Wireless local area network repeater

Information

  • Patent Grant
  • 8498234
  • Patent Number
    8,498,234
  • Date Filed
    Wednesday, June 11, 2003
    21 years ago
  • Date Issued
    Tuesday, July 30, 2013
    10 years ago
Abstract
A repeater (200) facilitates wireless communication between a first communication device (100) and a second communication device (105) in a wireless network using a time division duplex protocol for data transmission. The repeater (200) includes a receiver (310, 315) for receiving a signal on either of at least two bi-directional communication frequencies simultaneously. A signal detector (362) is operatively coupled to the receiver (300, 310, 315) for determining if the signal is present on at least one of the two bi-directional frequencies. A frequency converter (320, 321, 323, 324, 360, 361) is for converting the signal present on one of the bi-directional frequencies to a converted signal on the other of the bi-directional frequencies. A transmitter (300, 325, 330, 335, 345, 350) is for transmitting the converted signal on the other of said bi-directional frequencies.
Description
FIELD OF THE INVENTION

The present invention relates generally to wireless communications and more specifically to a repeater for increasing the coverage of wireless networks.


BACKGROUND OF THE INVENTION

Several standard protocols for wireless local area networks, commonly referred to as WLANs, are becoming popular. These include protocols such as 802.11 (as set forth in the 802.11 wireless standards), home RF, and Bluetooth. The standard wireless protocol with the most commercial success to date is the 802.11b protocol.


While the specifications of products utilizing the above standard wireless protocols commonly indicate data rates on the order of, for example, 11 MBPS and ranges on the order of, for example, 100 meters, these performance levels are rarely, if ever, realized. This lack of performance is due to attenuation of the radiation paths of RF signals, which are typically in the range of 2.4 GHz, in an indoor environment Base to receiver ranges are generally less than the coverage range required in a typical home, and may be as little as 10 to 15 meters. Further, in structures that have split floor plans, such as ranch style or two story homes, or that are constructed of materials that attenuate RF signals, areas in which wireless coverage is needed may be physically separated by distances outside of the range of, for example, an 802.11 protocol based system. Finally, the data rates of the above standard wireless protocols are dependent on the signal strength. As distances in the area of coverage increase, wireless system performance typically decreases.


One way to increase the range of wireless systems is by the use of repeaters. This is a common practice in the mobile wireless industry. One significant complication is that the system receivers and transmitters operate at the same frequency for a WLAN utilizing 802.11 or 802.16 WMAN wireless protocol. Such operation is commonly referred to as time division duplexing. This operation is significantly different than the operation of many cellular repeater systems, such as those systems based on IS-136, IS-95 or IS-2000 standards, where the receive and transmit bands are separated by a duplexing frequency offset. Frequency division duplexing makes the repeater operation easier than in the case where the receiver and transmitter channels are on the same frequency.


There are, however, cellular mobile systems that separate the receive and transmit channels by time rather than by frequency. These systems utilize scheduled times for specific uplink/downlink transmissions. Repeaters for these systems are easily built, as the transmission and reception times are well known and are broadcast by a base station. Receivers and transmitters for these systems may be isolated by any number of means including physical separation, antenna patterns, or polarization isolation.


The random packet nature of the WLAN protocols provides no defined receive and transmit periods. The packets from each wireless network node are spontaneously generated and transmitted and are not temporally predictable. A protocol referred to as a collision avoidance and random back-off protocol is used to avoid two units transmitting their packets at the same time. For 802.11 standard protocol, this is referred to as the distributed coordination function (DCF).


WLAN repeaters have unique constraints due to the above spontaneous transmission capabilities and therefore require a unique solution. Another unique requirement is that, since these repeaters use the same frequency for receive and transmit, some form of isolation must exist between the receiver and transmitter of the receivers. While existing CDMA systems employ directional antennas and physical separation of the receive and transmit antennas to achieve this isolation, such techniques are not practical for WLAN repeaters in many operating environments such as in the home where lengthy cabling is not desirable or may be too costly.


SUMMARY OF THE INVENTION

The wireless repeater of the present invention solves the above-discussed issues regarding spontaneous transmission and transceiver isolation through the use of a unique frequency detection and translation method. The wireless repeater enables two WLAN units to communicate by translating the packets from a first frequency channel used by one device to a second frequency channel used by a second device. The direction of the conversion from the first frequency channel to the second frequency channel versus conversion from the second frequency channel to the first frequency channel is dependent upon real time configuration. The repeater monitors both channels for transmissions and, when a transmission on a channel is detected, translates the received signal to the other channel, where it is transmitted.


The wireless repeater of the present invention therefore enables high-speed communication among transmitters and receivers that might otherwise be isolated from one another in a conventional WLAN environment. Further, the repeater is small and relatively inexpensive, and avoids spontaneous transmission by monitoring and responding in reaction to the transmissions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a wireless network including a WLAN repeater according to a preferred embodiment of the present invention.



FIG. 2 is a detailed block diagram of the repeater shown in FIG. 2.



FIG. 3 is a detailed block diagram of an alternative front end for the repeater shown in FIG. 2 utilizing dual orthogonally polarized antennas.



FIG. 4 us a detailed block diagram of an alternative front end for the repeater shown is FIG. 2 utilizing dual directional antennas and switches.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, a wide area connection 101, which could be an Ethernet connection, a T1 line, a wideband wireless connection or any other electrical connection providing data communication, is connected to a wireless gateway, or access point, 100. The wireless gateway 100 sends RF signals, such as IEEE 802.11 packets or signals based upon Bluetooth, Hyperlan, or other wireless communication protocols, to client devices 104, 105, which may be personal computers, personal digital assistants, or any other device capable of communicating with other like devices through one of the above mentioned wireless protocols. Respective propagation, or RP, paths to each of the client devices are shown as 102, 103.


While the signal carried over RF path 102 is of sufficient strength to maintain high-speed data packet communications between the client device 104 and the wireless gateway 100, the signals carried over the RF path 103 and intended for the client device 105 would be attenuated when passing through a structural barrier such as a wall 106 to a point where few, if any, data packets are received in either direction if not for a wireless repeater 200, the structure and operation of which will now be described.


To enhance the coverage and/or communication data rate to the client device 105, the wireless repeater 200 receives packets transmitted on a first frequency channel 201 from the wireless gateway 100. The wireless repeater 200, which may have dimensions of, for example, 2.5″×3.5″×0.5″, and which preferably is capable of being plugged into a standard electrical outlet and operating on 110 V AC power, detects the presence of a packet on the first frequency channel 201, receives the packet and re-transmits the packet with more power on a second frequency channel 202. Unlike conventional WLAN operating protocols, the client device 105 operates on the second frequency channel, even though the wireless gateway 100 operates on the first frequency channel. To perform the return packet operation, the wireless repeater 200 detects the presence of a transmitted packet on the second frequency channel 202 from the client device 105, receives the packet on the second frequency channel 202, and re-transmits the packet on the first frequency channel 201. The wireless gateway 100 then receives the packet on the first frequency channel 201. In this way, the wireless repeater 200 is capable of simultaneously receiving and transmitting signals as well as extending the coverage and performance of the wireless gateway 100 to the client device 105.


