This invention pertains generally to the use of hydrocyclone separators for liquid/solid separation in the minerals processing, power and coal industries. In particular, it pertains to the detection and management of hydrocyclone wear and a condition known as roping in the underflow discharge of a hydrocyclone, through the use of a wireless wear and roping detector and controller system.
Hydrocyclones used in the minerals processing, power and coal industries are exposed to flowing liquid/solid slurries that cause abrasive wear on interior wall surfaces of the separation chamber and inlet/outlet ports. Excessive amounts of wear can result in unacceptably high circulating loads within a grinding circuit and poor separation efficiency in general. For these reasons, hydrocyclones require periodic maintenance to repair and/or replace components subject to wear, including both individual hydrocyclone sections and applied interior surface wear liners. The need for such maintenance results in downtime for individual hydrocyclone units and manifold systems comprising groups of individual units, which can slow or stop the desired separation processes. When this maintenance can be performed on a planned schedule, the downtime, inconvenience, effort and cost associated with the maintenance is reduced, time and cost budgeting and predictability are improved, overall process visibility is enhanced and the maintenance can take advantage of available rebuild programs. Also, performing such maintenance at a time before wear is considered unacceptably high tends to extend the overall wear life of the hydrocyclone units, delaying replacement time and cost.
Wear in hydrocyclones is typically detected and monitored through the use of wired wear sensors embedded within or sandwiched between liners of the cyclone walls in areas of anticipated wear. The wear sensors communicate signals reporting the slow abrasion of the liner material during operation to corresponding node units for each cyclone via suitable cables connecting the sensors to each cyclone's corresponding node control box. The node units, in turn, feed operating data to manifold controllers via suitable cables, where signal data is accumulated and transmitted at regular intervals to a dedicated control room computer workstation. Although it will be appreciated that any suitable type of wear sensor can be used in this field, an example of this type of wear sensor is shown and described in Applicant's prior U.S. Pat. No. 6,945,098, and as reproduced in
That system, however, includes the disadvantages of requiring nodes for each cyclone and a number of central controllers, suitable cables from each wear sensor to each corresponding node, suitable cables from the nodes to the central controllers, and additional wiring from the controllers to the control room workstation, along with cable trays or other provisions for safely locating and accommodating the required wiring. In addition, such wired sensors must typically be disconnected and/or removed during cyclone maintenance while taking care not to damage the sensors or their wiring, and then reinstalled and reconnected after the maintenance is completed. Accordingly, it would be advantageous to have wireless electronic wear sensors that could replace the existing wired sensors, eliminate the need for node units corresponding to the various cyclones, reduce the number of required manifold controllers, eliminate the wiring required for connecting these items and provide wireless detection and communication of wear data from the sensors to the manifold controllers for forwarding to the control room workstation, either directly through suitable cables or through a suitable intermediary wireless electronic device.
When a hydrocyclone of the type typically employed in the minerals processing, power or coal industries is operating normally, a coarser-solid slurry is discharged through the underflow outlet at the bottom of the separation chamber and a finer-solid slurry is discharged through the overflow outlet at the top, as shown and described in Applicant's prior U.S. Pat. No. 6,983,850. The underflow discharge normally exits from the apex at the bottom of the chamber in the form of a conical spray with an included angle greater than about 20 degrees, as shown in
As defined in the art, a roping condition occurs when the amount of solids reporting to the underflow outlet increases to the point where the discharge rate through the apex limits the flow. As a result, coarse solids begin to build up in the separation chamber and pass through the overflow, the internal air core in the separation chamber collapses, and the underflow discharge becomes a tight cylinder or rope of coarse material, as shown in
In closed-circuit grinding applications, the cyclone underflow density is preferably kept high so that a minimum amount of water accompanies the coarse solids. That is done by sizing the apex, or orifice, to limit the flow to the solids plus no more than about 50% water. If the apex is too large, more water will report to the underflow with a large quantity of fine solids entrained in it. If sent back to a mill, those fine solids will limit classification efficiency as well as new feed capacity. At the same time, with variable tonnages and ore hardness, it is difficult to operate the cyclones with maximum underflow density while at the same time avoiding roping and the problems associated with it.
