An electronic device can use an energy to function. The energy can be used to perform various functions. Example functions can include powering a screen, running a processor, retaining information in memory, and others. Before being used to perform functions, energy can be retained in a battery and used when appropriate. In one embodiment, the energy is a wireless energy.
The accompanying drawings, which are incorporated in and constitute a part of the detailed description, illustrate various example systems, methods, and other example embodiments of various innovative aspects. These drawings include:
It will be appreciated that illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of another element may be implemented as an external component and vice versa. Furthermore, elements may not be drawn to scale. These elements and other variations are considered to be embraced by the general theme of the figures, and it is understood that the drawings are intended to convey the spirit of certain features related to this application, and are by no means regarded as exhaustive or fully inclusive in their representations. A figure may be indicated with the notation ‘FIG.’
The terms ‘may’ and ‘can’ are used to indicate a permitted feature, or alternative embodiments, depending on the context of the description of the feature or embodiments. In one example, a sentence states ‘A can be AA’ or ‘A may be AA’. Thus, in the former case, in one embodiment A is AA, and in another embodiment A is not AA. In the latter case, A may be selected to be AA, or A may be selected not to be AA. However, this is an example of A, and A should not be construed as only being AA. In either case, however, the alternative or permitted embodiments in the written description are not to be construed as injecting ambiguity into the appended claims. Where claim ‘x’ recites A is AA, for instance, then A is not to be construed as being other than AA for purposes of claim x. This is construction is so despite any permitted or alternative features and embodiments described in the written description.
Described herein are example systems, methods, and other embodiments associated with use of wireless energy. An example system can be a plurality of devices enabled to employ energy transmitted and received wirelessly. These devices can share energy between one another through various techniques governing emitting and capturing wireless energy.
In one embodiment, a plurality of devices can act in concert to provide energy to devices at greater distance or where traditional energy supplies are unavailable. In one or more embodiments, series of devices can be utilized to create wireless energy networks and/or clouds (e.g., where a wireless energy network is supported by one or more wireless energy clouds).
An embodiment can provide for techniques to apportion, regulate, observe, or manage use of wireless energy. In one example, metrics such as consumption and output can be observed and tracked. One embodiment can use these measurements and histories to perform billing for wireless energy usage in one or more environments, apply or charge energy credits, enforce energy sharing rules or ratios, and so forth.
One embodiment can apply these techniques toward various energy regulation schemes. In one example, a plurality of devices operating can seek to balance battery storage according to predetermined logic or realtime adjustments. In one example, energy can be extended to a device at a distance to prevent the device from running out of energy. In one example, the type of device, mode of use, nature of processes, and others can be used to determine an importance of a particular device's function, and provide or shift energy to one or more devices according to a hierarchy of importance. One embodiment can provide for the consolidation of various wireless protocols. In one example, in an embodiment employing wireless communication, data can be associated with or coupled with energy provided. In one embodiment, transmitters and/or base units that transmit data and energy simultaneously from a single apparatus are employed. In one embodiment, data and energy can be coupled or associated and then transmitted. In one embodiment, data can be transmitted in such a way as to underlay energy.
Where this application refers to “wireless energy transfer,” “wireless energy emission,” “wireless energy transmission,” “wireless energy collection,” “wireless energy reception,” “wireless power,” et cetera, and similar phrases concerning electricity or other means for powering devices, a number of techniques, schemes, manners, modes or means can be employed to accomplish such energizing effect. These designations may be used interchangeably throughout this application, although some instance may be noted otherwise. These techniques can include, but are not limited to, induction (magnetic, resonant or non-resonant inductive coupling, capacitive coupling, et cetera), radio and microwave (using rectenna or other means), laser (optical energy), electrical conduction, and others. Inductive techniques can include circuit features such as multiple coils to enhance coupling in a variety of component orientations within the generated electromagnetic field. Various assemblies for these and other wireless power techniques that are known to one of ordinary skill in the art and can be applied to the benefit of features described herein. Further, an assortment of converters can be used to convert electricity (or other energy) into energy suitable for wireless emission or transmission, and similar or other converters can be employed to convert energy collected or received wirelessly to electricity (or other energy). The techniques described are not intended to be limiting, but rather set forth certain example standards for accomplishing some aspects and embodiments discussed in this application. In one embodiment, two or more of these techniques can be employed by a single device or component, a plurality of devices or components that share collected or received energy.