It should also be appreciated that the wireless repeater 200 may be utilized in a similar manner to enhance communications in a peer-to-peer network from one client device to another client device. When there are many units that are isolated form one another, the wireless repeater 200 acts as a wireless hub allowing two different groups of units to communicate where standard RF propagation and coverage would otherwise not enable the units to communicate.



FIG. 2 shows the wireless repeater 200 in more detail. Key features of the wireless repeater 200 are its ability receive a signal and translate the frequency of the received signal from a first bi-directional frequency to a second bi-directional frequency with very little distortion of the signal. This is made possible by fast signal detection and delay of the received signal long enough to determine proper control actions.


Radio waves propagate from various wireless devices such as the client devices 104, 105 in FIG. 1 and become incident to antenna 300, which, as is known to those of ordinary skill in the art, is an electromagnetic to voltage transducer. In a preferred embodiment this could be a single omni directional antenna tuned and matched to the frequencies of interest. Other embodiments could include, but are not limited to, directional planar antennas, dual antenna elements, polarized antenna elements and directional arrays.


The antenna 300 shown in FIG. 2 transforms received radio waves to a voltage signal and feeds the voltage signal to an isolator 305. Alternatively, the isolator may not be included depending upon the type of antenna configuration utilized. Two such antenna configurations will be described below. The isolator 305 allows a signal to pass from the antenna 300 to a Low Noise Amplifier (LNA) 310 and from a power amplifier 325 to the antenna 300, but blocks or isolates the LNA 310 from the power amplifier 325. Other embodiments of the isolator 305 could include, but are not limited to, circulators, directional couplers, splitters, and switches. For instance, switches may be used with the dual directional antenna configuration to be described in FIG. 4. A signal received and transformed by the antenna 300 that passes through the isolator 305 is fed to the LNA 310, which amplifies the signal and sets the noise level at that point. A signal amplified by the LNA 310 is fed to an RF splitter 315, which performs an RF power splitting, or coupling, function on the signal to split the signal into two different paths. The splitter 315 could also be a directional coupler or any device that can separate one signal into two signals.


At this point, one skilled in the art will readily recognize that the antenna 300, the LNA 310 and the RF splitter 315 are the primary components forming a receiver in the repeater 200. Further, one skilled in the art will readily recognize that the antenna 300, the power amplifier 325, the amplifier 330, the filter 335, the switch 345 and the mixer 350 are the primary components forming a transmitter in the repeater 200.


Mixers 320, 321 are frequency conversion devices that mix signals passed from the splitter 315 with signals output from the local oscillators 340, 341 at respective frequencies designated as LO1, LO2 to produce intermediate frequency (IF) or typically lower frequency signals. The local oscillators 340, 341 are tuned to the different frequencies LO1, LO2 such that two different signals at two different frequencies fed from the splitter 315 can be converted to a common IF frequency. For example, if signals at two different frequencies F1=2.412 GHz and F2=2.462 are output from the splitter 315 to the mixers 320, 321, respectively, and assuming the mixer 320 is performing a low side mixing function and the mixer 321 is performing a high side mixing function, then with the local oscillator 340 tuned to LO1=2.342 GHz and the local oscillator 341 tuned to LO2=2.532 GHz and providing inputs to the mixers 320, 321, respectively, the signals output from mixers 320, 321 would each have their frequencies transformed to an IF of 70 MHz.


The splitters 323, 324, which operate the same as the splitter 315 described above, separate the IF signals output from the respective mixers 320, 321 into two different paths. One path from each of the splitters 323, 324 goes to filters 360, 361, respectively, while the other path from each of the splitters 323, 324 goes to filters 365, 366, respectively.


The filters 360, 361, which are preferably band pass filters with delays, remove all outputs from the mixing operation except the desired frequency components. Preferably, the filters 360, 361 have a sufficient time delay such that the detection and control unit 362 can detect which of the two RF frequencies is present and perform control functions described below prior to the signals being available at the output of the filters 360, 361, as detectors 370, 371 are in parallel with the delay filters 360, 361. Methods of delaying electrical signals are well known to those of ordinary skill in the art, and include but are not limited to Surface Acoustic Wave (SAW) devices and the like. However, if it is acceptable, to truncate a portion of the first part of the RF signal, then the filters 360, 361 would not need specified delays.


One skilled in the art will readily recognize that the mixers 320, 321, the splitters 323, 324 and the filters 360, 361 are the primary components forming a frequency converter in the repeater 200.


The filters 365, 366 in the detection and control unit 362 also perform the same type of band pass filtering as the filters 360, 361. The main difference is that the filters 365, 366 are preferably fast filters without specified long time delays. Additionally, the filters 365, 366 preferably do not require the same level of filtering performance as the filters 360, 361, although one skilled in the art would recognize that varying filter performance within the confines of performing the filtering objective is a design choice. One skilled in the art would also recognize that filters or devices other than band pass filters might be used to perform the above discussed band pass functions.


Power detectors 370, 371 are simple power detection devices that detect if a signal is present on either of the respective frequencies F1, F2 and provide a proportional voltage output if the signal is present. Many types of analog detectors that perform this function may be used. For example, such detectors could include, but are not limited to, diode detectors. Such diode detection could be performed at RF, IF or base band. Detectors providing higher performance than simple power detectors may be used as well. These detectors may be implemented as matched filtering at RF or IF using SAW devices, and matched filtering or correlation at base band after analog to digital conversion. The power detectors 370, 371 are utilized to determine the presence of a wireless transmission on one of the two IF channels by comparing signals on the two IF channels with a threshold. Such a threshold could be predetermined or calculated based on monitoring the channels over time to establish a noise floor.


Further, the power detectors 370, 371 may be used to determine start and stop times of a detected transmission. The proportional voltage output by one of the power detectors 370, 371 in response to signal detection will be used by the microprocessor 385 to control the retransmission of the signal as is described below. One of ordinary skill in the art will recognize that the power detection can be placed earlier or later in the signal processing path, as it is possible to detect signals so that the retransmission process may be switched on or off. Further, one of ordinary skill in the art will recognize that techniques for determining or limiting transmission time can be employed, including but not limited to placing a time limit on retransmission using a timer.


The filters 375, 376 are low pass filters and preferably have narrower bandwidths than the filters 365, 366. The filters 375, 376 are required to remove the high frequency components that remain after signal detection in the power detectors 370, 371 and to provide an increase in signal to noise ratio by providing processing gain by reducing the detection signal bandwidth. The signals output from low pass filters 375, 376 are input to conventional analog to digital converters 380, 381.


After the analog to digital converters 380, 381 convert the analog signal representing the detected power of the RF signals to digital signals in a manner well known to those skilled in the art, the resulting digital signals are sent to the microprocessor 385. The microprocessor 385, which can also be described as a logic state machine, digital signal processor, or other digital processing and control device, can be programmed to implement all necessary control algorithms to, with a high probability of certainty, detect the presence of either F1 or F2 and initiate appropriate control functions.


