The present invention relates generally to half-duplex communications and more particularly to utilizing a push-to-talk (PTT) feature in a wireless headset.
Half-duplex communications devices, such as two-way radios (or “walkie-talkies”) and cellular phones having a half-duplex or similar service, such as the DIRECT CONNECT® cellular walkie-talkie service offered by Nextel Communications, Inc. of Reston, Va. or the Push to Talk Group Calling feature offered by Verizon Wireless of Bedminster, N.J., frequently are used to facilitate communications between mobile users, such as emergency personnel and construction workers. Because half-duplex communications devices generally are not configured to support simultaneous two-way communications, one or more mechanisms typically are implemented to help ensure that the half-duplex device is in a transmit mode only at the appropriate times. One such mechanism includes a voice operated (VOX) feature whereby a user's voice or other sound triggers the communications device to enter a transmit mode. Another mechanism includes a push-to-talk (PTT) button which places the communications device in a transmit mode while pressed or engaged and returns the communications device to a receive mode when the PTT button is released or disengaged. Thus, while the VOX feature benefits from not requiring the user to manipulate a button to switch the communications device between the transmit and receive mode, the VOX feature typically fails to operate accurately or correctly in noisy environments as the VOX feature often inadvertently interprets loud noises as a voice signal and therefore needlessly places the communications device in transmit mode. Accordingly, the use of a PTT button is frequently implemented for use in noisy environments.
Conventional implementations of PTT buttons (i.e., transmit/receive switches) are not without their drawbacks. For one, the location of the PTT button often causes significant inconvenience to the user. In many instances, the PTT button is located on the communications device which in turn is often placed about the user's body, thereby requiring the user to grasp for the communications device to engage the PTT button. Alternatively, some conventional implementations place the PTT button on a wire connecting a headset to the communications device. While this location for the PTT button may make it somewhat easier to quickly locate the PTT button, it will be appreciated that the wire is likely to become entangled with the user or with other equipment in the proximity due to its length and location.
Accordingly, improved techniques for implementing a PTT button functionality in a half-duplex communications device would be advantageous.
The present invention mitigates or solves the above-identified limitations in known solutions, as well as other unspecified deficiencies in known solutions. A number of advantages associated with the present invention are readily evident to those skilled in the art, including economy of design and resources, transparent operation, cost savings, etc.
In accordance with one embodiment of the present invention, a wireless headset is provided. The wireless headset comprises a switch for indicating a provision of audio information for transmission and means for wirelessly transmitting a signal representative of an engagement of the switch.
In accordance with another embodiment of the present invention, an apparatus is provided. The apparatus comprises an interface operably connected to a half-duplex communications device, a wireless interface; means for receiving a first transmit mode signal via the wireless interface, the transmit mode signal indicating a provision of audio information for transmission by the half-duplex communications device, and means for providing a second transmit mode signal to the half-duplex communications device via the interface to direct the half-duplex communications device to switch to a transmit mode.
In accordance with yet another embodiment of the present invention, a system is provided. The system comprises a half-duplex communications device and a headset wirelessly connected to the half-duplex communications device. The headset is adapted to wirelessly transmit a transmit mode signal-for reception by the half-duplex communications device, the transmit mode signal indicating a provision of audio information by the headset for transmission by the half-duplex communications device. The half-duplex communications device is adapted to transmit at least a portion of the audio information based at least in part upon receipt of the transmit mode signal.
In accordance with an additional embodiment of the present invention, a system is provided. The system comprises a half-duplex communications device, a transmit switch assembly wirelessly connected to the half-duplex communications device and a headset wirelessly connected to the half-duplex communications device. The transmit switch assembly is adapted to wirelessly transmit a transmit mode signal for reception by the half-duplex communications device, the transmit mode signal indicating a provision of audio information by the headset for transmission by the half-duplex communications device. The half-duplex communications device is adapted to transmit at least a portion of the audio information based at least in part upon receipt of the transmit mode signal.
Still further features and advantages of the present invention are identified in the ensuing description, with reference to the drawings identified below.
