choke within the tubing and/or the casing; (ix) routing the current through at least one of the communications and control modules at the voltage potential using the induction choke; and (x) powering at least one of the communications and control modules using the voltage potential and the current from the tubing and/or the casing. Also, the method may further comprise the following steps, the order of which may vary: (xi) transmitting the fluid flow measurements to a computer system at the surface using the communications and control module via the tubing and/or the casing; (xii) calculating a pressure drop along the well sections, with the computer system, and using the fluid flow measurements; (xiii) determining if adjustments are needed for the electrically controllable valves of the well sections; (xiv) if valve adjustments are needed, sending command signals to the communications and control modules of the well sections needing valve adjustment; and (xv) also if valve adjustments are needed, adjusting a position of the electrically controllable valve via the communications and control module for each of the well sections needing valve adjustment.
In accordance with yet another aspect of the present invention, a method of controllably injecting fluid into a formation with a well is provided. The method comprises the following steps, the order of which may vary: (i) providing a plurality of controllable well sections of the well for the formation, each of the well sections comprising a communications and control module, a flow sensor, and an electrically controllable valve, and a flow inhibitor, the communications and control module being electrically connected to the tubing and/or the casing, the electrically controllable valve and the flow sensor being electrically connected to the communications and control module, and the flow inhibitor being located within a well casing and about a portion of a tubing string of the well; (ii) hindering fluid flow between the well sections within the casing with the flow inhibitors; (iii) measuring fluid flow from an interior of the tubing into the formation at each of the well sections with its respective flow sensor; (iv) regulating fluid flow from the tubing interior into the formation at each of the well sections with its respective electrically controllable valve, based on the fluid flow measurements; and (v) controllably injecting fluid into the formation with the well.
The method may further comprise the following steps, the order of which may vary: (vi) inputting a time-varying current into the tubing and/or the casing from a current source at the surface; (vii) impeding the current with an induction choke located about the tubing and/or the casing; (viii) creating a voltage potential between one side of the induction choke and another side of the induction choke within the tubing and/or the casing; (ix) routing the current through at least one of the communications and control modules at the voltage potential using the induction choke; and (x) powering the at least one of the communications and control modules using the voltage potential and the current from the tubing and/or the casing. Also, the method may further comprise the following steps, the order of which may vary: (xi) transmitting the fluid flow measurements to a computer system at the surface using the communications and control module via the tubing and/or the casing; (xii) calculating a pressure drop along the well sections, with the computer system, using the fluid flow measurements; (xiii) determining if adjustments are needed for the electrically controllable valves of the well sections; (xiv) if valve adjustments are needed, sending command signals to the communications and control modules of the well sections needing valve adjustment; and (xv) also if valve adjustments are needed, adjusting a position of the electrically controllable valve via the communications and control module for each of the well sections needing valve adjustment.
The Related Applications describe ways to deliver electrical power to downhole devices, and to provide bi-directional communications between the surface and each downhole device individually. The downhole devices may contain sensors or transducers to measure downhole conditions, such as pressure, flow rate, liquid density, or acoustic waveforms. Such measurements can be transmitted to the surface and made available in near-real-time. The downhole devices may also comprise electrically controllable valves, pressure regulators, or other mechanical control devices that can be operated or whose set-points may be changed in real time by commands sent from the surface to each individual device downhole. Downhole devices to measure and control inflow or injection over long interval completions are placed within well sections. The measured flow rates are used to control accompanying devices, which are used to regulate inflow from or injection into subsections of the completion.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon referencing the accompanying drawings, in which:
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout the various views, a preferred embodiment of the present invention is illustrated and further described, and other possible embodiments of the present invention are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations of the present invention based on the following examples of possible embodiments of the present invention, as well as based on those embodiments illustrated and discussed in the Related Applications, which are incorporated by reference herein to the maximum extent allowed by law.