Wired roping sensors have been used to detect roping conditions in hydrocyclones. Although it will be appreciated that any suitable type of roping sensor can be used in this field, Applicant's prior U.S. Pat. No. 6,983,850 introduced a hydrocyclone roping detector and method using a wired ultrasonic sensor mounted on the splash skirt at the underflow outlet of a hydrocyclone to detect a change in the underflow discharge from the normal conical shape in which the discharge impacts upon the splash skirt to a more cylindrical shape associated with roping, as shown in
However, as with wired wear sensors, wired roping sensors also carry the disadvantages of requiring nodes for each cyclone and a number of central controllers, suitable cables from each wear sensor to each corresponding node, suitable cables from the nodes to the central controllers, and additional wiring from the controllers to the control room workstation, along with cable trays or other provisions for safely locating and accommodating the required wiring. Again, such wired sensors must typically be disconnected and/or removed during cyclone maintenance while taking care not to damage the sensors or their wiring, and then reinstalled and reconnected after the maintenance is completed. Accordingly, it would be advantageous to have wireless electronic roping sensors that could replace the existing wired sensors, eliminate the need for node units corresponding to the various cyclones, reduce the number of required manifold controllers, reduce the wiring required for connecting these items and provide wireless detection and communication of roping condition data from the sensors to the manifold controllers for forwarding to the control room workstation, either directly or through a suitable intermediary electronic wireless device.
For the above reasons, there exists a need for a wireless hydrocyclone roping and wear management system that is able to reduce or eliminate the wired wear and roping sensors, accompanying node units, manifold controllers and extensive wiring arrangements common to prior hydrocyclone control systems, while transmitting desired wear and roping condition data wirelessly to manifold controllers and control room workstations. The subject matter disclosed herein at least partially satisfies this need.
It is, in general, an object of the invention to provide a new and improved hydrocyclone roping and wear management system and method for its use. Another object of the invention is to provide a roping and wear management system and method of the above character that overcomes the limitations and disadvantages of the prior art.
These and other objects are achieved in accordance with the invention by providing a hydrocyclone management system capable of wirelessly detecting normal (non-roping), transitional, and roping conditions within one or more hydrocyclone separators during their operation, and communicating electronic data corresponding to such normal, transitional, and roping conditions within the hydrocyclone separator(s) to an associated hydrocyclone control system operable for monitoring and controlling operational parameters of the hydrocyclone separator(s). In this form, the management system comprises one or more wireless electronic roping sensors disposed in communication with a flow region of the hydrocyclone separator(s) and operable for detecting normal, transitional, and roping conditions within the hydrocyclone separator(s), creating electronic data indicative of these conditions and transmitting electronic data indicative of these conditions wirelessly for delivery to the associated hydrocyclone control system. The management system also comprises an electronic wireless controller operable for wirelessly receiving electronic data indicative of these conditions transmitted from one or more wireless electronic roping sensors, and operable for wirelessly delivering the electronic data indicative of the conditions to the hydrocyclone control system.
These and other objects are also achieved in accordance with the invention by providing a hydrocyclone management system capable of wirelessly detecting a wear condition within one or more hydrocyclone separators during their operation, and communicating electronic data corresponding to the wear condition within the hydrocyclone separator(s) to an associated hydrocyclone control system operable for monitoring and controlling operational parameters of the hydrocyclone separator(s). In this form, the management system comprises one or more wireless electronic wear sensors disposed in communication with one or more internal wear regions of the hydrocyclone separator(s), and operable for detecting a wear condition within the internal wear region(s), creating electronic data indicative of the wear condition and transmitting electronic data indicative of a wear condition wirelessly for delivery to the associated hydrocyclone control system. The management system also comprises an electronic wireless controller operable for wirelessly receiving electronic data indicative of a wear condition transmitted from one or more wireless electronic wear sensors, and operable for delivering the electronic data indicative of the wear condition to the hydrocyclone control system.
These and other objects are also achieved in accordance with the invention by providing a hydrocyclone management system capable of wirelessly detecting normal, transitional, and roping conditions and a wear condition within one or more hydrocyclone separators during their operation, and communicating electronic data corresponding to both the roping condition and the wear condition within the hydrocyclone separator(s) to an associated hydrocyclone control system, each as summarized above.