The purpose and advantages of the present invention will be apparent to those of ordinary skill in the art from the following detailed description in conjunction with the appended drawings in which like reference characters are used to indicate like elements, and in which:
The following description is intended to convey a thorough understanding of the present invention by providing a number of specific embodiments and details involving the communication of information using multiple wireless channels. It is understood, however, that the present invention is not limited to these specific embodiments and details, which are exemplary only. It is further understood that one possessing ordinary skill in the art, in light of known systems and methods, would appreciate the use of the invention for its intended purposes and benefits in any number of alternative embodiments, depending upon specific design and other needs.
For ease of illustration, the present invention is described herein in the context of a half-duplex communications system wherein a wireless channel is reserved for the transmission of information through the use of a PTT mechanism. However, using the guidelines provided herein, the present invention also may be implemented in pseudo-half-duplex communications systems, such as, for example, the DirectConnect® cellular phone feature offered by Nextel Communications of Reston, Va., or other communications systems wherein a PTT mechanism or similar transmit/receive switch mechanism is used to reserve a wireless channel for the transmission of information. Accordingly, reference herein to half-duplex includes true half-duplex and other similar communications techniques unless otherwise noted.
Referring now to
In at least one embodiment, a wireless headset 108 is utilized to facilitate the transmission of audio information and other information (e.g., video information) between the communications device 102 and a user 110. As discussed below with reference to
As illustrated in greater detail with reference to
The headset 108 preferably is configured to wirelessly communicate audio information to and from the communications device 102. Accordingly, as discussed in detail below, the headset 108 may utilize a wireless interface comprising at least an antenna and a transceiver to transmit and receive analog and/or digital signals representative of audio information or other information. Accordingly, the communications device 102 may include a module capable of wirelessly communicating with the headset 108 via, for example, the antenna 106, or a wireless adapter 118 may be used to wirelessly relay information between the headset 108 and the communications device 102 via, for example, the antenna 106 or a separate antenna 120. To illustrate, the wireless adapter 118 may include a device that connects to a commercial radio handset (one embodiment of the communications device 102) via, for example, a socket or jack conventionally used to connect the radio handset to a wired headset. Audio information from the communications device 102 may be provided to the wireless adapter 118 via the socket or jack and the wireless adapter 118 may transmit the audio information wirelessly for reception by the headset 108. Conversely, audio information may be transmitted wirelessly from the headset to the wireless adapter 118 and the wireless adapter 118 then may provide an electric or optical signal representative of the audio information to the communications device 102 via the socket or jack.
As noted above, the communications device 102 may be configured to operate in a half-duplex communications mode and may rely on some type of transmission indication to indicate when the user 110 has audio information to transmit to the communications device 104. Conventionally, the transmission indication is supplied through the use of a transmit/receive switch positioned on or near the communications device which provides a signal that indicates that the transmission medium is reserved for the transmission of information by the communications device. Accordingly, in at least one embodiment, a transmit/receive switch is implemented to provide such a transmission indication, where the transmit/receive switch may include, for example, a push button, a toggle switch, a slide switch, a capacitive switch, and the like. The transmit/receive switch may be positioned on or near the communications device 102, such as, for example, the transmit/receive switch 122 connected to or implemented as part of the wireless adapter 118. Alternatively, the transmit/receive switch may be positioned on or operably connected to the wireless headset 108, such as, for example, the transmit/receive switch 124 positioned on the body 112 of the headset 108. To illustrate, the transmit/receive switch could be positioned on a side of the body 112 of the headset 108 that is facing or resting against the user's head such that the user 110 may press the body 112 of the headset 108 against the user's head to engage the transmit/receive switch.
In instances where the transmit/receive switch 124 is positioned on or connected to the wireless headset 108, the headset 108 may be configured to wirelessly transmit a signal representative of an engagement of the transmit/receive switch 124 to the wireless adapter 118, or, alternatively, to the communications device 102. Upon receipt of the signal representation of the engagement of the transmit/receive switch 124, the wireless adapter 118 may provide a corresponding signal to the communications device 102 to cause the communications device 102 to enter a transmit mode for the subsequent audio information provided from the headset 108.
Referring to
Moreover, in at least one embodiment, the headset 108 may be configured to receive the transmit mode signal from the transmit/receive switch assembly 130 to determine whether the transmit/receive switch 134 has been engaged. If not engaged, the headset 108 may forgo the transmission of any audio information input by the microphone assembly 114 to minimize power consumption and/or to minimize or eliminate unintended transmissions such as, for example, when the user 110 is talking but does not intend to transmit via the communications device 102.