As used in the present application, a “piping structure” can be one single pipe, a tubing string, a well casing, a pumping rod, a series of interconnected pipes, rods, rails, trusses, lattices, supports, a branch or lateral extension of a well, a network of interconnected pipes, or other similar structures known to one of ordinary skill in the art. A preferred embodiment makes use of the invention in the context of a petroleum well where the piping structure comprises tubular, metallic, electrically-conductive pipe or tubing strings, but the invention is not so limited. For the present invention, at least a portion of the piping structure needs to be electrically conductive, such electrically conductive portion may be the entire piping structure (e.g., steel pipes, copper pipes) or a longitudinal extending electrically conductive portion combined with a longitudinally extending non-conductive portion. In other words, an electrically conductive piping structure is one that provides an electrical conducting path from a first portion where a power source is electrically connected to a second portion where a device and/or electrical return is electrically connected. The piping structure will typically be conventional round metal tubing, but the cross-section geometry of the piping structure, or any portion thereof, can vary in shape (e.g., round, rectangular, square, oval) and size (e.g., length, diameter, wall thickness) along any portion of the piping structure. Hence, a piping structure must have an electrically conductive portion extending from a first portion of the piping structure to a second portion of the piping structure, wherein the first portion is distally spaced from the second portion along the piping structure.
Also note that the term “modem” is used herein to generically refer to any communications device for transmitting and/or receiving electrical communication signals via an electrical conductor (e.g., metal). Hence, the term “modem” as used herein is not limited to the acronym for a modulator (device that converts a voice or data signal into a form that can be transmitted)/demodulator (a device that recovers an original signal after it has modulated a high frequency carrier). Also, the term “modem” as used herein is not limited to conventional computer modems that convert digital signals to analog signals and vice versa (e.g., to send digital data signals over the analog Public Switched Telephone Network). For example, if a sensor outputs measurements in an analog format, then such measurements may only need to be modulated (e.g., spread spectrum modulation) and transmitted—hence no analog/digital conversion needed. As another example, a relay/slave modem or communication device may only need to identify, filter, amplify, and/or retransmit a signal received.
The term “valve” as used herein generally refers to any device that functions to regulate the flow of a fluid. Examples of valves include, but are not limited to, bellows-type gas-lift valves and controllable gas-lift valves, each of which may be used to regulate the flow of lift gas into a tubing string of a well. The internal and/or external workings of valves can vary greatly, and in the present application, it is not intended to limit the valves described to any particular configuration, so long as the valve functions to regulate flow. Some of the various types of flow regulating mechanisms include, but are not limited to, ball valve configurations, needle valve configurations, gate valve configurations, and cage valve configurations. The methods of installation for valves discussed in the present application can vary widely.
The term “electrically controllable valve” as used herein generally refers to a “valve” (as just described) that can be opened, closed, adjusted, altered, or throttled continuously in response to an electrical control signal (e.g., signal from a surface computer or from a downhole electronic controller module). The mechanism that actually moves the valve position can comprise, but is not limited to: an electric motor; an electric servo; an electric solenoid; an electric switch; a hydraulic actuator controlled by at least one electrical servo, electrical motor, electrical switch, electric solenoid, or combinations thereof; a pneumatic actuator controlled by at least one electrical servo, electrical motor, electrical switch, electric solenoid, or combinations thereof; or a spring biased device in combination with at least one electrical servo, electrical motor, electrical switch, electric solenoid, or combinations thereof. An “electrically controllable valve” may or may not include a position feedback sensor for providing a feedback signal corresponding to the actual position of the valve.
The term “sensor” as used herein refers to any device that detects, determines, monitors, records, or otherwise senses the absolute value of or a change in a physical quantity. A sensor as described herein can be used to measure physical quantities including, but not limited to: temperature, pressure (both absolute and differential), flow rate, seismic data, acoustic data, pH level, salinity levels, valve positions, or almost any other physical data.
The phrase “at the surface” as used herein refers to a location that is above about fifty feet deep within the Earth. In other words, the phrase “at the surface” does not necessarily mean sitting on the ground at ground level, but is used more broadly herein to refer to a location that is often easily or conveniently accessible at a wellhead where people may be working. For example, “at the surface” can be on a table in a work shed that is located on the ground at the well platform, it can be on an ocean floor or a lake floor, it can be on a deep-sea oil rig platform, or it can be on the 100th floor of a building. Also, the term “surface” may be used herein as an adjective to designate a location of a component or region that is located “at the surface.” For example, as used herein, a “surface” computer would be a computer located “at the surface.”