In one embodiment, passive elements can be employed to supplement operation or serve as elements to be energized or de-energized through exposure to an electric or magnetic field to perform operation using wireless power or to serve other functions (e.g., identification, authentication, switching, et cetera) in conjunction with other wireless power techniques.
While these provide particular aspects of some embodiments, other applications involving different features, variations or combinations of aspects will be apparent to those skilled in the art based on the following details relating to the drawings and other portions of this application.
The following paragraphs include definitions of selected terms discussed at least in the detailed description. The definitions may include examples used to explain features of terms and are not intended to be limiting. In addition, where a singular term is disclosed, it is to be appreciated that plural terms are also covered by the definitions. Conversely, where a plural term is disclosed, it is to be appreciated that a singular term is also covered by the definition.
References to “one embodiment”, “an embodiment”, “one example”, “an example”, and so on, indicate that the embodiment(s) or example(s) so described may include a particular feature. The embodiment(s) or example(s) are shown to highlight one feature and no inference should be drawn that every embodiment necessarily includes that feature. Multiple usages of the phrase “in one embodiment” and others do not necessarily refer to the same embodiment; however this term may refer to the same embodiment. It is to be appreciated that multiple examples and/or embodiments may be combined together to form another embodiment.
“Computer-readable medium”, as used herein, refers to a medium that stores signals, instructions, and/or data. A computer may access a computer-readable medium and read information stored on the computer-readable medium. In one embodiment, the computer-readable medium stores instruction and the computer can perform those instructions as a method. The computer-readable medium may take forms, including, but not limited to, non-volatile media (e.g., optical disks, magnetic disks, and so on), and volatile media (e.g., semiconductor memories, dynamic memory, and so on). Example forms of a computer-readable medium may include, but are not limited to, a floppy disk, a flexible disk, a hard disk, a magnetic tape, other magnetic medium, an application specific integrated circuit (ASIC), a programmable logic device, a compact disk (CD), other optical medium, a random access memory (RAM), a read only memory (ROM), a memory chip or card, a memory stick, and other media from which a computer, a processor or other electronic device can read.
“Component”, “logic”, “module”, “interface” and the like as used herein, includes but is not limited to hardware, firmware, software stored or in execution on a machine, a routine, a data structure, and/or at least one combination of these (e.g., hardware and software stored). Component, logic, module, and interface may be used interchangeably. A component may be used to perform a function(s) or an action(s), and/or to cause a function or action from another component, method, and/or system. A component may include a software controlled microprocessor, a discrete logic (e.g., ASIC), an analog circuit, a digital circuit, a programmed logic device, a memory device containing instructions, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, a computer and so on. A component may include one or more gates, combinations of gates, or other circuit components. Where multiple components are described, it may be possible to incorporate the multiple components into one physical component. Similarly, where a single component is described, it may be possible to distribute that single component between multiple physical components. In one embodiment, the multiple physical components are distributed among a network. By way of illustration, both/either a controller and/or an application running on a controller can be one or more components.
While the systems and methods below focus on the transfer and reception of wireless energy, where multiple steps of wireless energy transfer are involved, it may be possible to include or substitute a wired or other physically-connected energy source in one or more situations. Likewise, where communications or other techniques regarding relationships between components or steps are described in one form or another, it may be possible to substitute alternate communication means by use of physical connections, wireless connections, networks, alternative protocols, converters, or translators, et cetera.
With a wireless energy means detected, regulation component 110 can regulate the interaction of such means. Regulation component 110 can regulate transmitting and receiving of wireless energy by, for example, starting, stopping, reducing and increasing transmission and reception of wireless energy by one or more devices at intervals, specific times, randomly, according to an algorithm or function, or continuously/indefinitely. Examples of regulation undertaken by regulation component 110 can include, by are not limited to, resolving supply for demand relating to wireless energy, improving and/or optimizing (e.g., minimize or maximize based on constraints relating to energy, priority, time, et cetera) transmission and reception of wireless energy, enforcing rules for wireless transmission or reception of energy, authenticating or identifying users participating in emitting and collecting wireless energy, and others.