In addition to implementing a transmit/receive switch to enable a PTT-type functionality, the headset 108 may further be VOX enabled and therefore may implement a VOX-PTT switch to enable the user 110 to switch between VOX-type transmission handling and PTT-type transmission handling.
Referring to
Referring now to
Rather than positioning the transmit/receive switch directly on the headset,
Although
As illustrated in
Referring now to
In one embodiment, the packetization process includes segmenting the digital information by a certain number of bits (e.g., sixteen bits) and forming a packet for each segment by proceeding the segment with a training bit sequence and/or an authorization code so that the communications device 102 may correctly identify the packet. The packet then may be transmitted to the communications device 102 via a transceiver 308 and an antenna 310. In at least one embodiment, the transceiver and antenna 310 operate in one or more of the 800 megahertz (MHz), 900 MHz or 2.4 gigahertz (GHz) frequency bands, although other operating frequencies may be utilized as appropriate. For example, the present invention may advantageously implement one or more ultrawide band (UWB) mechanisms to wirelessly transmit information between one or more components.
As noted above, the wireless headset 108 preferably is implemented with a half-duplex communications device 102 (
Packetized audio information transmitted from the wireless adapter 118 (
Although an exemplary implementation of the headset 108 using digital transmission techniques is described above, other known analog or digital transmission techniques may be implemented to communicate information between the headset 108, the wireless adapter 118 and/or a wireless transmit/receive switch assembly without departing from the spirit or the scope of the present invention. To illustrate, one or more of the headset 108, the wireless adapter 118/communications device 102 and the transmit/receive switch assembly 130 may be enabled to communicate in accordance with one or more BLUETOOTH® wireless communications standards.
Referring now to
As discussed above, in at least one embodiment, audio information or other information may be transmitted between the wireless adapter 118, the headset 108 and/or the transmit/receive switch assembly 130 as packetized digital information. Accordingly, packetized digital information from the headset 108 or transmit/receive switch assembly 130 may be received by the antenna 402 and depacketized by the transceiver 404 or processor 406. The processor 406 may further process the information (e.g., analyze the access code associated with a packet to determine whether to continue processing the packet) and provide the information to the decoder 408, whereupon it may be converted from digital to analog form. The analog signal representing the information then may be provided to the communications device 102 via an interface 412.
Conversely, audio information and other information from the communications device 102 may be provided to the encoder 410 via the interface 412 for conversion from an analog form to a digital form. The digital information then may be provided to the processor 406 for packetization and additional processing, and the packets of information may be transmitted for reception by the headset 108 via the transceiver 404 and antenna 402. Although wireless communications between the headset 108, adapter 118 and/or the wireless transmit/receive switch assembly 130 may be conducted at any suitable frequency or frequency band, the 800 megahertz (MHz), 900 MHz, and 2.4 GHz bands preferably are utilized.
The interface 412 may include any of a variety of interfaces typically used to connect the communications device 102 to a conventional wired headset and wired PTT button. For example, the interface 412 may include, but is not limited to, any of the following: an Assembled HT1000 Style Accessory Interface, an Assembled HT750/HT1250 Style Accessory Interface, a 3.5 mm Threaded Plug Accessory Interface or a 6-pin Hirose Accessory Interface, a 2.5/3.5 mm Right Angle Overmolded Accessory interface, all of which are frequently used on a number of MOTOROLA two-way radios; a 2.5 mm accessory and data cable connector input jack frequently used on cellular telephones such as the MOTOROLA i60C; and the like.
In an alternate embodiment, communications between the headset 108 and the adapter 118 are conducted by way of two or more separate channels in a spread spectrum, at least one channel for transmitting audio and other information from the wireless adapter 118 and at least one other channel for transmitting audio and other information from the headset 108. Moreover, one or more UWB techniques, or similar techniques, may be implemented.
Rather than, or in addition to, receiving a wireless signal from the headset 108 or the wireless transmit/receive switch assembly 130 that indicates that the user 110 has engaged a transmit/receive switch, the adapter 118 may implement a transmit/receive switch 414 which may be engaged by the user 110 to a PTT signal to be submitted to the communications device 102 via the interface 414 either directly or via the processor 406.