The term “downhole” as used herein refers to a location or position below about fifty feet deep within the Earth. In other words, “downhole” is used broadly herein to refer to a location that is often not easily or conveniently accessible from a wellhead where people may be working. For example in a petroleum well, a “downhole” location is often at or proximate to a subsurface petroleum production zone, irrespective of whether the production zone is accessed vertically, horizontally, or any other angle therebetween. Also, the term “downhole” is used herein as an adjective describing the location of a component or region. For example, a “downhole” device in a well would be a device located “downhole,” as opposed to being located “at the surface.”
Similarly, in accordance with conventional terminology of oilfield practice, the descriptors “upper,” “lower,” “uphole,” and “downhole” are relative and refer to distance along hole depth from the surface, which in deviated or horizontal wells may or may not accord with vertical elevation measured with respect to a survey datum.
As used in the present application, “wireless” means the absence of a conventional, insulated wire conductor e.g. extending from a downhole device to the surface. Using the tubing and/or casing as a conductor is considered “wireless.”
Conventional horizontal wells are typically completed with perforated casings or screened liners, some of which may be several thousand feet long and four to six inches in diameter. For wells that are prolific producers, the horizontal liner conducts all of the flow to a vertical section. Production tubing and a packer may be placed within a vertical well casing of the vertical section, where gas lift or other artificial lift may be employed. However in such conventional horizontal wells, the inflow rates of fluids from a production zone at various places along the extent of the horizontal well can vary greatly as the zone is depleted. Such variations can lead to an increased pressure drop along the horizontal well and the consequent excessive inflow rate near the heel of the well relative to the toe, which is typically not desirable. The present invention presents a solution to such problems, as well as others, by providing a well with controllable well sections.
The time-varying current source 38 provides the time-varying electrical current, which carries power and communication signals downhole. The time-varying electrical current is preferably alternating current (AC), but it can also be a varying direct current (DC). The communication signals can be generated by the master modem 37 and embedded within the current produced by the source 38. Preferably, the communication signal is a spread spectrum signal, but other forms of modulation can be used in alternative.
As shown in
The vertical section 22 in this embodiment incorporates a packer 44 which is furnished with an electrically insulating sleeve 76 such that the tubing 40 is electrically insulated from casing 30. The vertical section 22 is also furnished with a gas-lift valve 42 to provide artificial lift for fluids within the tubing using gas bubbles 46. However, in alternative, other ways of providing artificial lift may be incorporated to form other possible embodiments (e.g., rod pumping). Also, the vertical portion 22 can further vary to form many other possible embodiments. For example in an enhanced form, the vertical portion 22 may incorporate one or more electrically controllable gas-lift valves, one or more induction chokes, and/or one or more controllable packers comprising electrically controllable packer valves, as described in the Related Applications.
The horizontal section 24 of the well 20 extends through a petroleum production zone 48 (e.g., oil zone) of the formation 32. The location where the vertical section 22 and the horizontal section 24 meet is referred to as the heal 50, and the distal end of the horizontal section is referred to as the toe 52. At various locations along the horizontal section 24, the casing 30 has perforated sections 54 that allow fluids to pass from the production zone 48 into the casing 30. Numerous flow inhibitors 61–65 are placed along the horizontal section 24 in the annular space 68 between the casing 30 and the tubing 40. The purpose of these flow inhibitors 61–65 is to hinder or prevent fluid flow along the annulus 68 within the casing 30, and to separate or form a series of controllable well sections 71–75. In the embodiment shown in
Referring to
Power for the electrical components of the well sections 71–75 is provided from the surface using the tubing 40 and casing 30 as electrical conductors. Hence, in a preferred embodiment, the tubing 40 acts as a piping structure and the casing 30 acts as an electrical return to form an electrical circuit in the well 20. Also, the tubing 40 and casing 30 are used as electrical conductors for communications signals between the surface (e.g., a surface computer) and the downhole electrical devices within the controllable well sections 71–75.