Alternatively, it should be noted that comparator detectors (not shown) with adjustable threshold controls may be used in place of the analog to digital converters 380, 381 and the microprocessor 385. Further, the control outputs of the microprocessor 385 could be alternatively connected directly to digital gates to control the switching where input to these gates is taken directly from comparator detector outputs. Further input to the digital logic may come from the microprocessor 385 to allow for override control to the settings provided from the comparator detector's output In this case the microprocessor (385) would continue to control the display functions; however, it is likely the control of the variable gain amplifier 330 would be controlled directly from the power detectors 370, 371 using analog signals.


Feedback to a user can be controlled by the microprocessor 385 via an indicator 390 which could be, but is not limited to, a series of light emitting diodes. Feedback to the user could be an indication that the wireless repeater 200 is in an acceptable location such that either or both frequencies from the wireless access point 100 and the client device 105 can be detected, or that power is supplied to the wireless repeater 200.


Once either of the frequencies F1, F2 is detected, the microprocessor 385 controls switches 345, 355. The switch 355 is switched to allow the detected signal, either on F1 or F2, which is at an IF frequency, to be routed to the input of a frequency converter 350, which is another frequency translation device similar to the mixers 320, 321. Additionally, the microprocessor 385 will set the switch 345 to allow a signal from the appropriate one of the local oscillators 340, 341 to be routed to the mixer 350 so that the IF frequency at the input to the frequency converter 350 is translated to the proper frequency at the output thereof.


An example of operation of the wireless repeater 200 will now be described using the frequency in the previous examples: F1=2.412 GHz; F2=2.462 GHzIF=70 MHz; LO1=2.342 GHz; and LO2=2.532 GHz. Assume F1 is detected and is output from the filter 361. The switch 355 is set to receive its input from the filter 361, which is F1 translated to 70 MHz. Since it is desired to retransmit F1 at F2=2.462 GHz, then the switch 345 is connected to the signal from the local oscillator 341. The output of the frequency translator 350 includes two components (LO2−IF) and (LO2+IF). The desired component is LO2−IF or 2.532 GHz−70 MHz=2.462 GHz. Since the frequency translator 350 produces the sum and difference of switch 345 output and switch 355 output, then a filter 335 is required to remove the undesirable term. In the example above, the undesirable term would be LO2+IF or 2.602 GHZ.


The filter 335 performs the required filtering operations. The same is true if F2 was detected. A sum and difference product will occur, and the filter 335 must filter out the undesirable component. The translated and filtered version of the received signal is applied to the amplifier 330, which is preferably a variable gain amplifier. The amplifier 330 applies a variable amount of gain under control of the microprocessor 385 to make sure that the signal being feed to the amplifier 325 is in the target transmit power range. The amplifier 325 is preferably the final power amplification stage for the transmit signal. It feeds its output to the isolator 305, which then sends the signal to the antenna 300. The signal is then converted back to an electromagnetic field or radio wave by the antenna 300 in a manner well known to those of ordinary skill in the art. This radio wave is a frequency translated and power amplified version of what was received by the antenna 300.


The above descriptions and example assumes frequencies F1 and F2. It is also possible to operate with any frequencies F1 and F2 by moving the frequencies LO1, LO2 of the local oscillators 340, 341 to different defined channels and checking for power detection at those channels. Once the channels are determined, the microprocessor 385 will use those frequencies, and all operations will be performed as described above. Control of the frequencies of the local oscillators 340, 341 can be accomplished by the microprocessor 385 or by user tuning. In the case of user tuning for the control of the selected frequencies, the repeater would have a set of switches (rotary or other) that a technician would set at the time of installation to specify the frequencies of operation.


Those of ordinary skill in the art will recognize that the point at which the input signal is down converted from RF to a digital signal may be altered such that more or fewer functions are performed in the RF domain or the digital domain. Further, multiple devices such as the wireless gateway (base unit) 100 or client devices 104, 105 may be utilized in the present invention. The repeater 200 will detect and retransmit signals from any of these devices. The devices 100, 104 or 105 communicate with each other within the protocol of a system (such as 802.11) that provides that the desired recipient of the retransmitted signal is identified. Thus, the repeater 200 may serve many master devices.


Referring to FIG. 3, in which components identical to those in FIG. 2 are identified by the same reference numbers used in FIG. 2, an alternative embodiment utilizing dual orthogonally, or cross, polarized antennas is shown. In this case, two antennas 300b, 300c replace the single antenna 300 and isolator 305 of FIG. 2. In this embodiment, one of the cross-polarized antennas 300b is connected to the power amplifier 355. The other antenna 300c, of opposite polarization, is connected to the LNA 310. The cross-polarized antennas 300b, 300c may be co-located or separated by some distance as allowed by the packaging of the repeater 200. The orthogonal or cross polarization allows for isolation of the transmitted signals from the PA 325 from the received signals into the LNA 310, and enables performance of a similar function to that performed by the isolator 305 in FIG. 2.


Referring to FIG. 4, in which components identical to those in FIG. 2 are identified by the same reference numbers used in FIG. 2, an alternative embodiment utilizing dual directional antennas is shown. This embodiment substitutes two high gain directional antennas 300d, 300e, and switches 500, 501, 502 for the antenna 300 and isolator 305 in FIG. 2. This embodiment differs from the previously described embodiments in that it allows the repeater 200 to be used in the middle of a point-to-point time and to benefit from the use of the high gain directional antennas 300d, 300e. For this embodiment, it is required that the repeater 200 be able to receive or transmit from each of the two directional antennas 300d, 300e due to the spatial selectivity of each of the antennas.


In this configuration, the switches 500, 501 are nominally set to receive more by control lines 503, 505 respectively, such that LNAs 310b, 310c are connected to the directional antennas 300d, 300e, respectively. The LNAs 310b, 310c are connected to the mixers 320, 321 respectively. The operation of the detection and IF delay process is identical to that discussed in connection with FIG. 2. Once a signal from an antenna (300d for example) is detected, the control lines 503, 505 are set to disconnect the LNA 310c from the directional antenna 300e on which the signal is not present, and to connect the antenna 300e to the power amplifier 325 for the duration of the transmission. The control lines 503, 504, 505 are for setting switches 500, 501, 502 respectively and are coupled to the microprocessor 385, or to other digital control logic as previously described.


The invention is described herein in detail with particular reference to presently preferred embodiments. However, it will be understood that variations and modifications can be effected within the scope and spirit of the invention.