Regulation component 110 can be a component within one or more devices configured to transmit, receive, or transmit and receive wireless energy. The regulation component 110 can be an autonomous entity that regulates the behavior of devices using wireless energy within the scope of regulation component 110. The scope of regulation component 110 can be dependent on a variety of factors, including a user preference, a device setting, an energy level (e.g., battery charge, amount of energy available from sources, stability of energy sources (e.g., source uptime/downtime, consistency of source energy levels, range of source, loads on source, et cetera), effectiveness or completeness of powering of components, et cetera), a distance, a device identity, a user identity, a device capability, an authentication, a network, a load level, a device or process priority, and other contextual information. In one example, a user can set the device to participate in a wireless energy regulation scheme (e.g., when possible). In one embodiment, participation by communication or connectivity with regulation component 110 can be a prerequisite to send or receive wireless energy. In one embodiment, communication or connectivity with regulation component 110 is discretionary. In one embodiment, regulation component 110 manages a wireless energy network (e.g., two or more devices capable of providing and/or receiving wireless energy) comprising (but not limited to) a plurality of devices capable of (at least) transmitting energy to other devices wirelessly. In one embodiment, a wireless energy network can be fixed or semi-fixed in nature, utilizing hubs and spokes to distribute energy wirelessly. In one embodiment, a wireless energy network can be ad hoc in nature, utilizing decentralized control/sharing independent of a preexisting infrastructure. In an ad hoc embodiment, wireless energy networks utilizing previously unknown devices or components can potentially be activated (or deactivated) anywhere at any time. Regulation component 110 can require authentication to allow a new device to transmit or receive energy via other devices.
In one embodiment, a level of load (e.g., amount of energy required to power devices currently sending and receiving energy wirelessly) can be used to determine whether new devices may be allowed to send or receive energy to other devices. In this way, sufficient energy can be maintained, or additional energy can be contributed, to meet the load demand. Likewise, battery levels can be evaluated to determine whether a device would benefit from additional energy wirelessly, or would be able to transfer energy wirelessly to other devices. In one embodiment, a priority or other contextual information can be considered, to provide or deny energy in certain situations (e.g., allow reception of wireless energy by un- or under-powered cellular telephone during emergency, deny reception of wireless energy by a low-priority digital music player but allow reception of energy by medium-priority Global Positioning System (GPS) when energy limited, et cetera). In an embodiment, priority can also be based on the timing of a use (e.g., first-in-time or first-with-charge has priority to use available energy).
The wireless detection component 105 can detect a wireless energy. The regulator component 110 can manages emission of the wireless energy in response to detection of the wireless energy. In one embodiment, the regulator component 110 manages an amount of wireless energy emitted based, at least in part, upon an energy sharing criteria. In one embodiment, the regulator component 110 manages an amount of the wireless energy emitted as a function of at least an energy level. In one embodiment, the regulator component 110 manages an amount of wireless energy emitted based, at least in part, upon a priority of an energy use. In one embodiment, the regulator component manages an amount of the wireless energy emitted as a function of at least a contextual factor.
Amount component 215 measures an energy amount transferred (e.g., sent or received) in relation to a device (e.g., sent to a device, emitted, emitted to the device, and others). In one embodiment, the regulator component 210 manages an amount of the wireless energy emitted to the device as a function of at least the energy amount. Amount component 215 can identify absolute or relative amounts of energize, such as, for example, a total amount of energy sent or received, a difference in energy emitted between two or more devices, a difference in energy collected between two or more devices, a rate of energy transmission or reception, a difference between the amount of energy transmitted and received for one or more devices, an amount, rate or difference of energy transmitted or received during a given period, as various dependent and derivative values (e.g., differences, averages, ratios, percentages, derivatives, logarithms, et cetera), and others. Amount component 215 can evaluate amounts from the perspective of an emitter, a collector, or both, as the evaluated amount may differ at one versus the other (e.g., amount emitted may not be amount collected due to imperfect efficiency, failure to receive, et cetera). The amount component 215 can consider, amend, or prorate additional amounts to account or correct for efficiency, loss, failure, and other contingencies.