These and other objects are also achieved in accordance with the invention by providing a method of wirelessly detecting normal, transitional, and roping conditions within a hydrocyclone separator during its operation, and communicating electronic data corresponding to the roping condition to an associated hydrocyclone control system. In this form, the method comprises the steps of: providing a wireless electronic roping sensor disposed in communication with a flow region of the hydrocyclone separator, and operable for detecting normal, transitional, and roping conditions within the hydrocyclone separator, creating electronic data indicative of these conditions and transmitting electronic data indicative of these conditions wirelessly for delivery to the associated hydrocyclone control system; providing an electronic wireless controller operable for wirelessly receiving electronic data indicative of normal, transitional, and roping conditions transmitted from the wireless electronic roping sensor, and operable for delivering the electronic data indicative of these conditions to the hydrocyclone control system; placing the electronic wireless controller in proximity to the wireless electronic roping sensor, so as to receive the electronic data created by, and transmitted by, the wireless electronic roping sensor; and causing the electronic wireless controller to deliver the electronic data indicative of normal, transitional, and roping conditions received from the wireless electronic roping sensor to the associated hydrocyclone control system.
These and other objects are also achieved in accordance with the invention by providing a method of wirelessly detecting a wear condition within a hydrocyclone separator during its operation, and communicating electronic data corresponding to the wear condition to an associated hydrocyclone control system. In this form, the method comprises the steps of: providing a wireless electronic wear sensor disposed in communication with an internal wear region of the hydrocyclone separator, and operable for detecting a wear condition within the internal wear region, creating electronic data indicative of a wear condition and transmitting electronic data indicative of a wear condition wirelessly for delivery to the associated hydrocyclone control system; providing an electronic wireless controller operable for wirelessly receiving electronic data indicative of a wear condition transmitted from the wireless electronic wear sensor, and operable for delivering the electronic data indicative of a wear condition to the hydrocyclone control system; placing the electronic wireless controller in proximity to the wireless electronic wear sensor, so as to receive the electronic data created by, and transmitted by, the wireless electronic wear sensor; and causing the electronic wireless controller to deliver the electronic data indicative of a wear condition received from the wireless electronic wear sensor to the associated hydrocyclone control system.
These and other objects are also achieved in accordance with the invention by providing a method of wirelessly detecting normal, transitional, and roping conditions within a plurality of hydrocyclone separators during their operation, and communicating electronic data corresponding to these conditions to an associated hydrocyclone control system, as summarized above. In this form, the method further comprises sequentially placing the electronic wireless controller in proximity to each of the wireless electronic roping sensors, so as to receive said electronic data created by, and transmitted by, each of the wireless electronic roping sensors.
These and other objects are also achieved in accordance with the invention by providing a method of wirelessly detecting a wear condition within a plurality of hydrocyclone separators during their operation, and communicating electronic data corresponding to a wear condition to an associated hydrocyclone control system, as summarized above. In this form, the method further comprises sequentially placing the electronic wireless controller in proximity to each of the wireless electronic wear sensors, so as to receive said electronic data created by, and transmitted by, each of the wireless electronic wear sensors.
In accordance with the present invention, a hydrocyclone management system is provided that is capable of wirelessly detecting normal, transitional, and roping conditions and/or a wear condition within a hydrocyclone separator or a group of hydrocyclones during operation. The hydrocyclone management system is further capable of communicating electronic data corresponding to normal, transitional, and roping conditions and/or a wear condition within each hydrocyclone separator to an associated hydrocyclone control system that is operable for monitoring and controlling operational parameters of each hydrocyclone separator. As part of the hydrocyclone management system,
The wireless electronic roping sensor 10 further includes an analog printed circuit board (PCB) 20 that is bonded to a pedestal 22 protruding from an interior surface of the front plate 14, for providing electrical isolation from the exterior environment. A piezo element 24 is attached to the analog printed circuit board (PCB) 20 within a shield 26 of metal or other suitable material for detecting changes in sound or vibration emanating from the flow through the measurement chamber 34 of the type that would indicate a roping condition taking place within the hydrocyclone. The wireless electronic roping sensor 10 further includes a digital electronics printed circuit board (PCB) 28 and a radio frequency (RF) transmitter unit 30, and a battery 32 (wiring not shown) for powering the electronics within the wireless electronic roping sensor 10. In this arrangement, the wireless electronic roping sensor 10 is operable for detecting normal, transitional, and roping conditions within a hydrocyclone separator upon which it is mounted, creating electronic data indicative of the roping condition and transmitting such electronic data indicative of the roping condition wirelessly, outside of the housing 12, for being received and delivered to an associated hydrocyclone control system. Preferably, the battery 32 is of suitable design and capacity to last for a significant time before requiring recharging or replacement, such as over one year. Also, each wireless electronic roping sensor 10 preferably includes its own electronic identification corresponding to a particular identified hydrocyclone separator location upon which it is applied.