Claims
  • 1. An apparatus for facilitating wireless communication in a network between a first communication device and a second communication device, said network including at least two bi-directional communication frequencies each using a time division duplex format of data transmission, comprising: a receiver to receive signals on said at least two bi-directional communication frequencies, the receiver including a signal splitter configured to split the received signal;a frequency converter to convert a signal present on one of said bi-directional frequencies to a converted signal on the other of said bi-directional frequencies;a first additional splitter in communication with a first output of the signal splitter and a second additional splitter in communication with a second output of the signal splitter;a signal detector including a first detector in communication with an output of the first additional splitter and a second detector in communication with an output of the second additional splitter, the signal detector configured to determine if the received signals include a signal on at least one of said at least two bi-directional frequencies;a delay circuit including a first delay in communication with a different output of the first additional splitter and a second delay in communication with a different output of the second additional splitter; anda transmitter to transmit the converted signal on the other of said bi-directional frequencies.
  • 2. The apparatus of claim 1, wherein the received signals comprise RF (radiofrequency) signals and wherein the apparatus further comprises one or more downconverter circuits to convert RF signals to IF (intermediate frequency) signals, and wherein said signal detector operates at one or more intermediate frequencies.
  • 3. The apparatus of claim 1, wherein the received signals comprise RF (radiofrequency) signals, and wherein said signal detector is for detecting the signal at a radio frequency.
  • 4. The apparatus of claim 1, further comprising a first antenna and a second antenna, wherein the receiver is configured to receive the signals on said at least two bi-directional frequencies simultaneously a from the first antenna, and wherein the transmitter is configured to transmit the converted signal on the other of said bi-directional frequencies using the second antenna.
  • 5. The apparatus of claim 4, wherein said first and second antennas have respective polarizations that are largely orthogonal to one another.
  • 6. The apparatus of claim 1, further comprising an antenna and an isolator, and wherein said receiver and said transmitter both use the antenna, and wherein the antenna is connected to said receiver and said transmitter through the isolator.
  • 7. The apparatus of claim 1, further comprising a first directional antenna and a second directional antenna, wherein said receiver further includes first and second single frequency channel receivers configured to receive a first frequency channel and a second frequency channel respectively, wherein the transmitter comprises a transmitter for the first frequency channel and a transmitter for the second frequency channel, and wherein the first single frequency channel receiver and the transmitter for the first frequency channel share the first directional antenna, and the second single frequency channel receiver and the transmitter for the second frequency channel share the second directional antenna.
  • 8. The apparatus of claim 1, wherein the delay circuit is configured to reduce truncation of the received signals to be transmitted to acceptable levels by compensating for detection delay during receipt of the signals by said receiver.
  • 9. The apparatus of claim 8, further comprising a first mixer and a first local oscillator, said first mixer including a first input coupled to the first output of said signal splitter and a second input coupled to an output of said first local oscillator and an output in communication with the first additional splitter, and further comprising a second mixer and a second local oscillator, said second mixer including a first input coupled to the second output of the signal splitter and a second input coupled to an output of the second local oscillator and an output in communication with the second additional splitter.
  • 10. The apparatus of claim 9, wherein the first additional splitter and the second additional splitter are intermediate frequency splitters.
  • 11. The apparatus of claim 10, wherein said first detector and said second detector are each configured to detect the presence of the signal on one of said bi-directional frequencies, and wherein an output of said first detector and said second detector controls selection of one of two associated intermediate frequencies for transmission of the converted signal by said transmitter upon detection of the signal on at least one of the bi-direction frequencies.
  • 12. The apparatus of claim 10, further comprising: a single switch configured to couple the first delay or the second delay to a frequency converter to change a frequency of a coupled intermediate frequency signal to the other of said the bi-directional frequencies prior to transmission.
  • 13. The apparatus of claim 9, wherein said first detector and said second detector are configured to determine a beginning or ending of the received signals.
  • 14. The apparatus of claim 13, wherein said first detector and said second detector are configured to compare the received signals to a threshold value to detect the signal.
  • 15. The apparatus of claim 1, wherein the apparatus comprises a repeater.
  • 16. The apparatus of claim 15, further including a circulator configured to receive a signal information packet from said receiver on said first bi-directional communication frequency and further configured to transmit the signal information packet using said transmitter on said second bi-directional communication frequency.
  • 17. The apparatus of claim 16, wherein said signal detector includes a power indicator.
  • 18. The apparatus of claim 1, further comprising an indicator to provide visual indication when received signal levels from at least one of the first and second communication devices are sufficient for communication between at least one of the first and second communication devices and the apparatus.
  • 19. The apparatus of claim 1, where the apparatus is configured to utilize 802.11 protocol or a derivative thereof.
  • 20. The apparatus of claim 1, further comprising a demodulator to demodulate a signal detect by the signal detector during re-transmission thereof.
  • 21. A wireless local area network configured to communicate using at least first and second bi-directional communication frequencies, comprising: a first communication device configured to transmit and receive data on said first and said second bi-directional communication frequencies, wherein said first communication device is configured to transmit and receive data using a time division duplex format on either of said at least first or second bi-directional communication frequencies,a second communication device configured to transmit and receive data on said first and said second bi-directional communication frequencies, wherein said second communication device is configured to transmit and receive data using a time division duplex format on either of said at least first or second bi-directional communication frequencies,a repeater configured to provide a communication link between said first and said second communication devices, said repeater including a receiver configured to receive a signal on either of said first and said second bi-directional communication frequencies, the receiver including a signal splitter configured to split the received signal, a first additional splitter in communication with a first output of the signal splitter and a second additional splitter in communication with a second output of the signal splitter, a signal detector operatively coupled to the receiver configured to determine if the signal is present on one of said at least two bi-directional frequencies, the signal detector including a first detector in communication with an output of the first additional splitter and a second detector in communication with an output of the second additional splitter, a frequency converter operatively coupled to the signal detector for converting the signal present on the one of said bi-directional frequencies to a converted signal on the other of said bi-directional frequencies, a delay circuit including a first delay in communication with a different output of the first additional splitter and a second delay in communication with a different output of the second additional splitter, and a transmitter that transmits the converted signal on the other of said bi-directional frequencies.
  • 22. The wireless local area network of claim 21, wherein at least one of said first or said second communication devices is configured to connect to a wired network and serves as a wireless gateway.
  • 23. The wireless local area network of claim 21, wherein the first communication device comprises a base unit, and wherein the second communication device comprises a client unit.
  • 24. The wireless local area network of claim 21, wherein the repeater is configured to determine a duration of transmission of a detected signal on one of the at least first and second bi-directional communication frequencies, wherein the duration is based at least in part on a time duration counter started when the detected signal is detected.
  • 25. The wireless local area network of claim 21, where said repeater further includes a first antenna and a second antenna, wherein said receiver is connected to the first antenna and said transmitter is connected to the second antenna, and wherein the first and second antennas have largely orthogonal polarizations.
  • 26. The wireless local area network of claim 21 where said receiver is connected to at least two switches, each of which is coupled to at least two directional antennas respectively and to an additional switch, which in turn is coupled to at least one transmitter.
  • 27. A method of repeating signals comprising: receiving received signals on a receiver, wherein the received signals include signals on a first frequency and signals on a second frequency;splitting the received signals to produce a first output and a second output;splitting the first output to produce a first detection output and a first delay output;splitting the second output to produce a second detection output and a second delay output;detecting whether the received signals include a signal on the first frequency or a signal on the second frequency;based on detecting whether the received signals include a signal on the first frequency or a signal on the second frequency, transmitting a delayed signal at the other of the first frequency or the second frequency.
  • 28. The method of claim 27, wherein the received signals are RF signals, and wherein the method further comprises downconverting the received signals to one or more intermediate frequencies (IFs) prior to detecting whether the received signals include a signal on the first frequency or a signal on the second frequency.
  • 29. The method of claim 28, further comprising upconverting a delayed IF signal to an RF signal prior to transmitting the delayed signal at the other of the first frequency or the second frequency.
  • 30. An apparatus comprising: means for receiving signals on said at least two bi-directional communication frequencies, the means for receiving signals comprising means for splitting the received signals;means for converting a signal present on one of said bi-directional frequencies to a converted signal on the other of said bi-directional frequencies;a first additional means for splitting signals in communication with a first output of the means for splitting the received signal;a second additional means for splitting signals in communication with a second output of the means for splitting the received signal;signal detecting means including a first detecting means in communication with an output of the first additional means for splitting signals and a second detecting means in communication with an output of the second additional means for splitting signals, the signal detecting means for determining if the received signals include a signal on at least one of said at least two bi-directional frequencies;delay means including a first delay means in communication with a different output of the first additional means for splitting signals and a second delay means in communication with a different output of the second additional means for splitting signals; andmeans for transmitting the converted signal on the other of said bi-directional frequencies.
CROSS-REFERENCE TO RELATED APPLICATION

