The present invention is generally related to devices, systems and methods for tuning a musical instrument. More particularly, the invention relates to a musical instrument tuning device capable of sensing and converting musical instrument vibrations to digital data and displaying the processed data on the screen of a smart device for assisting a musician in tuning their instruments to a reference pitch.
Tuning is the process of adjusting the pitch of one or many tones generated from a musical instrument until these tones form a desired arrangement. Two musical instruments playing the same pitch in unison are void of a beat frequency and therefore need to be tuned to the same beat frequency. Instruments such as the piano or organ have to be tuned by people who are specialists in tuning. For most instruments, however, the players themselves need to tune their instruments before they play. Players of string instruments can turn the pegs at the top of their instruments to change the tension (tightness) of the string. Players of wind instruments can change their instrument's tone very slightly by adjusting the length longer or shorter by pushing out or pulling in, one of the joints. Timpanists turn the taps which are around the top of their instruments to change the tension of the drum head and thus the tone.
In general, tuning any instrument requires the generation of a reference pitch to compare with the pitch of the instrument. This is accomplished by a number of methods from comparing the pitch of the instrument played with the use of a tuning fork resonator at 440 Hertz (Hz) or an electronic pitch generator outputting a 440 Hz pitch through a speaker. The player of the installment matches the tone of the instrument with the 440 Hz tone heard from the tuning fork or electronic pitch generator and adjusts the tone of the “A” pitch of the instrument to the reference frequency of 440 Hz. An orchestra composed of several different instruments, is generally tuned to the frequency of the standard pitch, A above middle C on a piano, defined as 440 Hz endorsed in 1955 by the International Standards Organization (ISO) and reaffirmed by ISO in 1975 as ISO 16:1975 Acoustics Standard tuning frequency (Standard musical pitch). Some orchestras and music organizations deviate a few Hz above or below the ISO standard.
More recently, an electronic instrument with an audio pickup such as a microphone, commonly referred to as the Microphone (MIC) tuner, has been used to listen to the target instrument playing the reference A pitch, comparing the received audio signal with the reference 440 Hz tone and presenting the difference in the tones between the reference pitch generator and that of the instrument to the instrument player, so that the player can adjust the tone of the instrument to reach the reference A pitch.
A tuner used for tuning an electronic instrument plugs into the electrical signal emanating out of the electronic instrument and operates in the same manner as the MIC tuner by comparing the output of the electronic instrument to the reference A pitch and directing the user to adjust the tone output from the electronic instrument to match the reference A pitch. U.S. Pat. Appl. Pub. No. 2014/0345440 (Harvey) operates in conjunction with a wireless amplifier system where the audio signal output of the electric guitars, violins or other instruments is converted to a radio frequency (RF) signal and transmitted to an amplifier with an RF receiver replacing the cable connection between the instrument and amplifier. Harvey ('440) adds a plug-tuning element in parallel to the amplifier input for use in tuning the electric instrument. Plug tuners, including the Harvey ('440) tuner are problematic due to them having to be placed in line with a cable input to an amplifier (s) restricting the placement of the tuner on the floor and operated by the entertainer's foot (foot switch on/off).
The Microphone (MIC) tuners for use with non-electric instruments works well in an environment where one instrument player is tuning only one instrument. Environments where many instruments are played together such as, trios, bands, and orchestras, tuning with a MIC tuner is problematic due to the difficulty in maneuvering the tuner to discriminate the instrument being tuned from the other instruments close by that create similar tones. Clip-on tuners were invented to overcome the problems of the MIC tuner by clipping a tuner on to the body of the instrument and sensing the vibrations in the instrument associated with the tone generation, thus eliminating the problems associated with tuning an instrument among a number of similar instruments playing similar tones.
Clip-on tuners incorporate a mechanical clamp, battery, electronics, a display window and operating keys or buttons to at least power-on and off the tuner. Clip-on tuners attach to the instruments and are held securely in place by the pressure and associated friction of the clamp attached to the instrument. The size and pressure of the clamp is directly related to the weight of the tuner encompassing the battery or batteries and the readable display. Scarred finishes such as dents and scratches are a few reported problems identified with the use of clip-on tuners attached to expensive instruments. U.S. Pat. No. 7,655,851 (Negakura) receives the tone of a musical instrument with the use of a microphone like a MIC tuner or through vibrations like a clip on tuner where the user selects microphone or vibration using a switch on the apparatus containing the microphone and piezoelectric vibration sensor. In this device, the sensor apparatus switched for vibration mode needs to be attached to the guitar or instrument with an adhesive, clamp or screws which would lead to instrument damage. As a result of the reported damages caused to the instruments by the prior art tuner devices and to minimize the associated weight and pressure of these devices on the instruments, the sizes of the clip-on tuners continue to get smaller with less readable displays and smaller batteries, resulting in related reduction in operating time.