The wireless electronic roping sensor 10 is typically manufactured, shipped and incorporated into the hydrocyclone management system in a dormant “standby” mode to preserve battery life, and is capable of being activated or “awakened” when a suitable controller or other electronic device is placed in close proximity to, or otherwise initiates communication with, the wireless electronic roping sensor 10, as discussed in further detail below. A dormant, “standby” mode is used in the wireless electronic roping sensor 10 to conserve battery life when the sensor is not in active use, by not requiring electronic components in the wireless electronic roping sensor 10 to always be powered. The activation or “awakening” of the wireless electronic roping sensor 10 may be performed by any suitable electronic, magnetic or other means, also known as a trigger, including exposure to a magnetic field or electronic signal provided or transmitted by an electronic controller or other control device. Accordingly, the wireless electronic roping sensor 10 includes a specialized micro-power sensor (not shown) for detecting the magnetic field or electronic signal provided by the electronic controller or other control device. Upon activation, the wireless electronic roping sensor 10 enters into a synchronization or linking mode with the electronic controller or other control device, to coordinate communications information, radio frequency bands, and sensor-specific information. After synchronizing or linking, the transmission of electronic roping data to the electronic controller or other control device begins, also as discussed in further detail below. If the wireless electronic roping sensor 10 is taken out of active service it can be returned to the power-saving dormant storage mode by commands from the electronic controller or other control device. The dormant storage (“standby”) mode used in the present invention is unique, especially in the sense that it utilizes non-contact sensors to exit this battery saving condition. It is also unique in that it utilizes non-contact switches that are activated by one or another type of electromagnetic radiation, and therefore no opening, physical penetration or electrical connection is required through the sealed enclosure of the wireless electronic roping sensor 10. Accordingly, this mode operates differently from a typical timed “sleep” mode used in many electronic devices.
It will be appreciated that this configuration of initial dormancy, subsequent activation and return to dormancy for the wireless electronic roping sensor 10 may be incorporated into other types of sensors or detectors used in other types of equipment in the mining, minerals processing and other industries. Such equipment may include wear or performance sensors for consumable items such as mill liners, flotation cells, rotor/stator components, draft tubes in flotation cells, grinding mill discs, attrition mills, pump impellers, filter media and filter plates. As shown generally in
Referring now to
The wireless electronic wear sensors 36 and 50 are also typically manufactured, shipped and incorporated into the hydrocyclone management system in a dormant “standby” mode to preserve battery life, and are capable of being activated or “awakened” when a suitable controller or other electronic device is placed in close proximity to, or otherwise initiates communication with, the wireless electronic wear sensors 36 and 50, as discussed in further detail below. Again, a dormant, “standby” mode is used in the electronic wear sensors 36 and 50 to conserve battery life when the sensors are not in active use, by not requiring electronic components in the wireless electronic wear sensors 36 and 50 to always be powered. Again, the activation or “awakening” of the electronic wear sensors 36 and 50 may be performed by any suitable electronic, magnetic or other means, also known as a trigger, including exposure to a magnetic field or electronic signal provided or transmitted by an electronic controller or other control device. Accordingly, the wireless electronic wear sensors 36 and 50 include a specialized micro-power sensor (not shown) for detecting the magnetic field or electronic signal provided by the electronic controller or other control device. Upon activation, the wireless electronic wear sensors 36 and 50 enter into a synchronization or linking mode with the electronic controller or other control device, to coordinate communications information, radio frequency bands, and sensor-specific information. After synchronization or linking, the transmission of electronic wear data to the electronic controller or other control device begins, also as discussed in further detail below. If the wireless electronic wear sensors 36 and 50 are taken out of active service, they can be returned to the power-saving dormant storage mode by commands from the electronic controller or other control device.