This application is related to, and claims priority from, a provisional application filed on Jun. 21, 2002, entitled REPEATER FOR WLAN and identified by Ser. No. 60/390,093.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/16208 6/11/2003 WO 00 12/14/2004
Publishing Document Publishing Date Country Kind
WO04/002014 12/31/2003 WO A
US Referenced Citations (289)
Number Name Date Kind
3363250 Jacobson Jan 1968 A
4000467 Lentz et al. Dec 1976 A
4001691 Gruenberg et al. Jan 1977 A
4061970 Magneron et al. Dec 1977 A
4081752 Sumi et al. Mar 1978 A
4124825 Webb et al. Nov 1978 A
4204016 Chavannes et al. May 1980 A
4334323 Moore et al. Jun 1982 A
4368541 Evans et al. Jan 1983 A
4509206 Carpe et al. Apr 1985 A
4679243 McGeehan et al. Jul 1987 A
4701935 Namiki et al. Oct 1987 A
4723302 Fulmer et al. Feb 1988 A
4777653 Bonnerot et al. Oct 1988 A
4783843 Leff et al. Nov 1988 A
4820568 Harpell et al. Apr 1989 A
4922259 Hall et al. May 1990 A
5023930 Leslie et al. Jun 1991 A
5095528 Leslie et al. Mar 1992 A
5214788 Delaperriere et al. May 1993 A
5220562 Takada et al. Jun 1993 A
5280480 Pitt et al. Jan 1994 A
5333175 Ariyavisitakul et al. Jul 1994 A
5341364 Marra et al. Aug 1994 A
5349463 Hirohashi et al. Sep 1994 A
5368897 Kurihara et al. Nov 1994 A
5371734 Fischer et al. Dec 1994 A
5373503 Chen et al. Dec 1994 A
5383144 Kato Jan 1995 A
5408197 Miyake et al. Apr 1995 A
5408618 Aho et al. Apr 1995 A
5430726 Moorwood et al. Jul 1995 A
5446770 Urabe et al. Aug 1995 A
5465251 Judd et al. Nov 1995 A
5471642 Palmer et al. Nov 1995 A
5485486 Gilhousen et al. Jan 1996 A
5509028 Marque-Pucheu et al. Apr 1996 A
5515376 Murthy et al. May 1996 A
5519619 Seda May 1996 A
5608755 Rakib et al. Mar 1997 A
5610916 Kostreski et al. Mar 1997 A
5648984 Kroninger et al. Jul 1997 A
5654979 Levin et al. Aug 1997 A
5659879 Dupuy et al. Aug 1997 A
5678177 Beasley Oct 1997 A
5678198 Lemson et al. Oct 1997 A
5684801 Amitay et al. Nov 1997 A
5697052 Treatch et al. Dec 1997 A
5726980 Rickard et al. Mar 1998 A
5732334 Miyake et al. Mar 1998 A
5745846 Myer et al. Apr 1998 A
5754540 Liu et al. May 1998 A
5764636 Edsall Jun 1998 A
5767788 Ness Jun 1998 A
5771174 Spinner et al. Jun 1998 A
5784683 Sistanizadeh et al. Jul 1998 A
5794145 Milam Aug 1998 A
5812933 Niki Sep 1998 A
5815795 Iwai et al. Sep 1998 A
5825809 Sim Oct 1998 A
5852629 Iwamatsu et al. Dec 1998 A
5857144 Mangum et al. Jan 1999 A
5862207 Aoshima Jan 1999 A
5875179 Tikalsky Feb 1999 A
5883884 Atkinson Mar 1999 A
5884181 Arnold et al. Mar 1999 A
5890055 Chu et al. Mar 1999 A
5903553 Sakamoto et al. May 1999 A
5907794 Lehmusto et al. May 1999 A
5963846 Kurby et al. Oct 1999 A
5963847 Ito et al. Oct 1999 A
5987304 Latt et al. Nov 1999 A
6005855 Zehavi et al. Dec 1999 A
6005884 Cook et al. Dec 1999 A
6014380 Hendol et al. Jan 2000 A
6032194 Gai et al. Feb 2000 A
6061548 Reudink et al. May 2000 A
6088570 Komara et al. Jul 2000 A
6101400 Ogaz et al. Aug 2000 A
6108364 Weaver, Jr. et al. Aug 2000 A
6128512 Trompower et al. Oct 2000 A
6128729 Kimball et al. Oct 2000 A
6141335 Kuwahara et al. Oct 2000 A
6163276 Irving et al. Dec 2000 A
6188694 Fine et al. Feb 2001 B1
6188719 Collomby et al. Feb 2001 B1
6195051 McCoy et al. Feb 2001 B1
6202114 Dutt et al. Mar 2001 B1
6215982 Trompower Apr 2001 B1
6219739 Dutt et al. Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6272351 Langston et al. Aug 2001 B1
6285863 Zhang et al. Sep 2001 B1
6298061 Chin et al. Oct 2001 B1
6304563 Blessent et al. Oct 2001 B1
6304575 Carroll et al. Oct 2001 B1
6331792 Tonietto et al. Dec 2001 B1
6339694 Komara et al. Jan 2002 B1
6342777 Takahashi et al. Jan 2002 B1
6363068 Kinoshita Mar 2002 B1
6370185 Schmutz et al. Apr 2002 B1
6370369 Kraiem et al. Apr 2002 B1
6377612 Baker et al. Apr 2002 B1
6377640 Trans et al. Apr 2002 B2
6384765 Sjostrand et al. May 2002 B1
6385181 Tsutsui et al. May 2002 B1
6388995 Gai et al. May 2002 B1
6393299 Mizumoto et al. May 2002 B1
6404775 Leslie et al. Jun 2002 B1
6441781 Rog et al. Aug 2002 B1
6473131 Neugebauer et al. Oct 2002 B1
6480481 Park et al. Nov 2002 B1
6498804 Ide et al. Dec 2002 B1
6501955 Durrant et al. Dec 2002 B1
6516438 Wilcoxson et al. Feb 2003 B1
6535732 McIntosh et al. Mar 2003 B1
6539028 Soh et al. Mar 2003 B1
6539204 Marsh et al. Mar 2003 B1
6549542 Dong et al. Apr 2003 B1
6549567 Fullerton et al. Apr 2003 B1
6563468 Hill et al. May 2003 B2
6574198 Petersson et al. Jun 2003 B1
6628624 Mahajan et al. Sep 2003 B1
6664932 Sabet et al. Dec 2003 B2
6671502 Ogawa et al. Dec 2003 B1
6684058 Karacaoglu et al. Jan 2004 B1
6690657 Lau et al. Feb 2004 B1
6694125 White et al. Feb 2004 B2
6718160 Schmutz Apr 2004 B2
6728541 Ohkura et al. Apr 2004 B2
6766113 Al-Salameh et al. Jul 2004 B1
6781544 Saliga et al. Aug 2004 B2
6788256 Hollister Sep 2004 B2
6880103 Kim et al. Apr 2005 B2
6888809 Foschini et al. May 2005 B1
6888881 Nagano May 2005 B1
6904266 Jin et al. Jun 2005 B1
6906669 Sabet et al. Jun 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934555 Silva et al. Aug 2005 B2
6944139 Campanella Sep 2005 B1
