1. Field of Invention
The present invention relates to the controlling of functionality in a wireless communication device, and more specifically to activating or deactivating modes of short-range communication depending on the physical state or orientation of a wireless communication device.
2. Description of Prior Art
Modem society has quickly adopted, and become reliant upon, handheld devices for wireless communication. For example, cellular telephones continue to proliferate in the global marketplace due to technological improvements in both the quality of the communication and the functionality of the devices. These wireless communication devices (WCDs) have become commonplace for both personal and commercial use, allowing users to transmit and receive voice, text and graphical data from a multitude of geographical locations. The communication networks utilized by these devices span different frequencies and cover different broadcast distances, each having strengths desirable for various applications.
Cellular networks facilitate WCD communication over large geographic areas. These network technologies have commonly been divided by generations, starting in the late 1970s to early 1980s with first generation (1 G) analog cellular telephones that provided baseline voice communications, to the now emerging 4 G streaming digital video content planned for the 2006-2007 timeframe. GSM is an example of a widely employed 2 G digital cellular network communicating in the 900 MHZ-1.8 GHZ band in Europe and at 1.9 GHZ in the United States. This network provides voice communication and also supports the transmission of textual data via the Short Messaging Service (SMS). SMS allows a WCD to transmit and receive text messages of up to 160 characters, while providing data transfer to packet networks, ISDN and POTS users at 9.6 Kbps. The Multimedia Messaging Service (MMS), an enhanced messaging system allowing for the transmission of sound, graphics and video files in addition to simple text, has also become available in certain devices. Soon emerging technologies such as Digital Video Broadcasting for Handheld Devices (DVB-H) will make streaming digital video, and other similar content, available via direct broadcast to a WCD. While long-range communication networks like GSM are a well-accepted means for transmitting and receiving data, due to cost, traffic and legislative concerns, these networks may not be appropriate for all data applications.
Short-range wireless networks provide communication solutions that avoid some of the problems seen in large cellular networks. Bluetooth™ is an example of a short-range wireless technology quickly gaining acceptance in the marketplace. A Bluetooth™ enabled WCD transmits and receives data at a rate of 720 Kbps within a range of 10 meters, and may transmit up to 100 meters with additional power boosting. A user does not actively instigate a Bluetooth™ network. Instead, a plurality of devices within operating range of each other will automatically form a network group called a “piconet”. Any device may promote itself to the master of the piconet, allowing it to control data exchanges with up to seven “active” slaves and 255 “parked” slaves. Active slaves exchange data based on the clock timing of the master. Parked slaves monitor a beacon signal in order to stay synchronized with the master, and wait for an active slot to become available. These devices continually switch between various active communication and power saving modes in order to transmit data to other piconet members.
More recently, manufacturers have also began to incorporate various resources for providing enhanced functionality in WCDs (e.g., components and software for performing close-proximity wireless information exchanges). Sensors and/or scanners may be used to read visual or electronic information into a device. A transaction may involve a user holding their WCD in proximity to a target, aiming their WCD at an object (e.g., to take a picture) or sweeping the device over a printed tag or document. Machine-readable technologies such as radio frequency identification (RFID), Infra-red (IR) communication, optical character recognition (OCR) and various other types of visual, electronic and magnetic scanning are used to quickly input desired information into the WCD without the need for manual entry by a user.
Technological developments in wireless communication, such as those previously described, have created a desire in the public for the increased use of wireless communications in everyday applications. People want regular transactions to be quick, automated and error-free. For example, many public transit systems worldwide have moved to wireless smartcard systems to reduce the amount of currency handling on a per-trip basis. Systems such as SmarTrip, MIFARE, FeliCa, etc. use RFID communication to identify a rider as they pass through an entry gate or turnstile. In a normal scenario, the passenger presents a transponder card to a scanning device, which uses the identification information on the card to determine whether the particular rider's account contains a positive balance. If the rider has sufficient funds, the cost of the trip may be automatically deducted including a notification of the remaining balance. The problem with these systems are the many different individual RFID cards required for each service. Further, if a transponder card is lost or stolen, another individual may use the card to deduct or spend funds from the rightful owner's account until the owner realizes the card is missing and contacts the card provider.