Records component 220 creates, stores, and/or accesses one or more records related to an amount of the wireless energy transferred to a device. Records component 220 can store, write, access, and/or rewrite a record locally and/or read, write, access and/or rewrite remote records. In one embodiment, records component 220 can distribute its records to other components or upload the records. In one embodiment, records component 220 can access records from other components or download records. Records component 220 can store amounts recorded by the amount component 215, and other information. Records created, maintained, and/or accessed by records component 220 can be used as or to develop histories of networks, components, devices, users, locations, times, et cetera in relation to wireless energy or other aspects.
Amount component 215 and/or records component 220 can influence the regulation component 210. In one example, realtime measurements identified by the amount component 215 can be employed to manage one or more aspects regulated by regulation component 210. Likewise, current or past records from records component 220 can be used to modify regulation by regulation component 210.
The monitor component 310 can monitor the wireless energy after the transmission to produce a transmission monitor result. In one embodiment, the monitor component 310 monitors and discerns the transmission monitor result from analysis of a wireless energy transfer. The transmission monitor result can be observed, stored, distributed, transferred, uploaded, downloaded, et cetera, and used in conjunction with components relating to regulation of wireless energy emission or collection and regulation, measurement and/or storage aspects relating thereto. When wireless energy is transmitted or received between devices or components, monitor component 310 can monitor the transfer. Aspects monitored by monitor component 310 can include, but are not limited to, device status, device type, device capability, user identity, permissions, battery level, location, efficiency, success or failure, power sources, network information, traffic (e.g., number of devices on wireless power network, number of devices transmitting and/or receiving wireless power, processing cost to components handling emission and collection of wireless energy, et cetera), or amount of use electrical loads (or other energy sinks), interactions and/or relationships between devices and/or components, multiple and combinations thereof, et cetera.
Bill component 415 can assess a charge based at least in part on the transmission monitor result (e.g., including amount of the wireless power reported from the determination component 420). Bill component 415 can assess a charge or charges based on a common scheme, or according to differentiated processes dependent upon a multiplicity of variables. In one example, different users can be billed at different rates for wireless energy. In one embodiment, billing can take a form of a one-time access charge, periodic time-based charges, consumption or quantity-based charges, and others. The charge assessed for a given service or quantity can vary depending on, in one example, a time, period, location or movement, user, device, traffic (including a total number of devices by all users or a number of devices associated with one user), amount of use, demand (absolute, relative, or as it pertains to one user), instant or average energy costs from one or more energy suppliers (e.g., power company, broker, private generator, private user, et cetera), projected energy costs, costs related to a different form of energy or generation, weather, permission or subscription level, history, efficiency, rate, and others. In one embodiment, a bill can be adjusted to add or remove credit from the bill or an account associated with the bill. In one example, if a first device transmits energy wirelessly to a second device, a fixed credit could be applied to the bill of the first device, or a prorated credit accounting for a relative or absolute amount of energy transferred wirelessly to the second device could offset the bill. In one embodiment, if a user declines to provide wireless energy when requested, a surcharge could be assessed to the user's bill. In one embodiment, charges can be consolidated for groups of devices or users, and incentives can also be provided in particular situations. In one embodiment, the bill component 415 assesses the charge based, at least in part, on the amount of the wireless energy transmitted to the device. In one embodiment, the bill component 415 adjusts the charge based, at least in part, on contextual information related to a device that uses at least part of the wireless energy.
The determination component 420 can include a usage determination component 425 and an emission determination component 430. The usage determination component 425 can determine an amount of the wireless energy that is used by a device. The bill component 415 can assess the charge based, at least in part, on the amount of the wireless energy that is used by the device. The emission determination component 430 can determine an amount of wireless energy emitted by a device. The bill component 415 can assess the charge based, at least in part, on the amount of wireless energy emitted by the device and the amount of the wireless energy transmitted to the device. While shown as part of the determination component 420
First emitter 510 emits wireless energy to second receiver 525, and first receiver 515 receives wireless energy from second emitter 530. In this way, devices 505 and 520 can exchange or share wireless energy. In one embodiment, one transmitter/receiver combination (e.g., first emitter 510 and second receiver 525, second emitter 530 and first receiver 515) acts. In one embodiment, the transmitter/receiver combinations can exchange energy wirelessly, but at different times. In one embodiment, device 505 can draw energy from device 520 for a time, and then transmit energy to device 520 at a later time. Transfer can be manual or automated (e.g., proactive) based on requests, offers, need, battery life, device priority, process priority, et cetera. Algorithms or optimizations can be employed in determining when and where to transfer energy in a wireless energy sharing arrangement. In one embodiment, devices 505 and/or 520 authorize or identify one another before exchanging energy wirelessly. In one embodiment, devices 505 and/or 520 do not identify one another or can remain anonymous while exchanging energy. Energy sharing can occur with or without the knowledge of device users or networks.