More recently, tuner applications have been implemented in software programs on electronic computing devices such as Personal Computers (PC's), Tablets, Personal Digital Assistants (PDA's), Smartphones and similar computing devices referred to generally hereinafter as Smart Devices (SD) using the embedded microphone (MIC) of the SD for receiving the tone from the instrument being tuned and matching the instrument tone with a reference pitch and displaying the results to the user with instructions on how to tune the instrument to the reference pitch. Many free tuner Applications (Apps) are available for download from Smartphone suppliers such as Apple, Microsoft and Google. The Smartphone tuner Apps provide the user with a tuner in an electronic device they carry and use for other tasks, thus avoiding the need to have dedicated tuners. However, these smartphone tuner Apps exhibit the problems MIC tuners show in environments where more than one instrument is being tuned.
Accordingly, there exists a need for a musical instrument tuner device that is considerably small and lightweight so as not to damage and scar a musical instrument as a result of attaching the tuner to the instrument, while at the same time, providing the user the benefit of a separate large display screen found on Smartphones, Tablets and other smart devices to display the data generated by the tuner, to assist musicians to tune their instruments The present invention provides such a device and a system and method for tuning a musical instrument using the device.
The present invention is a musical instrument tuner having a sensor that when attached to an instrument, senses the instrument vibrations, converts them into digital data, processes that data into a frequency value, compares the results to a reference pitch, and transmits the data to a smart device such as a Smart Phone, Tablet, PDA or a similar smart device (SD) programmed to communicate with the sensor on the instrument tuner by means of a wireless standard such as Bluetooth, Near Field Communications (NFC) or WIFI direct and displays the data on the screen of a Smart device (SD) as one of, flat, sharp, or in tune. The invention method and system responds to the user tuning the instrument indicating to the tuner if the tuning process is increasing or decreasing the instrument tone output compared to the reference pitch and displaying the results on the SD screen to enable the user to match the tone output from the instrument to the reference pitch and thereby achieving a tuned instrument. The invention tuner software application (App) is developed and made available to the users through the Application Stores such as Google, Apple and Microsoft to mention a few of the most popular distributors of computer device application software for Smart phones, Tablets, Personal Computers (PC's) and Personal Digital Assistants (PDA's). Users identify the invention tuner software application and download and install the application software on their SD's using WiFi, Internet, or cellular networks. The SD's as described herein are not limited to Smart Phones, Tablets, PC's and PDA's but to any computing device with a means for communicating to the user, visually, audibly or through touch.
An exemplary embodiment of the present invention, has a vibration sensor such as an accelerometer, or piezoelectric vibration sensor connected to a Microcomputer powered by a single button battery or small rechargeable battery. The Microcomputer has programming memory, and processing capability for converting the vibration information into digital data. The Microcomputer, using an embedded industry standard Radio Frequency (RF) transceiver, sends the digital data to a computer device having a compatible industry standard RF frequency transceiver. The compatible computer device is programmed with computer instructions to accept user inputs; receive the digital data; process the data identifying the associated frequency; display the data for the user to use in tuning the instrument; and indicate to the user if the instruments tone is above, below, or matches the desired, input reference pitch.
The objects, embodiments, and features of the present invention as described in this summary of the invention will be further appreciated and will become obvious to one skilled in the art when viewed in conjunction with the accompanying drawings, detailed description of the invention, and the appended claims.
The present invention is a musical instrument tuning device and a system and method for assisting a musician in tuning their instrument to a reference pitch by means of a wireless standard such as Bluetooth, Near Field Communications (NFC) or WIFI direct. The device of the invention is a tuner having a sensor that is capable of sensing and converting instrument vibrations to digital data and displaying the processed data on the screen of a Smart Device such as a Smartphone, PC Tablet, or other such smart devices (SD's) to apprise the musician whether the tone of the instrument is sharp, flat, or in tune.
Referring now to
In this embodiment of the invention, the Smartphone 10 paired with the Sensor 202 receives digital data transmitted 210 from the Sensor 202's embedded Radio Frequency (RF) transceiver. The Smartphone screen shot 200 indicates to the user, the reference pitch nearest in value to the received frequency value from Sensor 202 and displays the reference pitch named G 214 while simultaneously indicating if the instrument tone is flat by flashing one or more arrows or chevrons 216, 218, and 220 displayed to the left of the reference pitch named G 214 or sharp by flashing one or more arrows or chevrons 222, 224, and 226 displayed to the right of the reference pitch named G 214.