The public transportation scenario is but one application for short-range wireless communication. Other standards using alterative communication methods exist for exchanging information in a number of different applications including identification information, credit card information, ticket information, credit or debit account transactions at a variety of locations from vending machines to full-service retailers, etc. There are also applications which exclusively deliver information to a user, such as advertisements including special offers and coupons, transportation schedules, event dates, etc. This array of available services multiplies the aforementioned problems, and creates new ones. Now the user is carrying many short-range communication devices, and risks the loss, theft and the potential unauthorized use of all of their personal information, accounts, etc.
The integration of wireless transponder cards into a single device would improve the user's ability to use and keep track of these services. However, the risk of loss or theft is now compounded because the previously described communication devices can be lost all at once (e.g., in the loss of the single WCD). Further, an actively polling application in a user device may wirelessly request or deliver information at any time, including an instance when the user is unaware. People with malicious intentions could abuse this functionality to steal information or create false credit or debit transactions. A secondary impact is the unintentional expenditure of power. A user may be unintentionally expending stored energy due to not disabling a polling mode when not in use.
In view of the above, what is needed is a system for automatically controlling resources in a wireless communication device depending on a physical state or orientation of the device, for example, depending on whether a movable element on a wireless communication device is open or closed. The behavior of the communication device should include settings for each wireless communication method and/or application, and should automatically decide when a security verification should be performed.
The present invention consists of a method, apparatus and computer program for automatically controlling short-range wireless communications, including both hardware and software resources, depending on a physical state or orientation of a wireless communication device (WCD). The device may further control these communication resources with respect to power or security rules as defined by a user, and may notify the user if certain manual actions are required due to the current state or condition of the device.
In accordance with various embodiments of the present invention, the WCD may contain a table that is accessed whenever the physical state or orientation of the device is altered. The table may define, for each application and/or service, the permitted level of functionality for each state or orientation of the device. Further, a change from one state or orientation to another may require a security verification. A low power level may also cause certain actions to be performed, or may trigger a requirement for user intervention to re-establish an application.
The present invention may be employed with a multitude of applications and/or services, and helps to maintain security and power conservation in a wireless communication device with many simultaneously active applications. A user may specify the behavior of each of these services in a table so that certain more frequently used services can be prioritized over other applications.
The invention will be further understood from the following detailed description of a preferred embodiment, taken in conjunction with appended drawings, in which:
While the invention has been described in preferred embodiments, various changes can be made therein without departing from the spirit and scope of the invention, as described in the appended claims.
I. Wireless Communication Over Different Communication Networks.
A WCD may both transmit and receive information over a wide array of wireless communication networks, each with different speed, range, quality (error correction), security (encoding), etc. characteristics. These characteristics will dictate the amount of information that may be transferred to a receiving device, and the duration of the information transfer.
In the example pictured in
The transmission range between two devices may be extended if both devices are capable of performing powered communications. Short-range active communications 140 includes devices wherein the sending and receiving devices are both active. An exemplary situation would include user 110 coming within effective transmission range of a Bluetooth™, WLAN, UWB, WUSB, etc. access point. In the case of Bluetooth™, a network may automatically be established to transmit information to WCD 100 possessed by user 110. This data may include information of an informative, educational or entertaining nature. The amount of information to be conveyed is unlimited, except that it must all be transferred in the time when user 110 is within effective transmission range of the access point. This duration is extremely limited if the user is, for example, strolling through a shopping mall or walking down a street. Due to the higher complexity of these networks, additional time is also required to establish the initial connection to WCD 100, which is extended if there are many devices queued for service in the transmission area. The transmission range of these networks depends on the technology, and may be from 32 ft. to over 300 ft. with additional power boosting.