An order of wireless energy transfer in
In system 800, cell phone 810 transfers energy wirelessly to music player 815 as a relay. Music player 815 transfers energy wirelessly to GPS 820 as a relay. GPS 820 transfers energy wirelessly to cell phone 825, which in the illustrated embodiment, is a final destination. Devices in system 800 can re-emit energy they collect wirelessly, emit a portion of the collected energy and retain a portion of energy for operation or to recharge a battery, retain energy, and others. It is unnecessary to follow a particular order for transfer. While the embodiment depicted follows a linear path for ease of illustration, in one or more embodiments, a path can be non-linear or multi-directional, and involve multiple transmitters and receivers transmitting and/or receiving to or from a plurality of other transmitters and receivers. For example, GPS 820 can transfer electricity wirelessly to both cell phone 825 and music player 815. In one embodiment, a source or relay transfers sufficient energy to recharge batteries in one or more other components or devices. In an embodiment, a source or relay only transfers sufficient energy to support operation (e.g., but not charging) in other components or devices. In one embodiment, one or more devices in system 800 are not in an active, operating or use mode (e.g., operating in an idle or standby mode, or not currently in use).
Sharing component 1010 can perform a number of tasks related to the sharing of wireless energy, including evaluation of an energy sharing criteria. An energy sharing criteria can be any technique for evaluating and enforcing a sharing architecture or agreement. In one embodiment, sharing component 1010 can optimize use or allocation of energy. In one embodiment, sharing component 1010 can resolve routes or paths using relays or servers to direct energy wirelessly from a source to a destination through a series of devices. For example, if transmitter component 1020 does not wirelessly transfer a form of energy usable or convertible by receiver component 1015, an intermediary device can be employed by sharing component 1010 to transfer energy wirelessly from a source to a destination. In an embodiment, sharing component maintains constraints on sharing involving intermediaries, such as ensuring that the intermediary device is not adversely affected (e.g., loss of use or charge) for acting as a relay. In an embodiment, sharing component 1010 enforces sharing rules. For example, rules can relate to maximum or minimum amount of energy transfer, relative amount of energy transfer (e.g., energy transmission or reception parity, transmission or reception according to a particular arrangement specifying an allocation, et cetera) energy transfer ratios (e.g., prior to use or over period of time a device must emit to other receivers a percentages or amounts of energy related to amounts of energy received by the device), ranges of battery charge, device use during utilization of wireless energy (e.g., allow e-mail or word processor, disallow games and music), and others. In an embodiment, a receiver does not collect energy wirelessly unless an associated transmitter has emitted energy for use by others in the system. In one embodiment, sharing component 1010 can utilize a constraint unrelated to energy to enable sharing of wireless power. Examples of constraints not related to wireless energy can include nomination or confirmation by existing sharer, provisioning or sharing of another resource such as data or network access, et cetera. In this way, access can be controlled to prevent leeching of wireless power, and in some instances, additional resources (including those distinct from wireless energy) can be pooled among a wireless power network. In one embodiment, sharing component 1010 acts independently and/or automatically (e.g., proactively) without user input. In another embodiment, an entity is prompted or actively controls sharing component 1010 in order to direct the regulation of wireless energy sharing. In an embodiment, sharing component 1010 can administrate a plurality of wireless power networks, each subject to separate constraints or authorizations. For example, one group of wireless energy sharers could allow any user that contributes an amount of energy to have access to the wireless energy network for a period of time, and another group of wireless energy sharers could exclude all devices not approved by a group administrator or series of users.