Smartphone 10 displays a reference pitch G 214 indicating that the instrument tone 228 received from Sensor 202 is between 190.418 Hz and 201.7409 Hz and that the instrument is being tuned to reference Pitch G3 at 195.9977 Hertz based upon ISO 16:1975 displayed on the Smartphone screen shot 200 screen as, A=440 212. Chevrons 216, 218, and/or 220 indicate the installment tone is flat relative to the reference pitch (instrument vibration frequency is less than the reference pitch frequency). The Smartphone screen shot 200 invention software application illuminates chevron 216 when the magnitude of the difference between the reference pitch and the instrument tone is greater than 10 cents (a logarithmic unit of measure used for musical intervals between semi-tones) in terms of frequency less than 194.8688 Hz. Chevron 218 is illuminated for frequencies received less than 10 cents flat (greater than 194.8688 and less than the reference pitch); and chevron 120 is illuminated for frequencies received less than 5 cents flat (greater than 195.4325 and less than the reference pitch). The chevrons 216, 218 and 220 illuminate from right to left as the instrument is tuned from flat to the reference pitch G 214. The reference pitch G 214 and the chevrons 216, 218, 220, 222, 224, and 226 are illuminated with a different color and/or flashing, indicating the instrument is in tune. Tuning an instrument with a tone frequency higher than the reference pitch, defined as sharp, is similar with chevron 226 illuminated for frequencies greater than 10 cents above the reference pitch. Chevron 224 is illuminated for frequencies received less than 10 cents sharp and chevron 220 is illuminated for frequencies received less than 5 cents sharp. The chevrons 226, 224 and 222 illuminate from right to left as the instrument is tuned from sharp to the reference pitch G 214. The reference pitch G 214 and the chevrons 216, 218, 220, 222, 224, and 226 are illuminated with a different color and/or flashing indicating the instrument is in tune.
In this embodiment of the invention, the software system of the invention within the Smartphone 10 enables the user to change the concert pitch A4 from the ISO:16 440 Hz 212 to a range from 410 Hz to 480 Hz and the A=440 212 would be updated to the new concert A. For example, Austria's orchestra tunes to A=432 Hz 212, resulting in G3 192.4341 Hz, about 3.5 Hz below G3 at the ISO:16. The tuning operation with a concert reference frequency of 432 Hz is the same as described for the 440 reference. The parameters are adjusted relative to the change in the reference as described with G3 reduced by about 3.5 Hz for a concert A equal to 432 Hz.
Microcomputer 320 has program memory, storage memory, timers and processors to control the setup of the ADC 310; receive or read and store the digital data representing the amplitude of the instrument vibrations during tuning; and analyze the digital data determining the instrument's tone frequency in a digital Hertz (Hz) format. Microcomputer 320 activates the Radio Frequency (RF) transmitter in the transceiver 330 and sends the digital frequency value to the transceiver for formatting and subsequent transmission to the Antenna 340 for the Smartphone 10 reception and use.
Continuing with the
Sensor 202 paired with a Smartphone 10 will enter a sleep state defined as the state in which minimal power is consumed by the Sensor 202. The RF receiver portion of the transceiver 330 is powered on and listens for a command signal from the Smartphone 10. Once the receiver in the transceiver 330 detects a signal from the Smartphone 10, the receiver sends a signal to the Microcomputer 320 starting a process to sequence the Microcomputer 320 to communicate with the Smartphone 10 sending a status to the Smartphone 10 and receiving operating commands from the Smartphone 10.
A Light Emitting Diode (LED) 380 indicates to the user, the status of the sensor, such as power on, pairing, low battery and other meaningful sensor states. A pressing switch 360 applies power to the vibration sensor 300 illuminating LED 380 and indicating to the user that the sensor 300 is powered on and the transceiver 330 is active, receiving a RF signal at antenna 340 to identify the sensor to the Smartphone 10. Some embodiments of the invention will not have an LED 380 status indicator and in those embodiments, the status function will be programmed in the smart device to indicate to the user, the sensor status on the smart device display.
In addition to the graphical output of the application presented to the user on the Smartphone 10 display, the smartphone audio output and vibration alert output can be programmed to indicate whether the musical instrument tone output is above or below the reference pitch. The audio output of the Smartphone 10 can be programmed to produce an audio output varying the output frequency relative to the computed difference between the Sensor 30 vibration frequency and the reference pitch. For example, when the vibration frequency computed by the Smartphone 10 is lower than the frequency of the reference pitch, the Smartphone 10 outputs an audio frequency ascending as the computed vibration frequency nears the reference pitch and descends as the computed frequency widens the difference between the computed vibration frequency in response to the change in the musical instrument that is tuned. Smartphone 10 would beep or otherwise signal the user when the musical instrument matches the reference pitch.
The Smartphone 10 vibration alert will be similar to the audio output, with the Smartphone 10 increasing or decreasing the vibration of the Smartphone 10 relative to the computed vibration frequency's difference from the reference pitch. Both the audio and vibration alert signals for directing the user to increase or decrease the tone of the musical instrument matching the reference pitch can be used by visually impaired musicians as well as musicians that do not want to use the display of the Smartphone 10. A musician can leave the Smartphone 10 in a pocket and feel the vibration for tuning the instrument or wear an earpiece or Bluetooth earpiece to receive audio clues for tuning the instrument.
While the present invention has thus been described in connection with its exemplary embodiments, it should be understood and obvious to one skilled in the art that alternatives, modifications, and variations of the embodiment of the present invention may be construed as being within the spirit and scope of the appended claims.