Long-range networks 150 are used to give virtually uninterrupted coverage to WCD 100. Land-based repeaters or satellites are used to deliver communication coverage worldwide. While these systems are extremely functional, the use of these systems are often charged on a per-minute basis to user 110, with additional charges for data transfer, like wireless Internet access. Further, the regulations covering these systems cause additional overhead for both the users and providers, making the use of these systems more cumbersome.
II. Wireless Communication Device
As previously described, the present invention may be utilized with a variety of wireless communication equipment. Therefore, it is also important to understand the communication tools available to user 110 before exploring the present invention. For example, in the case of a cellular telephone or other handheld wireless device, the integrated data handling capabilities play an important role in facilitating the transaction between the transmitting and receiving devices.
Control module 210 regulates the operation of the device. Inputs may be received from various other modules included within WCD 100. For example, interference sensing module 220 may use various techniques known in the art to sense sources of environmental interference within the effective transmission range of the wireless communication device. Control module 210 interprets these data inputs and in response may issue control commands to the other modules in WCD 100.
Communications module 230 incorporates all of the communications aspects of WCD 100. As shown in
User interface module 240 includes visual, audible and tactile elements which allow the user 110 to receive data from, and enter data into, the device. The data entered by user 110 may be interpreted by control module 210 to affect the behavior of WCD 100. User-inputted data may also be transmitted by communications module 230 to other devices within effective transmission range. Other devices in transmission range may also send information to WCD 100 via communications module 230, and control module 210 may cause this information to be transferred to user interface module 240 for presentment to the user.
Applications module 250 incorporates all other hardware and/or software applications on WCD 100. These applications may include sensors, interfaces, utilities, interpreters, data applications, etc., and may be invoked by control module 210 to read information provided by the various modules and in turn supply information to requesting modules in WCD 100.
Memory 330 may include random access memory (RAM), read only memory (ROM), and/or flash memory, and stores information in the form of data and software components (also referred to herein as modules). The data stored by memory 330 may be associated with particular software components. In addition, this data may be associated with databases, such as a bookmark database or a business database for scheduling, email, etc.
The software components stored by memory 330 include instructions that can be executed by processor 300. Various types of software components may be stored in memory 330. For instance, memory 330 may store software components that control the operation of communication sections 310, 320 and 340. Memory 330 may also store software components including a firewall, a service guide manager, a bookmark database, user interface manager, and any communications utilities modules required to support WCD 100.
Long-range communications 310 performs functions related to the exchange of information over large geographic areas (such as cellular networks) via an antenna. These communication methods include technologies from the previously described 1 G to 3 G and soon fourth generation streaming video transmission. In addition to basic voice communications (e.g., via GSM), long-range communications 310 may operate to establish data communications sessions, such as General Packet Radio Service (GPRS) sessions and/or Universal Mobile Telecommunications System (UMTS) sessions. Also, long-range communications 310 may operate to transmit and receive messages, such as short messaging service (SMS) messages and/or multimedia messaging service (MMS) messages.
As a subset of long-range communications 310, or alternatively operating as an independent module separately connected to processor 300 (not pictured), broadcast receiver 312 allows WCD 100 to receive broadcast messages via mediums such as Digital Video Broadcast for Handheld Devices (DVB-H). These transmissions may be encoded so that only certain designated receiving devices may access the broadcast content, and may contain text, audio or video information. In at least one example, WCD 100 may receive these broadcasts and use information contained within the broadcast signal to determine if the device is permitted to view the received content.
Short-range communications 320 is responsible for functions involving the exchange of information across short-range wireless networks. As described above and depicted in
Short-range input device 340, also depicted in
As further shown in
WCD 100 may also include one or more transponders 380. This is essentially a passive device which may be programmed by processor 300 with information to be delivered in response to a scan from an outside source. For example, an RFID scanner mounted in a entryway may continuously emit radio frequency waves. When a person with a device containing transponder 380 walks through the door, the transponder is energized and may respond with information identifying the device, the person, etc.
Hardware corresponding to communications sections 310, 312, 320 and 340 provide for the transmission and reception of signals. Accordingly, these portions may include components (e.g., electronics) that perform functions, such as modulation, demodulation, amplification, and filtering. These portions may be locally controlled, or controlled by processor 300 in accordance with software communications components stored in memory 330.