In the embodiment shown in
Referring again to
Other alternative ways to develop an electrical circuit using a piping structure of a well and at least one induction choke are described in the Related Applications, many of which can be applied in conjunction with the present invention to provide power and/or communications to the electrically powered downhole devices and to form other embodiments of the present invention.
Referring again to
The tubing pod 100 shown in
The sensors 82 in
Preferably the communications and control module 80 comprises a modem and transmits the flow measurements to the surface computer system within an AC signal (e.g., spread spectrum modulation) via the tubing 40 and casing 30. Then, the surface computer system uses the measurements from one, some, or all of the sensors 82 in the well 20 to calculate the pressure drop along the horizontal well section 24, as further described below. Based on the downhole sensor measurements, it is determined whether adjustments to the downhole valves 84 are needed. If an electrically controllable downhole valve 84 needs adjustment, the surface computer system transmits control commands to the relevant communications and control module 80 using the master modem and via the tubing 40 and casing 30. The communications and control module 80 receives the control commands from the surface computer system and controls the adjustment of the respective valve(s) 84 accordingly. In another embodiment, one or more of the communications and control modules 80 may comprise an internal logic circuit and/or a microprocessor to locally (downhole) calculate pressure differential based on the sensor measurements, and locally generate valve control command signals for adjusting the valves 84.
During operation, pressure draw-down in the well 20 may be accomplished by the surface tubing valve/orifice 84 in a flowing well, or by artificial lift at the bottom of the vertical section 22. For example, such artificial lift may be provided by gas lift, rod pumping, submersible pumps, or other standard oil field methods.
Effective use of a flow measurement and regulation system provided by controllable well sections 71–75 depends on developing a control strategy that relates measured flow values to downhole conditions, and that develops an objective function for controlling the settings of the valves 84 (the flow regulators).
In horizontal well sections, the effect of differences in draw-down pressure on productivity can be demonstrated by calculating the pressure drop along the horizontal section 24 resulting from a distributed inflow of fluid from the formation.
Example Horizontal Well Analysis:
L=length of entire open interval [ft]
N=number of monitor points (subsections)
ΔL=L/N=spacing of monitors [ft]
n=index of subsection (from toe to heel)
QN=total flow rate from well [b/d]
pN=total pressure drop over open interval [psi]
pH=head loss from flow in well [(psi/ft)/(b/d)]
dqf=specific inflow rate with uniform profile from formation into well [b/d/ft]
Δqf=inflow rate from formation into a subsection of the well [b/d]
Δqn=flow rate in the well at subsection (n) [b/d]
Δpn=pressure drop in subsection n=pH(ΔL)(Δqn) [psi]
Assuming the well is subdivided into N well sections, from upstream (toe to heel),
n=1, 2, 3, 4, . . . N (2)
With uniform inflow,
Δqf=ΔL(QN/L)[1, 1, 1, 1, . . . 1] (3)
The flow rate in the well cumulates as inflow occurs from the toe to the heel,
Δqn=ΔL(QN/L)[1, 2, 3, 4, . . . N] (4)
The pressure drop in each subsection is assumed proportional to the flow rate, therefore,
Δpn=ΔL(Δqn)(pH)[1, 2, 3, 4, . . . N] (5)
Adding the pressure drops in each subsection, the total pressure drop in the well from the toe to the successively downstream subsections is
pn=Σ1nΔpn (6)
pn=Σ1nΔL(Δqn)(pH)(n)(n+1)/2) (7)
pn=ΔL(Δqn)(pH) [1, 3, 6, 10, 15, . . . N(N+1)/2] (8)
Assumptions
Case 1: Inflow at Toe of Well, No Inflow Along Interval
For a well in which all 2500 barrels are flowing through 2500 feet of the well the pressure drop would be:
(QN)(L)(pH)=(2500)(2500)(10−4)=625 psi (9)
Case 2: Uniform Inflow
For a well producing uniformly along 25 subdivisions (controllable well solution), the total pressure drop in its open interval, as calculated by Equation (8) is:
(Δqn)(ΔL)(pH)[N(N+1)/2]=(100)(100)(10−4)(25)(26)/2=325 psi. (10)
Case 3: Inflow Dependent Upon Reservoir Pressure
The inflow rate into the well is proportional to the difference between the reservoir pressure and the pressure in the well. Because the pressures in the well along the open interval depend on flow rate, the inflow profile must be obtained by an iterative calculation. We define the reservoir pressure (pres) as some pressure (po) above the highest pressure in the well, that is, the pressure at the toe.