Referring now to
The wireless hydrocyclone controller 60 also includes means for activating or “awakening” the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50 from their dormant, “standby” mode. Preferably, the wireless hydrocyclone controller 60 includes an internal magnet, an internal electronic signal transmitter or other suitable signaling emitter (not shown) that is operable as a trigger for activating the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50 from their dormant, “standby” mode when held in close proximity (such as a few feet) to the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50 on an individual basis, by exposure to the trigger, so that they can then synchronize or link with the wireless hydrocyclone controller 60. Accordingly, the presence of the wireless hydrocyclone controller 60 in close proximity to the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50 allows for the magnetic field, electronic signal or other suitable signal provided by the wireless hydrocyclone controller 60 to be detected or received by the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50, which results in activation and preparation of the wireless electronic roping sensor 10 and the wireless electronic wear sensors 36 and 50 for subsequent operation.
The wireless hydrocyclone controller 60 is preferably operable for wirelessly receiving and calibrating electronic data indicative of normal, transitional, and roping conditions transmitted from all wireless electronic roping sensors 10 disposed upon a single hydrocyclone or within a manifold group of hydrocyclones. The wireless hydrocyclone controller 60 is also preferably operable for wirelessly receiving and calibrating electronic data indicative of a wear condition transmitted from all wireless electronic wear sensors 36 or 50 disposed upon a single hydrocyclone or within a manifold group of hydrocyclones. In both cases, the wireless hydrocyclone controller 60 is typically able to receive such electronic data when held in close proximity (such as a few feet) to the wireless electronic roping sensors 10 or the wireless electronic wear sensors 36 or 50, which may also activate or “wake up” the sensors from a standby condition, although it will be appreciated that other data receipt arrangements may be contemplated, such as receipt from a remote location not in proximity to the sensors, if the transmitting capability of the sensors so provides.
The wireless hydrocyclone controller 60 is also preferably operable for being placed in one or more docking stations (not shown) during both operation and standby or charging activities. Each docking station is preferably wired via suitable cable to the associated hydrocyclone control system, such that when the wireless hydrocyclone controller 60 is placed into a docking station, the roping and/or wear condition data gathered sequentially from the individual roping and wear sensors is automatically delivered to a dedicated computer workstation operable for controlling operational parameters of the hydrocyclone separator or separators or other suitable equipment forming part of the associated hydrocyclone control system. Accordingly, in this way, the wireless hydrocyclone controller 60 is operable for delivering electronic data indicative of normal, transitional, and roping conditions and electronic data indicative of a wear condition to the hydrocyclone control system. However, it will be appreciated that the wireless hydrocyclone controller 60 may deliver such electronic roping and/or wear data to any suitable component of a hydrocyclone control system, including central controllers, manifold controllers or a computer workstation.
Once delivered to the hydrocyclone control system, the electronic roping and/or wear data may be interpreted by control room operators so that adjustments of controlling operational parameters of the hydrocyclone separator or separators or other suitable equipment forming part of the associated hydrocyclone control system (such as flow rate, feed pressure, water addition, on/off operation and number of operating hydrocyclones) may be made by the control room operators. Alternatively, and preferably, once delivered to the hydrocyclone control system, the electronic roping and/or wear data may be inserted into an automated computerized routine within the hydrocyclone control system so that adjustments of controlling operational parameters of the hydrocyclone separator or separators or other suitable equipment forming part of the associated hydrocyclone control system (such as flow rate, feed pressure, water addition, on/off operation and number of operating hydrocyclones) may be made automatically by the hydrocyclone control system (such as by a dedicated computer workstation).
The present invention also provides a method of wirelessly detecting normal, transitional and roping conditions within a hydrocyclone separator or a group of hydrocyclones (such as within a manifold) during operation, and communicating electronic data corresponding to such roping conditions to an associated hydrocyclone control system. The method comprises the steps of providing a wireless electronic roping sensor 10 disposed in communication with a flow region of a hydrocyclone separator, and operable for detecting normal, transitional and roping conditions within the hydrocyclone separator, creating electronic data indicative of the roping conditions and transmitting the electronic data indicative of the roping conditions wirelessly for delivery to an associated hydrocyclone control system.
The method further comprises providing an electronic wireless controller 60 operable for wirelessly receiving electronic data indicative of normal, transitional and roping conditions transmitted from the wireless electronic roping sensor 10, and operable for delivering the electronic data indicative of the roping conditions to the hydrocyclone control system. The method further comprises placing the electronic wireless controller 60 in proximity to the wireless electronic roping sensor 10, so as to activate and synchronize the wireless electronic roping sensor from a standby condition, receive the electronic data created by, and transmitted by, the wireless electronic roping sensor; and causing the electronic wireless controller to deliver the electronic data indicative of the roping conditions received from the wireless electronic roping sensor to the associated hydrocyclone control system.
