U.S. Pat. No. 7,160,254, hereby incorporated by reference in its entirety herein, discloses an Electroviserogram (EVG) system and method to gather and evaluate myoelectric signals from intra-abdominal organs and other motility based organs. The EVG system includes a plurality of conventional electrodes positioned on the body to obtain signals relating to myoelectrical activity from a hollow internal bodily organ. The electrodes are connected in a wired manner to a signal processing module that communicates with a computer.
Although the EVG system is well-suited for its intended purpose, there is a need for wireless electrode device that can obtain and transmit data to a remote device.
An objective of the embodiment is to fulfill the need referred to above. In accordance with an aspect of an embodiment, a wireless electrode device includes a housing, with an electrode in the housing and constructed and arranged to obtain an analog electrical signal from a human patient. An amplifier is disposed in the housing and is constructed and arranged to amplify the analog electrical signal. Filter structure is disposed in the housing and is constructed and arranged to filter the amplified analog electrical signal. An A/D converter is disposed in the housing and is constructed and arranged to convert the amplified and filtered analog electrical signal to a digitized electrical signal. A transmitter is disposed in the housing and is constructed and arranged to transmit, in a wireless manner, data relating to the digitized electrical signal. A power supply is provided for powering the device.
In accordance with another aspect of an embodiment, a wireless sensor device includes a housing, with a sensor disposed in the housing and constructed and arranged to obtain an analog electrical signal from a human patient. A processor circuit is disposed in the housing and is constructed and arranged to convert the analog electrical signal to a digitized electrical signal. A transmitter is disposed in the housing and is constructed and arranged to transmit, in a wireless manner, data relating to the digitized electrical signal. A power supply is provided for powering the device.
In accordance with yet another aspect of an embodiment, a method of obtaining and analyzing data regarding myoelectric activity from motility based organs provides a plurality of wireless electrode devices, each having an electrode and a transmitter. Each electrode contacts an external part of a patient's body. Myoelectrical data relating to an internal organ of the patient is obtained with the electrodes. The myoelectrical data is wirelessly transmitted, via each transmitter, to a portable device that is separate and remote from the plurality of wireless electrode devices. The portable device is employed to analyze the transmitted myoelectrical data.
Other objectives, features and characteristics of the present embodiment, as well as the methods of operation and the functions of the related elements of the structure, the combination of parts and economics of manufacture will become more apparent upon consideration of the following detailed description and appended claims with reference to the accompanying drawings, all of which form a part of this specification.
The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawing, wherein like reference numerals refer to like parts, in which:
With reference to
The portable device 24 can be considered a processing device that can communicate in a wireless manner with a network 30 via a transmitter 32 of the portable device 24. The network 30 may include at least one of a telecommunication network such as a computer network (e.g., a LAN or a WAN), the Internet, cloud-based server, and a telephone network.
The electrode device 10 can be used in any application where an electrode obtains and transmits data relating to electrical activity. It is noted that the size of the electrode device 10 and portable device 24 is not shown with regard to any scale in
With reference to
The transmitter 22 can be in the form of a transceiver so as to also receive data from the portable device 24. For example, for an EVG application, the portable device 24 may send a calibration signal 37 to the transceiver 22 that can be received by the amplifier 14 for calibration purposes, as disclosed in U.S. Pat. No. 7,160,254.
Alternatively, instead of providing the respiratory sensor 34 and filter 38 in one of the electrode devices 10, a separate respiratory sensor device (not shown) with appropriate filter, A/D converter and transmitter can be provided that communicates in a wireless manner with the portable device 24 simultaneously with electrodes 12 of separate electrode devices 10.
Thus, by enabling the electrode device 10 to be able to transmit electrode and respiratory sensor data directly to a portable device 24, the conventional and cumbersome signal processing module, computer, printer and storage device are no longer required in an EVG system. Also, advantageously, the electrode device 10 (without the respiratory sensor 34 and filter 38) can be employed in other applications and can communicate directly with the portable device 24 having an App configured for the desired testing purpose.
The housing 33 of the electrode device 10 can be of materials suitable for implanting or embedding at least a portion thereof in a patient's tissue, so that once embedded, the device 10 can transmit data (e.g., signal 16′) to the portable device 24.
With reference to
The operations and algorithms described herein can be implemented as executable code within the microprocessor circuits 42, 44 as described, or stored on a standalone computer or machine readable non-transitory tangible storage medium that are completed based on execution of the code by a processor circuit implemented using one or more integrated circuits. Example implementations of the disclosed circuits include hardware logic that is implemented in a logic array such as a programmable logic array (PLA), a field programmable gate array (FPGA), or by mask programming of integrated circuits such as an application-specific integrated circuit (ASIC). Any of these circuits also can be implemented using a software-based executable resource that is executed by a corresponding internal processor circuit such as a microprocessor circuit and implemented using one or more integrated circuits, where execution of executable code stored in an internal memory circuit causes the integrated circuit(s) implementing the processor circuit to store application state variables in processor memory, creating an executable application resource (e.g., an application instance) that performs the operations of the circuit as described herein. Hence, use of the term “circuit” in this specification refers to both a hardware-based circuit implemented using one or more integrated circuits and that includes logic for performing the described operations, or a software-based circuit that includes a processor circuit (implemented using one or more integrated circuits), the processor circuit including a reserved portion of processor memory for storage of application state data and application variables that are modified by execution of the executable code by a processor circuit. The memory circuit 35 can be implemented, for example, using a non-volatile memory such as a programmable read only memory (PROM) or an EPROM, and/or a volatile memory such as a DRAM, etc.
The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.
Number | Date | Country | |
---|---|---|---|
62674116 | May 2018 | US |