pres=po+ptoe (11)
The pressure difference between the reservoir pressure and the pressure in the well at locations downstream from the toe is:
Δpi=(po+ptoe)−(ptoe−pn)=po+pn (12)
In the first iteration, the cumulative flow and cumulative pressure drop along the tubing may be calculated by summing the inflow differential pressures (po+pn) and normalizing the subsection differential pressures with that sum:
Sum Δpi=Σ1NΔpi (14)
The inflow rate of each subsection is proportional to this normalized differential pressure, therefore, the inflow rate of each subsection is:
qi=Pi(QN)/(ΔL) (16)
The cumulative flow occurring in the well is:
Qi=Σqi(ΔL), (17)
and the cumulative pressure drop in the well from the toe to the heel is:
pn1=ΣΣqi(ΔL)(pH) (18)
A second iteration is made by substituting these values for the pressure drops into Equation (12). Convergence is rapid—in this case only a few iterations are needed. These can be carried out by substituting successive values of pn1,2,3 . . . in Equation (15).
In operation, the well 20 is placed in production with the valves 84 (flow regulators) fully open, and the flow rates along the producing interval are measured by the sensors 82 and transmitted to the surface computer system for analysis using the methods previously described. Based on the results of this analysis, the inflow rates in each well section 71–75 of the producing interval are determined. Generally, the goal will be to equalize production inflow per unit length along the interval, and this is accomplished by transmitting commands to individual inflow valves to reduce flow in controllable well sections 71–75 that are showing high inflow. The adjusted flow profile is then derived from the flow measurements again, and further adjustments are made to the valves 84 to flatten the production profile and to try to create a pressure profile like that graphed in
The illustrative analysis example described above has been derived for the case of a horizontal well section 24. It will be clear that similar methods may be applied to a long completion in a vertical well or a vertical well section 22, with the same controllable well sections 71–75 and a similar analysis to derive the control strategy from the measurements.
Note that the well management strategy is not assumed to be static. It is to be expected that as a reservoir is depleted the inflow profile will change. The provision of permanent downhole sensors and control devices allows dynamic control of production from controllable well sections to optimize recovery over the full life of the well.
The same methods and principles are applicable to the inverse task of controlled interval injection, where fluids are passed into the tubing and dispersed selectively into a formation interval using controllable well sections in accordance with the present invention, for instance in a water flooding process.
In other possible embodiments of the present invention, a controllable well section 71–75 may further comprise: additional sensors; additional induction chokes; additional electrically controllable valves; a packer valve; a tracer injection module; a tubing valve (e.g., for varying the flow within a tubing section, such as an application having multiple branches or laterals); a microprocessor; a logic circuit; a computer system; a rechargeable battery; a power transformer; a relay modem; other electronic components as needed; or any combination thereof.
The present invention also may be applied to other types of wells (other than petroleum wells), such as a water production well.