6957042 Williams et al. Oct 2005 B2
6965568 Larsen Nov 2005 B1
6983162 Garani et al. Jan 2006 B2
6985516 Easton et al. Jan 2006 B1
6990313 Yarkosky et al. Jan 2006 B1
7027418 Gan et al. Apr 2006 B2
7027770 Judd et al. Apr 2006 B2
7043203 Miquel et al. May 2006 B2
7050442 Proctor et al. May 2006 B1
7050452 Sugar et al. May 2006 B2
7058071 Myles et al. Jun 2006 B1
7058368 Nicholls et al. Jun 2006 B2
7065036 Ryan Jun 2006 B1
7088734 Newberg et al. Aug 2006 B2
7103344 Menard et al. Sep 2006 B2
7120930 Mauter et al. Oct 2006 B2
7123670 Gilbert et al. Oct 2006 B2
7123676 Gebara et al. Oct 2006 B2
7132988 Yegin et al. Nov 2006 B2
7133391 Belcea et al. Nov 2006 B2
7133460 Bae et al. Nov 2006 B2
7139527 Tamaki et al. Nov 2006 B2
7167526 Liang et al. Jan 2007 B2
7187904 Gainey et al. Mar 2007 B2
7193975 Tsutsumi et al. Mar 2007 B2
7194275 Bolin et al. Mar 2007 B2
7200134 Proctor, Jr. et al. Apr 2007 B2
7215964 Miyake et al. May 2007 B2
7233771 Proctor, Jr. et al. Jun 2007 B2
7248645 Vialle et al. Jul 2007 B2
7254132 Takao et al. Aug 2007 B2
7299005 Yarkosky et al. Nov 2007 B1
7315573 Lusky et al. Jan 2008 B2
7319714 Sakata et al. Jan 2008 B2
7321787 Kim et al. Jan 2008 B2
7339926 Stanwood et al. Mar 2008 B2
7352696 Stephens et al. Apr 2008 B2
7406060 Periyalwar et al. Jul 2008 B2
7409186 Van Buren et al. Aug 2008 B2
7430397 Suda et al. Sep 2008 B2
7450936 Kim et al. Nov 2008 B2
7457587 Chung Nov 2008 B2
7463200 Gainey et al. Dec 2008 B2
7486929 Van Buren et al. Feb 2009 B2
7577398 Judd et al. Aug 2009 B2
7590145 Futch et al. Sep 2009 B2
7623826 Pergal et al. Nov 2009 B2
7676194 Rappaport et al. Mar 2010 B2
7729669 Van Buren et al. Jun 2010 B2
8023885 Proctor, Jr. et al. Sep 2011 B2
8027642 Proctor, Jr. et al. Sep 2011 B2
8059727 Proctor, Jr. et al. Nov 2011 B2
8078100 Proctor, Jr. et al. Dec 2011 B2
20010028638 Walton et al. Oct 2001 A1
20010031646 Williams et al. Oct 2001 A1
20010040699 Osawa et al. Nov 2001 A1
20010050580 O'toole et al. Dec 2001 A1
20010050906 Odenwalder et al. Dec 2001 A1
20010054060 Fillebrown et al. Dec 2001 A1
20020004924 Kim et al. Jan 2002 A1
20020018479 Kikkawa et al. Feb 2002 A1
20020018487 Chen et al. Feb 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020045461 Bongfeldt et al. Apr 2002 A1
20020061031 Sugar et al. May 2002 A1
20020072853 Sullivan Jun 2002 A1
20020089945 Belcea et al. Jul 2002 A1
20020101843 Sheng et al. Aug 2002 A1
20020102948 Stanwood et al. Aug 2002 A1
20020109585 Sanderson et al. Aug 2002 A1
20020115409 Khayrallah et al. Aug 2002 A1
20020119783 Bourlas et al. Aug 2002 A1
20020136268 Gan et al. Sep 2002 A1
20020141435 Newberg et al. Oct 2002 A1
20020146026 Unitt et al. Oct 2002 A1
20020155838 Durrant et al. Oct 2002 A1
20020159506 Alamouti et al. Oct 2002 A1
20020163902 Takao et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20030008669 Stein et al. Jan 2003 A1
20030026363 Stoter et al. Feb 2003 A1
20030063583 Padovani et al. Apr 2003 A1
20030139175 Kim et al. Jul 2003 A1
20030148736 Wright et al. Aug 2003 A1
20030179734 Tsutsumi et al. Sep 2003 A1
20030185163 Bertonis et al. Oct 2003 A1
20030211828 Dalgleish et al. Nov 2003 A1
20030235170 Trainin et al. Dec 2003 A1
20030236069 Sakata et al. Dec 2003 A1
20040001464 Adkins et al. Jan 2004 A1
20040029537 Pugel et al. Feb 2004 A1
20040038707 Kim et al. Feb 2004 A1
20040047333 Han et al. Mar 2004 A1
20040047335 Proctor, Jr. et al. Mar 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040121648 Voros Jun 2004 A1
20040131025 Dohler et al. Jul 2004 A1
20040146013 Song et al. Jul 2004 A1
20040157551 Gainey et al. Aug 2004 A1
20040166802 McKay, Sr. et al. Aug 2004 A1
20040176050 Steer et al. Sep 2004 A1
20040198295 Nicholls et al. Oct 2004 A1
20040208258 Lozano et al. Oct 2004 A1
20040218683 Batra et al. Nov 2004 A1
20040229563 Fitton et al. Nov 2004 A1
20040235417 Dean Nov 2004 A1
20040240426 Wu et al. Dec 2004 A1
20040248581 Seki et al. Dec 2004 A1
20040264511 Futch et al. Dec 2004 A1
20050014464 Larsson et al. Jan 2005 A1
20050030891 Stephens et al. Feb 2005 A1
20050042999 Rappaport et al. Feb 2005 A1
20050130587 Suda et al. Jun 2005 A1
20050190822 Fujii et al. Sep 2005 A1
20050201315 Lakkis et al. Sep 2005 A1
20050254442 Proctor, Jr. et al. Nov 2005 A1
20050256963 Proctor, Jr. et al. Nov 2005 A1
20060028388 Schantz Feb 2006 A1
20060035643 Vook et al. Feb 2006 A1
20060041680 Proctor, Jr. et al. Feb 2006 A1
20060045193 Stolpman et al. Mar 2006 A1
20060052066 Cleveland et al. Mar 2006 A1
20060052099 Parker et al. Mar 2006 A1
20060056352 Proctor et al. Mar 2006 A1
20060063484 Proctor et al. Mar 2006 A1
20060063485 Gainey et al. Mar 2006 A1
20060067277 Thomas et al. Mar 2006 A1
20060072682 Kent et al. Apr 2006 A1
20060098592 Proctor, Jr. et al. May 2006 A1
20060183421 Proctor et al. Aug 2006 A1
20060203757 Young et al. Sep 2006 A1
20060262026 Gainey et al. Nov 2006 A1
20070025349 Bajic et al. Feb 2007 A1
20070025486 Gainey et al. Feb 2007 A1
20070032192 Gainey et al. Feb 2007 A1
20070121546 Zuckerman et al. May 2007 A1
20070237181 Cho et al. Oct 2007 A1