The present invention also provides a method of wirelessly detecting a wear condition within a hydrocyclone separator a group of hydrocyclones (such as within a manifold) during operation, and communicating electronic data corresponding to a wear condition to an associated hydrocyclone control system. The method comprises the steps of providing a wireless electronic wear sensor 36 or 50 disposed in communication with an internal wear region of a hydrocyclone separator, and operable for detecting a wear condition within the internal wear region, creating electronic data indicative of the wear condition and transmitting the electronic data indicative of the wear condition wirelessly for delivery to an associated hydrocyclone control system.
The method further comprises providing an electronic wireless controller 60 operable for wirelessly receiving electronic data indicative of a wear condition transmitted from the wireless electronic wear sensor, and operable for delivering the electronic data indicative of the wear condition to the hydrocyclone control system. The method further comprises placing the electronic wireless controller 60 in proximity to the wireless electronic wear sensor 36 or 50, so as to activate and synchronize the wireless electronic wear sensor from a standby condition, receive the electronic data created by, and transmitted by, said wireless electronic wear sensor; and causing the electronic wireless controller 60 to wirelessly deliver the electronic data indicative of the wear condition received from the wireless electronic wear sensor to the associated hydrocyclone control system.
The method may further comprise the electronic roping and/or wear data delivered to the hydrocyclone control system causing manual adjustment, by a hydrocyclone control operator, of at least one controlling operational parameters of the hydrocyclone separator or separators or other suitable equipment forming part of the associated hydrocyclone control system (such as flow rate, feed pressure, water addition, on/off operation and number of operating hydrocyclones) by the hydrocyclone control system (such as by a dedicated computer workstation), in the event that a condition requiring adjustment is detected. Alternatively, the method may further comprise inserting the electronic roping and/or wear data delivered to the hydrocyclone control system into an automated computerized routine within the hydrocyclone control system so as to cause automatic adjustments of controlling operational parameters of the hydrocyclone separator or separators or other suitable equipment forming part of the associated hydrocyclone control system (such as flow rate, feed pressure, water addition, on/off operation and number of operating hydrocyclones) by the hydrocyclone control system (such as by a dedicated computer workstation), in the event that a condition requiring adjustment is detected.
The present invention provides a convenient, compact system and method for monitoring roping and wear in hydrocyclones. It maximizes the life of hydrocyclone liners, allows for planning of hydrocyclone maintenance activities, allows hydrocyclones to be easily taken out of service for maintenance, assists operators in preventing roping conditions in hydrocyclones, and allows for more efficient corrective action when roping does occur. It replaces existing wired roping and wear sensors, eliminates the need for node units corresponding to the various cyclones, reduces the number of required manifold controllers, reduces the wiring required for connecting these items and provides wireless detection and communication of wear data from the sensors to the manifold controllers for forwarding to a control room workstation. Accordingly, the present invention promptly detects and allows for correction of roping conditions to prevent or reduce their adverse characteristics, including the obstruction of hydrocyclone underflow, passing the entire hydrocyclone flow through its overflow outlet, the redirecting of coarse solids normally intended for being sent to a mill via the hydrocyclone's underflow output through the hydrocyclone's overflow to a flotation cell, and the accompanying accumulation of excessive coarse solids in the flotation cell, which require shutdown and cleaning, and which can be very expensive and time-consuming, and can significantly delay the intended processing, while also reducing the efficiency of separation processes such as mineral extraction and recovery.
The disclosure of every patent, patent application, and publication cited herein is hereby incorporated herein by reference in its entirety.
While this subject matter has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations can be devised by others skilled in the art without departing from the true spirit and scope of the subject matter described herein. The appended claims include all such embodiments and equivalent variations.
This is an International Application which claims the benefit of U.S. Provisional Patent Application No. 62/373,068, filed 10 Aug. 2016 and U.S. Provisional Patent Application No. 62/397,757, filed 21 Sep. 2016, the contents of which are hereby incorporated by reference, in their entirety, for any and all purposes, as if fully set forth herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/054685 | 8/1/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62373068 | Aug 2016 | US | |
62397757 | Sep 2016 | US |