It will be appreciated by those skilled in the art having the benefit of this disclosure that this invention provides a petroleum production well having controllable well sections, as well as methods of utilizing such controllable well sections to manage or optimize the well production. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to limit the invention to the particular forms and examples disclosed. On the contrary, the invention includes any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope of this invention, as defined by the following claims Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
This claims the benefit of 60/186,393 filed on Mar. 2, 2000. This application claims the benefit of the following U.S. Provisional Applications, all of which are hereby incorporated by reference: COMMONLY OWNED AND PREVIOUSLY FILEDU.S. PROVISIONAL PATENT APPLICATIONST&K #Ser. No.TitleFiling DateTH 159960/177,999Toroidal Choke Inductor for Wireless CommunicationJan. 24, 2000and ControlTH 160060/178,000Ferromagnetic Choke in WellheadJan. 24, 2000TH 160260/178,001Controllable Gas-Lift Well and ValveJan. 24, 2000Th 160360/177,883Permanent, Downhole, Wireless, Two-Way TelemetryJan. 24, 2000Backbone Using Redundant Repeater, SpreadSpectrum ArraysTH 166860/177,998Petroleum Well Having Downhole Sensors,Jan. 24, 2000Communication, and PowerTH 166960/177,997System and Method for Fluid Flow OptimizationJan. 24, 2000TS 618560/181,322A Method and Apparatus for the OptimalFeb. 9, 2000Predistortion of an Electromagnetic Signal in aDownhole Communications SystemTH 1599x60/186,376Toroidal Choke Inductor for Wireless CommunicationMar. 2, 2000and ControlTH 1600x60/186,380Ferromagnetic Choke in WellheadMar. 2, 2000TH 160160/186,505Reservoir Production Control from Intelligent WellMar. 2, 2000DataTH 167160/186,504Tracer Injection in a Production WellMar. 2, 2000TH 167260/186,379Oilwell Casing Electrical Power Pick-Off PointsMar. 2, 2000TH 167360/186,394Controllable Production Well PackerMar. 2, 2000TH 167460/186,382Use of Downhole High Pressure Gas in a Gas LiftMar. 2, 2000WellTH 167560/186,503Wireless Smart Well CasingMar. 2, 2000TH 167760/186,527Method for Downhole Power Management UsingMar. 2, 2000Energization from Distributed Batteries or Capacitorswith Reconfigurable DischargeTH 167960/186,393Wireless Downhole Well Interval Inflow andMar. 2, 2000Injection ControlTH 168160/186,394Focused Through-Casing Resistivity MeasurementMar. 2, 2000TH 170460/186,531Downhole Rotary Hydraulic Pressure for ValveMar. 2, 2000ActuationTH 170560/186,377Wireless Downhole Measurement and Control ForMar. 2, 2000Optimizing Gas Lift Well and Field PerformanceTH 172260/186,381Controlled Downhole Chemical InjectionMar. 2, 2000TH 172360/186,378Wireless Power and Communications Cross-BarMar. 2, 2000Switch The current application shares some specification and figures with the following commonly owned and concurrently filed applications, all of which are hereby incorporated by reference: COMMONLY OWNED AND CONCURRENTLY FILED U.S. PATENT APPLICATIONST&K #Ser. No.TitleFiling DateTH 160110/220,402Reservoir Production Control from Intelligent Well DataAug. 29, 2002TH 167110/220,251Tracer Injection in a Production WellAug. 29, 2002TH 167210/220,402Oil Well Casing Electrical Power Pick-Off PointsAug. 29, 2002TH 167310/220,252Controllable Production Well PackerAug. 29, 2002TH 167410/220,249Use of Downhole High Pressure Gas in a Gas-Lift WellAug. 29, 2002TH 167510/220,195Wireless Smart Well CasingAug. 29, 2002TH 167710/220,253Method for Downhole Power Management Using Energization from DistributedAug. 29, 2002Batteries or Capacitors with Reconfigurable DischargeTH 167910/220,453Wireless Downhole Well Interval Inflow andAug. 29, 2002Injection ControlTH 170510/220,455Wireless Downhole Measurement and Control For Optimizing GasAug. 29, 2002Lift Well and Field PerformanceTH 172210/220,372Controlled Downhole Chemical InjectionAug. 30, 2002TH 172310/220,652Wireless Power and Communications Cross-Bar SwitchAug. 29, 2002 The current application shares some specification and figures with the following commonly owned and previously filed applications, all of which are hereby incorporated by reference: COMMONLY OWNED AND PREVIOUSLY FILEDU.S. PATENT APPLICATIONST&K #Ser. No.TitleFiling DateTH 1599US09/769,047Choke Inductor for WirelessOct. 20,Communication and Control2003TH 1600US09/769,048Induction Choke for PowerJan. 24,Distribution in Piping2001StructureTH 1602US09/768,705Controllable Gas-Lift WellJan. 24,and Valve2001TH 1603US09/768,655Permanent Downhole,Jan. 24,Wireless, Two-Way2001Telemetry Backbone UsingRedundant RepeaterTH 1668US09/768,046Petroleum Well HavingJan. 24,Downhole Sensors,2001Communication, and PowerTH 1669US09/768,656System and Method for FluidJan. 24,Flow Optimization2001TS 6185US09/779,935A Method and Apparatus forFeb. 8,the Optimal Predistortion of2001an Electro Magnetic Signal ina Downhole CommunicationsSystem The benefit of 35 U.S.C. § 120 is claimed for all of the above referenced commonly owned applications. The applications referenced in the tables above are referred to herein as the “Related Applications.”