Meter component 1110 passes amounts measured to billing component 1115 (e.g., included in the bill component 415 of
Power station 1205 generates electrical energy that is provided to a wireless energy transmitter. The wireless energy transmitter has an effective range, which defines power station cloud 1220. Power station cloud 1220 can be a primary wireless energy cloud. In an embodiment, a primary wireless energy cloud can be a large or highly stable wireless energy cloud. In one embodiment, a primary wireless energy cloud can be a wireless energy cloud that is fixed as it is generated by a fixed emitter. In an embodiment, a primary wireless energy cloud can be the cloud associated with a device governing a wireless energy network or directing interaction between a plurality of devices utilizing wireless energy transfer. In one embodiment, a primary wireless energy cloud can be an arbitrarily selected cloud. Receivers operating within power station cloud 1220 can potentially receive energy wirelessly from power station 1205. Device 1215 can operate within power station cloud 1220. Device 1215 receives electricity wirelessly from power state 1205 via the power station cloud 1220. Device 1215 can also have its own transmitter with a different effective range of wireless energy transfer. Thus, device 1215 can generate its own wireless energy cloud, device cloud 1225. If the range of device cloud 1225 exceeds the boundaries of power station cloud 1220, added cloud area 1230 can extend the effective area of power station cloud 1220 into a previously unreachable area. Added cloud area 1230 can cause a literal or symbolic addition to the cloud area. In the event of a literal extension to cloud area, device cloud 1225 is powered by power station cloud 1220 and power station 1205, as device 1215, which generates device cloud 1225, receives its electricity from power cloud 1220. A symbolic addition to the cloud area would be a situation in which device cloud 1225 is not powered by power station 1205, but still overlaps partially with power station cloud 1220 in such a way as to create a larger continuous area including wireless energy coverage.
Device 1210 includes a wireless energy transmitter that generates device cloud 1235. Device 1210 is illustrated as not within the range of power station cloud 1220, and therefore, device 1210 does not receive energy wirelessly from power station 1205. However, a wired connection can exist between power station 1205 and device 1210. In the illustrated embodiment, device cloud 1235 does not overlap with power station cloud 1220, and thus exists as a distinct wireless energy cloud. However, this cloud can still be powered by power station 1205 or another source (including any source specific to device 1210). In one embodiment, a parameter of a transmitter can be changed (e.g., transmit power, interference reduction, re-orientation or relocation) to alter the range of a wireless energy cloud. In an embodiment, device 1210 or power station 1205 could augment one or more of device cloud 1235 or power station cloud 1220 to increase the range of device cloud 1235 or power station cloud 1220 in order to at least partially join or unify device cloud 1235 and power station cloud 1220.
The following methodologies are described with reference to figures depicting the methodologies as a series of blocks. These methodologies may be referred to as methods, processes, and others. While shown as a series of blocks, it is to be appreciated that the blocks can occur in different orders and/or concurrently with other blocks. Additionally, blocks may not be required to perform a methodology. For example, if an example methodology shows blocks 1, 2, 3, and 4, it may be possible for the methodology to function with blocks 1-2-4, 1-2, 3-1-4, 2, 1-2-3-4, and others. Blocks may be wholly omitted, re-ordered, repeated or appear in combinations not depicted. Individual blocks or groups of blocks may additionally be combined or separated into multiple components. Furthermore, additional and/or alternative methodologies can employ additional, not illustrated blocks, or supplemental blocks not pictured can be employed in some models or diagrams without deviating from the spirit of the features. In addition, at least a portion of the methodologies described herein may be practiced on a computer-readable medium storing computer-executable instructions that when executed by a computer cause the computer to perform a methodology.
In an embodiment, emission of wireless energy is not a literal retransmission, as the energy emitted is not identical or of the same source. However, in an embodiment, the substantial effect is one of retransmission where energy was collected wirelessly by one entity in anticipation of or for the express purpose of transmitting of energy wirelessly to another entity. In an embodiment, energy is transmitted wirelessly first, and then energy is collected wirelessly thereafter to recharge or reimburse an entity that previously transmitted energy.