Referring now to
Referring now to
In the illustrate example of
When the transmit/receive switch 502 is engaged (e.g., at time t1), the transmitter 504 may be configured to cease the transmission of periodic chirps until the transmit/receive switch 502 is disengaged (e.g., at time t2). Accordingly, the processor 406 (and/or the processor 306 of the headset 108) may be configured to note the cessation or absence of an expected chirp at time t1A as an indication or signal that the transmit/receive switch 502 is engaged and therefore signals the communications device 102 to enter a transmit mode by, for example, providing a conventional PTT signal to the communications device 102 via the interface 412 (
Alternatively, as illustrated in
Referring now to
Referring now to
Other embodiments, uses, and advantages of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and drawings should be considered exemplary only, and the scope of the invention is accordingly intended to be limited only by the following claims and equivalents thereof.
The present invention claims benefit of U.S. patent application Ser. No. 60/503,949, filed Sep. 19, 2003 and entitled “Wireless Headset for Two-Way Radios” and U.S. patent application Ser. No. 60/527,776, filed Dec. 9, 2003 and entitled “Wireless Headset for Communication Device,” the entireties of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4132861 | Frieder, Jr. et al. | Jan 1979 | A |
5101504 | Lenz | Mar 1992 | A |
5118309 | Ford | Jun 1992 | A |
5265264 | Dzung et al. | Nov 1993 | A |
5276916 | Pawlish et al. | Jan 1994 | A |
5448620 | Gershkovich et al. | Sep 1995 | A |
5479474 | Schwartzman et al. | Dec 1995 | A |
5659156 | Mauney et al. | Aug 1997 | A |
5748707 | Sanserino | May 1998 | A |
5771438 | Palermo et al. | Jun 1998 | A |
5790681 | Leppälahti | Aug 1998 | A |
5912925 | Palermo et al. | Jun 1999 | A |
5969698 | Richard et al. | Oct 1999 | A |
5982764 | Palermo et al. | Nov 1999 | A |
5987146 | Pluvinage et al. | Nov 1999 | A |
6104816 | Downs, Jr. et al. | Aug 2000 | A |
6121881 | Bieback et al. | Sep 2000 | A |
6230029 | Hahn et al. | May 2001 | B1 |
6298249 | Locarno et al. | Oct 2001 | B1 |
6304559 | Jacklin et al. | Oct 2001 | B1 |
6351653 | Alberth, Jr. et al. | Feb 2002 | B1 |
6459371 | Pike | Oct 2002 | B1 |
6459882 | Palermo et al. | Oct 2002 | B1 |
6522894 | Schmidt | Feb 2003 | B1 |
6671379 | Nemirovski | Dec 2003 | B1 |
6681022 | Puthuff et al. | Jan 2004 | B1 |
6688421 | Dyer et al. | Feb 2004 | B1 |
6745014 | Seibert et al. | Jun 2004 | B1 |
6795718 | Bae | Sep 2004 | B1 |
6819762 | Jones et al. | Nov 2004 | B1 |
7035608 | Palermo et al. | Apr 2006 | B1 |
20020057746 | Chen | May 2002 | A1 |
20020068600 | Chihara et al. | Jun 2002 | A1 |
20020107053 | Petez et al. | Aug 2002 | A1 |
20020160722 | Terranova et al. | Oct 2002 | A1 |
20030059078 | Downs, Jr. et al. | Mar 2003 | A1 |
20030092399 | Davies | May 2003 | A1 |
20030100274 | Brown | May 2003 | A1 |
20030120487 | Wang | Jun 2003 | A1 |
20030207694 | Legare et al. | Nov 2003 | A1 |
20030224825 | Cox et al. | Dec 2003 | A1 |
20030224838 | Skillicorn et al. | Dec 2003 | A1 |
20040022395 | Turnbull | Feb 2004 | A1 |
20040198436 | Alden | Oct 2004 | A1 |
20050164636 | Palermo et al. | Jul 2005 | A1 |
20060073825 | Palermo et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
10150694 | Jun 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050064915 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60503949 | Sep 2003 | US | |
60527776 | Dec 2003 | US |