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/06802 | 3/2/2001 | WO | 00 | 8/29/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/65063 | 9/7/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
525663 | Mottinger | Sep 1894 | A |
2379800 | Hare | Jul 1945 | A |
2414719 | Cloud | Jan 1947 | A |
2917004 | Davis et al. | Dec 1959 | A |
3083771 | Chapman | Apr 1963 | A |
3247904 | Wakefield, Jr. | Apr 1966 | A |
3427989 | Bostock et al. | Feb 1969 | A |
3566963 | Blackledge | Mar 1971 | A |
3602305 | Kisling, III | Aug 1971 | A |
3732728 | Fitzpatrick | May 1973 | A |
3793632 | Still | Feb 1974 | A |
3814545 | Waters | Jun 1974 | A |
3837618 | Juhel | Sep 1974 | A |
3980826 | Widmer | Sep 1976 | A |
4068717 | Needham | Jan 1978 | A |
4087781 | Grossi et al. | May 1978 | A |
4295795 | Gass et al. | Oct 1981 | A |
4393485 | Redden | Jul 1983 | A |
4468665 | Thawley et al. | Aug 1984 | A |
4545731 | Canalizo et al. | Oct 1985 | A |
4566534 | Going, III | Jan 1986 | A |
4576231 | Dowling et al. | Mar 1986 | A |
4578675 | MacLeod | Mar 1986 | A |
4596516 | Scott et al. | Jun 1986 | A |
4630243 | MacLeod | Dec 1986 | A |
4648471 | Bordon | Mar 1987 | A |
4662437 | Renfro | May 1987 | A |
4681164 | Stacks | Jul 1987 | A |
4709234 | Forehand et al. | Nov 1987 | A |
4738313 | McKee | Apr 1988 | A |
4739325 | MacLeod | Apr 1988 | A |
4839644 | Safinya et al. | Jun 1989 | A |
4852648 | Akkerman et al. | Aug 1989 | A |
4886114 | Perkins et al. | Dec 1989 | A |
4901069 | Veneruso | Feb 1990 | A |
4972704 | Wellington et al. | Nov 1990 | A |
4981173 | Perkins et al. | Jan 1991 | A |
5001675 | Woodward | Mar 1991 | A |
5008664 | More et al. | Apr 1991 | A |
5130706 | Van Steenwyk | Jul 1992 | A |
5134285 | Perry et al. | Jul 1992 | A |
5160925 | Dailey et al. | Nov 1992 | A |
5162740 | Jewell | Nov 1992 | A |
5172717 | Boyle et al. | Dec 1992 | A |
5176164 | Boyle | Jan 1993 | A |
5191326 | Montgomery | Mar 1993 | A |
5230383 | Pringle et al. | Jul 1993 | A |
5236048 | Skinner et al. | Aug 1993 | A |
5246860 | Hutchins et al. | Sep 1993 | A |
5251328 | Shaw | Oct 1993 | A |
5257663 | Pringle et al. | Nov 1993 | A |
5267469 | Espinoza | Dec 1993 | A |
5278758 | Perry et al. | Jan 1994 | A |
5331318 | Montgomery | Jul 1994 | A |
5353627 | Diatschenko et al. | Oct 1994 | A |
5358035 | Grudzinski | Oct 1994 | A |
5367694 | Ueno | Nov 1994 | A |
5394141 | Soulier | Feb 1995 | A |
5396232 | Mathieu et al. | Mar 1995 | A |
5425425 | Bankston et al. | Jun 1995 | A |
5447201 | Mohn | Sep 1995 | A |
5458200 | Lagerlef et al. | Oct 1995 | A |
5467083 | McDonald et al. | Nov 1995 | A |
5473321 | Goodman et al. | Dec 1995 | A |
5493288 | Henneuse | Feb 1996 | A |