In one embodiment, emitting the wireless energy includes producing a wireless power cloud from at least the transferred energy. In one embodiment, a device (e.g., cellular telephone) can be configured to collect wireless energy from the wireless power cloud. In one embodiment, the wireless power cloud (e.g., a wireless power cloud 1330 of
If the identified device is within range or capable of receiving wireless power from a source, power is transmitted from the source to the device at 1720. If the identified device is not within range of a suitable source, a route or path to the identified device can be solved by using relays or intermediaries through a series of devices, including devices that lack sufficient energy or capability to act as sources themselves. The route can be solved proceeding from the source by looking for transceivers increasingly close to the identified device, or can start at the identified device and attempt to work back to an appropriate source. The motion of one or more devices can be considered when determining a route, and predicted motion or anticipated future locations can be considered when determining an appropriate route. In an embodiment, a route is continuously recalculated to account for the current and projected future motion of one or more relay or intermediary devices, the source and/or the identified device. When a means of transmitting energy from one or more suitable sources is solved, energy is transferred through the route, and wireless energy is transmitted wirelessly to the identified device. In an embodiment, two or more wireless energy transfer techniques are employed throughout the route. In another embodiment, energy transferred wireless is converted to another form at least once throughout the route. In still another embodiment, one receiver utilized in method 1700 receives wireless energy from two or more transmitters, or one transmitter transfers energy to two or more receivers.
If the wireless energy transfer sharing ratio is met and/or exceeded, the device is permitted to continue receiving wireless energy at 1920. If the energy transfer sharing ratio is not met, an evaluation is made at 1925 as to whether or not there is sufficient energy to transfer to other devices, thereby increasing the sharing ratio. The sufficiency of energy to transfer can relate to, for example, the existence of energy storage, the level of energy storage, the availability of energy sources, and other factors. If enough energy is available, the subject device transfers energy wirelessly until the sharing ratio is met or exceeded at 1930. When the sharing ratio is satisfied, the device is again permitted to receive wireless energy at 1920. If there is not enough energy for the device to wirelessly transmit energy to other devices, the subject device can be disallowed from receiving wireless energy at 1935. In an embodiment, the subject device is permitted to continue receiving wireless energy even if the sharing ratio is not met under certain circumstances. For example, functionality of a device below the sharing ratio may be restricted, credits may be purchased, or another device or user may discretionally allow energy to be shared wirelessly. Those skilled in the art will appreciate the spirit of this method and its described embodiments, and recognize that other variations and applications are implicit to the features of this method.
The system 2400 may run program modules. Program modules can include routines, programs, components, data structures, logic, etc., that perform particular tasks or implement particular abstract data types. The system 2400 can function as a single-processor or multiprocessor computer system, minicomputer, mainframe computer, laptop computer, desktop computer, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like.
It is to be appreciated that aspects disclosed herein can be practiced through use of artificial intelligence techniques. In one example, a determination or inference described herein can, in one embodiment, be made through use of a Bayesian model, Markov model, statistical projection, neural networks, classifiers (e.g., linear, non-linear, etc.), using provers to analyze logical relationships, rule-based systems, or other technique.
While example systems, methods, and so on have been illustrated by describing examples, and while the examples have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the systems, methods, and so on described herein. Therefore, innovative aspects are not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims.
Functionality described as being performed by one entity (e.g., component, hardware item, and others) may be performed by other entities, and individual aspects can be performed by a plurality of entities simultaneously or otherwise. For example, functionality may be described as being performed by a processor. One skilled in the art will appreciate that this functionality can be performed by different processor types (e.g., a single-core processor, quad-core processor, etc.), different processor quantities (e.g., one processor, two processors, etc.), a processor with other entities (e.g., a processor and storage), a non-processor entity (e.g., mechanical device), and others.
In addition, unless otherwise stated, functionality described as a system may function as part of a method, an apparatus, a method executed by a computer-readable medium, and other embodiments may be implemented in other embodiments. In one example, functionality included in a system may also be part of a method, apparatus, and others.
Where possible, example items may be combined in at least some embodiments. In one example, example items include A, B, C, and others. Thus, possible combinations include A, AB, AC, ABC, AAACCCC, AB. Other combinations and permutations are considered in this way, to include a potentially endless number of items or duplicates thereof.
This application claims the benefit of U.S. provisional application Ser. No. 61/165,486 filed on Mar. 31, 2009, which is hereby wholly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61165486 | Mar 2009 | US |