20070268846 Proctor, Jr. et al. Nov 2007 A1
20070286110 Proctor, Jr. et al. Dec 2007 A1
20080057862 Smith et al. Mar 2008 A1
20080232438 Dai et al. Sep 2008 A1
20080233942 Kim et al. Sep 2008 A9
20080267156 Gubeskys et al. Oct 2008 A1
20090135745 Gainey et al. May 2009 A1
20090190684 She et al. Jul 2009 A1
20090290526 Gainey et al. Nov 2009 A1
20090323582 Proctor, Jr. et al. Dec 2009 A1
20100002620 Proctor, Jr. et al. Jan 2010 A1
Foreign Referenced Citations (118)
Number Date Country
2051283 Mar 1992 CA
1137335 Dec 1996 CN
1186401 Jul 1998 CN
1256032 Jun 2000 CN
1663149 Aug 2005 CN
1706117 Dec 2005 CN
0523687 Jan 1993 EP
0709973 May 1996 EP
0715423 Jun 1996 EP
0847146 Jun 1998 EP
0853393 Jul 1998 EP
0860953 Aug 1998 EP
1548526 Jun 2005 EP
1615354 Jan 2006 EP
2272599 May 1994 GB
2351420 Dec 2002 GB
62040895 Feb 1987 JP
63-160442 Jul 1988 JP
64011428 Jan 1989 JP
02100358 Apr 1990 JP
03021884 Jan 1991 JP
05063623 Mar 1993 JP
05102907 Apr 1993 JP
06013947 Jan 1994 JP
06334577 Dec 1994 JP
07030473 Jan 1995 JP
7079187 Mar 1995 JP
07079205 Mar 1995 JP
07131401 May 1995 JP
8097762 Apr 1996 JP
8274683 Oct 1996 JP
08274706 Oct 1996 JP
09-018484 Jan 1997 JP
09130322 May 1997 JP
09162801 Jun 1997 JP
9162903 Jun 1997 JP
09182115 Jul 1997 JP
09214418 Aug 1997 JP
10032557 Feb 1998 JP
10107727 Apr 1998 JP
10135892 May 1998 JP
10242932 Sep 1998 JP
11055713 Feb 1999 JP
11127104 May 1999 JP
11298421 Oct 1999 JP
2000031877 Jan 2000 JP
2000502218 Feb 2000 JP
2000082983 Mar 2000 JP
2000509536 Jul 2000 JP
2000236290 Aug 2000 JP
2000269873 Sep 2000 JP
2001016152 Jan 2001 JP
2001111575 Apr 2001 JP
2001136115 May 2001 JP
2001244864 Sep 2001 JP
2001357480 Dec 2001 JP
2002033691 Jan 2002 JP
2002111571 Apr 2002 JP
2002223188 Aug 2002 JP
2002271255 Sep 2002 JP
2002281042 Sep 2002 JP
2003174394 Jun 2003 JP
2003198442 Jul 2003 JP
2003244050 Aug 2003 JP
2004056210 Feb 2004 JP
2004328666 Nov 2004 JP
2004538682 Dec 2004 JP
2005072646 Mar 2005 JP
2005110150 Apr 2005 JP
2005191691 Jul 2005 JP
2005236626 Sep 2005 JP
2005252692 Sep 2005 JP
2005295499 Oct 2005 JP
2005531202 Oct 2005 JP
2005531265 Oct 2005 JP
2006503481 Jan 2006 JP
2006505146 Feb 2006 JP
2006167488 Jul 2006 JP
2007528147 Oct 2007 JP
19980063664 Oct 1998 KR
1020040004261 Jan 2004 KR
100610929 Aug 2006 KR
2120702 Oct 1998 RU
2233045 Jul 2004 RU
2242086 Dec 2004 RU
2249916 Apr 2005 RU
2264036 Nov 2005 RU
WO9214339 Aug 1992 WO
9505037 Feb 1995 WO
WO9622636 Jul 1996 WO
WO9715991 May 1997 WO
WO9734434 Sep 1997 WO
WO9852365 Nov 1998 WO
WO9858461 Dec 1998 WO
WO9923844 May 1999 WO
WO9959264 Nov 1999 WO
WO0050971 Aug 2000 WO
WO0152447 Jul 2001 WO
WO0176098 Oct 2001 WO
WO0182512 Nov 2001 WO
WO0199308 Dec 2001 WO
WO0208857 Jan 2002 WO
WO0217572 Feb 2002 WO
WO03013005 Feb 2003 WO
WO04002014 Dec 2003 WO
WO2004001892 Dec 2003 WO
WO2004001986 Dec 2003 WO
WO2004004365 Jan 2004 WO
WO2004032362 Apr 2004 WO
WO2004036789 Apr 2004 WO
WO2004038958 May 2004 WO
2004047308 Jun 2004 WO
WO2004062305 Jul 2004 WO
WO2004107693 Dec 2004 WO
2005050918 Jun 2005 WO
WO2005069249 Jul 2005 WO
WO2005069656 Jul 2005 WO
WO2005115022 Dec 2005 WO
Non-Patent Literature Citations (47)
Entry
First Report issued by IP Australia on Jul. 31, 2007 in connection with the corresponding Australian application No. 2003239577.
Office communication dated Oct. 19, 2006 issued from the Mexican Patent Office for counterpart application No. PA/a/2004/011588.
Mexican Office communication dated Jul. 2, 2007 issued from the Mexican Patent Office for application PA/a/2004/011588 with partial translation thereof.
Office communication dated Jan. 12, 2007 issued from the European Patent Office for counterpart application No. 03 734 139.9-1246.
Office Action issued from the Mexican Patent Office dated Feb. 22, 2008 in connection with the corresponding Mexican Patent Application No. PA/a/2004/011588.
Supplementary European Search Report—EP08004269, Search Authority—The Hague, Apr. 15, 2008.
European Search Opinion—EP08004269, Search Authority—The Hague, Apr. 15, 2008.
Andrisano, et al., On the Spectral Efficiency of CPM Systems over Real Channel in The Presence of Adjacent Channel and CoChannel Interference: A Camparison between Partial and Full Response Systems, IEEE Transactions on Vehicular Technology, vol. 39, No. 2, May 1990.
Code of Federal Regulations, Title 47 Telecommunication; “Federal Communications Commission code part 15.407.” Federal Communications Commission vol. 1, chapter 1. part 15.407.
First Office Action issued from the Chinese Patent Office in connection with corresponding Chinese application No. 200380101286.2.
Draft Corrigendum to IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE P802.16-2004/Cor1/D5.
Draft IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands.
IEEE 802.16(e), Part 16: Air Interface for Fixed Broadband Wireless Access Systems. 2005, Sections 8.4.10.2.1, 8.4.10.3.2.
IEEE Std 802.11-1999 (Reaff 2003), “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” LAN MAN Standards Committee of the IEEE Computer Society; Paragraphs 7.2.3.1 and 7.2.3.9; Paragraph 7 3.2.4; Paragraphs 15.4.6.2 and 18.4.6.2.