5531270 | Fletcher et al. | Jul 1996 | A |
5561245 | Georgi et al. | Oct 1996 | A |
5574374 | Thompson et al. | Nov 1996 | A |
5576703 | MacLeod et al. | Nov 1996 | A |
5587707 | Dickie et al. | Dec 1996 | A |
5592438 | Rorden et al. | Jan 1997 | A |
5662165 | Tubel et al. | Sep 1997 | A |
5723781 | Pruett et al. | Mar 1998 | A |
5730219 | Tubel et al. | Mar 1998 | A |
5745047 | Van Gisbergen et al. | Apr 1998 | A |
5782261 | Becker et al. | Jul 1998 | A |
5797453 | Hisaw | Aug 1998 | A |
5881807 | Boe et al. | Mar 1999 | A |
5883516 | Van Steenwyk et al. | Mar 1999 | A |
5887657 | Bussear et al. | Mar 1999 | A |
5896924 | Carmody et al. | Apr 1999 | A |
5934371 | Bussear et al. | Aug 1999 | A |
5937945 | Bussear et al. | Aug 1999 | A |
5941307 | Tubel | Aug 1999 | A |
5955666 | Mullins | Sep 1999 | A |
5959499 | Khan et al. | Sep 1999 | A |
5960883 | Tubel et al. | Oct 1999 | A |
5963090 | Fukuchi | Oct 1999 | A |
5971072 | Huber et al. | Oct 1999 | A |
5975204 | Tubel et al. | Nov 1999 | A |
5995020 | Owens et al. | Nov 1999 | A |
6012015 | Tubel | Jan 2000 | A |
6012016 | Bilden et al. | Jan 2000 | A |
6070608 | Pringle | Jun 2000 | A |
6123148 | Oneal | Sep 2000 | A |
6148915 | Mullen et al. | Nov 2000 | A |
6189621 | Vail, III | Feb 2001 | B1 |
6192983 | Neuroth et al. | Feb 2001 | B1 |
6208586 | Rorden et al. | Mar 2001 | B1 |
6334486 | Carmody et al. | Jan 2002 | B1 |
6484800 | Carmody et al. | Nov 2002 | B1 |
6633164 | Vinegar et al. | Oct 2003 | B1 |
6633236 | Vinegar et al. | Oct 2003 | B1 |
6662875 | Bass et al. | Dec 2003 | B1 |
20030056952 | Stegemeier et al. | Mar 2003 | A1 |
20030066652 | Stegemeier et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
28296 | May 1981 | EP |
295178 | Dec 1988 | EP |
339825 | Nov 1989 | EP |
492856 | Jul 1992 | EP |
0 641 916 | Aug 1994 | EP |
681090 | Nov 1995 | EP |
697500 | Feb 1996 | EP |
919696 | Jun 1996 | EP |
721053 | Jul 1996 | EP |
732053 | Sep 1996 | EP |
0 922 835 | Jun 1999 | EP |
930518 | Jul 1999 | EP |
0 964 134 | Dec 1999 | EP |
964134 | Dec 1999 | EP |
972909 | Jan 2000 | EP |
0 999 341 | May 2000 | EP |
2677134 | Dec 1992 | FR |
2083321 | Mar 1982 | GB |
2 325 949 | Dec 1998 | GB |
2327695 | Feb 1999 | GB |
2338253 | Dec 1999 | GB |
8000727 | Apr 1980 | WO |
9326115 | Dec 1993 | WO |
9600836 | Jan 1996 | WO |
9624747 | Aug 1996 | WO |
9716751 | May 1997 | WO |
9737103 | Oct 1997 | WO |
9820233 | May 1998 | WO |
9937044 | Jul 1999 | WO |
9957417 | Nov 1999 | WO |
9960247 | Nov 1999 | WO |
0004275 | Jan 2000 | WO |
0037770 | Jun 2000 | WO |
0120126 | Mar 2001 | WO |
0155555 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030066652 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
60186393 | Mar 2000 | US |