Depending on the application, wireless communication module 104 may be adapted to communicate in accordance with any suitable wireless communication protocol including, but not limited to: wireless networking technologies (such as IEEE 802.11(b) wireless access points and wireless networking devices built by Linksys of Irvine, Calif.), cellular or digital networking technologies (such as Microburst® by Aeris Communications Inc. of San Jose, Calif.), ultra wide band, global system for mobile communications (GSM), general packet radio services (GPRS), code division multiple access (CDMA), spread spectrum technology, short messaging service/text messaging (SMS), or any other suitable radio frequency wireless technology. Further, known data collision technology can be employed such that multiple field devices employing modules similar to wireless communication module 104 can coexist and operate within wireless operating range of on another. Such collision prevention can include a number of different radio-frequency channels and/or spread spectrum techniques. Additionally, communication module 104 can be a commercially available Bluetooth communication module. In the embodiment illustrated in
Controller 110 is coupled to wireless communication module 104 and communicates bi-directionally with wireless communication module 104. Controller 110 is any circuit or arrangement that is able to execute one or more instructions to obtain a desired result. Preferably, controller 110 includes a microprocessor, but can also include suitable support circuitry such as onboard memory, communication busses, et cetera.
Each of wireless communication module 104 and controller 110 is coupled to power module 112. Power module 112 may preferably supply all requisite electrical energy for the operation of field device 102 to wireless communication module 104 and controller 110. Power module 112 includes any device that is able to supply stored or generated electricity to wireless communication module 104 and controller 110. Examples of devices that can comprise power module 112 include batteries (rechargeable nor not), capacitors, solar arrays, thermoelectric generators, vibration-based generators, wind-based generators, fuel cells, et cetera. Alternatively, the power module may be connected to a two-wire process control loop and obtain and store power for use by the wireless communication module.
Transducer 114 is coupled to controller 110 and interfaces field device 102 to a physical process. Examples of transducers include sensors, actuators, solenoids, indicator lights, et cetera. Essentially, transducer 114 is any device that is able to transform a signal from controller 110 into a physical manifestation, such as a valve movement, or any device that generates an electrical signal to controller 110 based upon a real world condition, such as a process fluid pressure.
In accordance with an embodiment of the present invention antenna 106 is encased within a robust polymeric radome 116 that physically couples to enclosure 102. As used herein, a “radome” is intended to mean a housing for a radio antenna; transparent to radio waves. As such, for the purposes of this patent document, the radome need not be “dome-shaped.”
Radome 116 is formed of a relatively rigid polymer that is able to pass radio-frequency signals therethrough. Preferably, radome 116 is formed of a plastic that has a hardness of approximately 77 Shore D, has an insulation resistance that is at or less than 1 GOhm, and is capable of sustaining a 7 Joule impact after a 4 hour soak at −45 degrees Fahrenheit. One suitable example of a plastic that is well-suited for the construction of radome 116 is sold under the trade designation Valox 3706 PBT, available from SABIC Innovative Plastics of Pittsfield, Mass. However, other suitable thermoplastic resins may also be used. Thermoplastic is particularly advantageous because it is easily molded. Other suitable examples of materials that can be used to form radome 116 include Valox Resin V3900WX and Valox 357U, which are available from SABIC Innovative Plastics.
Radome 116 preferably includes an externally threaded region 132 that cooperates with an internally threaded region on housing 102 to provide a mechanical connection for antenna assembly 118. Additionally, bottom surface 134 of radome 116 preferably includes a number of locking tabs 136 that cooperate with features on housing 102 in order to prevent inadvertent loosening of the radome-to-housing connection. While tabs 136 are shown in
Embodiments of the present invention generally provide an antenna assembly that is suitable for the harsh environments in which field devices operate. The antenna radome is made from a polymer that is able to pass radio frequencies therethrough. Further, the radome forms part of the electronics enclosure and preferably complies with the various design criteria and specifications for field devices. Examples of desirable ratings with which the assembly may comply include, without limitation: an F1 rating by UL 746 C (weatherability); strict flammability requirements such as a V2 rating per UL 94 (UL 94, The Standard for Flammability of Plastic Materials for Parts in Devices and Appliances, which is now harmonized with IEC 60707, 60695-11-10 and 60695-11-20 and ISO 9772 and 9773); impact resistance; chemical resistance; thermal shock resistance; NEMA 4x; and IP 65.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/847,901, filed Sep. 28, 2006, the content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60847901 | Sep 2006 | US |