IEEE Std 802.11b-1999. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band,” IEEE-SA Standards Board, Supplement to ANSI/IEEE Std. 802.11, 1999 Edition, Approved Sep. 16, 1999.
IEEE Std 802.11g-2003. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band,” IEEE Computer Society. Published by The Institute of Electrical and Electronics Engineers, Inc., Jun. 27, 2003.
IEEE Std 802.16-2001. “Part 16 Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Computer Society and the IEEE Microwave Theory and Techniques Society, Published by The Institute of Electrical and Electronics Engineers, Inc., Apr. 8, 2002.
International Search Report—PCT/US03/016208. International Search Authority—US, Nov. 6, 2003.
Kannangara, et al., “Analysis of an Adaptive Wideband Duplexer with Double-Loop Cancellation,” IEEE Transactions on Vehicular Technology, vol. 56, No. 4, Jul. 2007, pp. 1971-1982.
Kutlu, et al., “Performance Analysis of MAC Protocols for Wireless Control Area Network,” 1996 IEEE, pp. 494-499.
Notification of the First Office Action from Chinese Patent Office dates Sep. 8, 2006 for the corresponding Chinese patent application No. 200380105267.7.
Official communication issued from the European Patent Office dated Aug. 7, 2007 for the corresponding European patent application No. 03759271.4-2412.
Official communication issued from the European Patent Office dated Dec. 19, 2006 for the corresponding European patent application No. 03759271.4-2412.
Second Office Action issued from the Chinese Patent Office on Jul. 20, 2007 in connection with corresponding Chinese application No. 200380101286.2.
Specification for2.3 GHz Band Portable Internet Service—Physical & Medium Access Control Layer, TTAS.KO-06.0082/R1, Dec. 2005.
Third Office Action issued from the Patent Office of People's Republic of China dated Jan. 4, 2008 in corresponding Chinese Patent Application No. 200380101286.2.
U.S. PTO Office Action mailed on Apr. 17, 2007 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Jan. 24, 2007 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Nov. 21, 2006 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
U.S. PTO Office Action mailed on Nov. 6, 2006 for the corresponding parent U.S. Appl. No. 11/339,838, now U.S. Patent No. 7,230,935.
Translation of Office Action in Japanese application 2004-544751, corresponding to U.S. Appl. No. 10/531,078, Dated Oct. 16, 2009.
Translation of Office Action in Japanese application 2004-565505, corresponding to U.S. Appl. No. 10/563,471, Dated Sep. 9, 2009.
Translation of Office Action in Japanese application 2004-553510, corresponding to U.S. Appl. No. 10/533,589, Dated Nov. 26, 2009.
Translation of Office Action in Japanese application 2004-565505, corresponding to U.S. Appl. No. 10/563,471, Dated Mar. 26, 2010.
IEEE Computer Society and the IEEE Microwave Theory and Techniques Society: “Draft IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE P802.16e/D12, New York, USA, Oct. 14, 2005.
Office Action English translation dated Jul. 4, 2008 issued from Chinese Patent Office for Application No. 03814391.7.
Office Action English translation dated Jun. 29, 2009 issued from Japanese Patent Office for Application No. 2004-541532.
Translation of Office Action in Japanese application 2004-515701, corresponding to U.S. Appl. No. 10/516,327, Dated May 25, 2010.
Translation of Office Action in Japanese application 2004-565505, corresponding to U.S. Appl. No. 10/563,471, Dated Mar. 17, 2010.
Translation of Office Action in Japanese application 2007-513349 corresponding to U.S. Appl. No. 11/546,242, dated Nov. 16, 2010.
Translation of Office Action in Japanese application 2009-503041, corresponding to U.S. Appl. No. 11/730,361, Dated Oct. 26, 2010.
Translation of Office Action in Japanese application 2009-526736 corresponding to U.S. Appl. No. 12/307,801 , dated Jan. 4, 2011.
Translation of Office Action in Korean Application 2008-7026775, corresponding to U.S. Appl. No. 11/730,361, Dated Aug. 30, 2010.
Translation of Office Action in Korean application 2009-7010639, corresponding to U.S. Appl. No. 12/439,018, Dated Nov. 15, 2010.
Dohler, M. et al., “Distributed PHY-Layer Mesh Networks,” 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceesings, 2003. PIMRC 2003. The United States of America, IEEE, vol. 3, pp. 2543 to 2547, Sep. 7, 2003, doi: 10.1109/PIMRC.2003.1259184.
Fujii, T. et al., “Ad-hoc Cognitive Radio Cooperated with MAC Layer,” IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), Japan, Institute of Electronics, Information and Communication Engineers (IEIC), May 4, 2005, vol. 105 (36), pp. 59 to 66.
Zimmerman, E. et al., “On the Performance of Cooperative Diversity Protocols in Practical Wireless Systems,” IEEE 58th Vehicular Technology Conference, 2003, The United States of America, IEEE, Oct. 6, 2003, vol. 4, pp. 2212 to 2216.
Related Publications (1)
Number Date Country
20050286448 A1 Dec 2005 US
Provisional Applications (1)
Number Date Country
60390093 Jun 2002 US