The elements shown in
The user interface 350 may interact with a communications utilities software component, also contained in memory 330, which provides for the establishment of service sessions using long-range communications 310 and/or short-range communications 320. The communications utilities component may include various routines that allow the reception of services from remote devices according to mediums such as the Wireless Application Medium (WAP), Hypertext Markup Language (HTML) variants like Compact HTML (CHTML), etc.
When engaging in WAP communications with a remote server, the device functions as a WAP client. To provide this functionality, the software components may include WAP client software components, such as a Wireless Markup Language (WML) Browser, a WMLScript engine, a Push Subsystem, and a Wireless Medium Stack.
Applications (not shown) may interact with the WAP client software to provide a variety of communications services. Examples of such communications services include the reception of Internet-based content, such as headline news, exchange rates, sports results, stock quotes, weather forecasts, multilingual phrase dictionaries, shopping and dining information, local transit (e.g., bus, train, and/or subway) schedules, personal online calendars, and online travel and banking services.
The WAP-enabled device may access small files called decks which each include smaller pages called cards. Cards are small enough to fit into a small display area that is referred to herein as a microbrowser. The small size of the microbrowser and the small file sizes are suitable for accommodating low memory devices and low-bandwidth communications constraints imposed by wireless links.
Cards are written in the Wireless Markup Language (WML), which is specifically devised for small screens and one-hand navigation without a keyboard. WML is scaleable so that it is compatible with a wide range of displays that covers two-line text displays, as well as large LCD screens found on devices, such as smart phones, PDAs, and personal communicators. WML cards may include programs written in WMLScript, which is similar to JavaScript. However, through the elimination of several unnecessary functions found in these other scripting languages, WMLScript reduces memory and processing demands.
CHTML is a subset of the standard HTML command set adapted for use with small computing devices (e.g., mobile communicator, PDA, etc.). This language allows portable or handheld devices interact more freely on the Internet. CHTML takes into consideration the power, processing, memory and display limitations of small computing devices by stripping down standard HTML to a streamlined version suitable for these constraints. For example, many of the more advanced image maps, backgrounds, fonts, frames, and support for JPEG images have been eliminated. Further, scrolling is not supported because it is assumed that CHTML displays will fit within the screen of a portable device. CHTML has also been designed to operated without two dimensional cursor movement. Instead, it may be manipulated with only four buttons, which facilitates its implementation over a larger category of small computing devices.
III. Short-Range Device Interaction
The various embodiments of the present invention presented herein are an improvement over the prior art because they incorporate various short-range communication methods and applications into a single device.
Each application and/or service in
This may be contrasted to a cash credit or debit account application using the ISO AID 1 communication service, wherein the user will always want a security check prior to enabling the application when a change of physical state or orientation of WCD 100 is detected. The security check is desired because this application may grant direct access to the financial accounts of user 110. The cash credit or debit account has a priority of 2. This means in the event of a low power situation, WCD 100 may disable this feature to save power before disabling a priority 1 application. WCD 100 may prompt a user to override this shutdown in order to perform a purchase transaction. User 110 may be notified of an application shutdown via visual or audio notification, and through a keypress, entering a code, etc., may be able to reinitiate an application.
The access or key application communicates via the NFCIP-1 communication service and has priority level of 1 with security enabled. This feature may unlock doors to grant access to a building, and so user 110 may desire it to be active regardless of the power condition of the device. However, this option may be protected by only being enabled when the device is open, and since the security option is enabled, a password or depressing a specific key on the device may be required to activate or alter it. This prevents another person who obtains the device from gaining access to a secured premises. The information for this application may be written to the transponder of WCD 100 (e.g., the previous MIFARE information may be overwritten when the device is opened) or it may be written to another transponder in the device.
Further ticketing and miscellaneous data application examples are also shown in
IV. Control Tables
In the disclosed example, the active or “polling” modes and the passive or “answer” modes are classified separately for each wireless service. This provides both a power conservation and security benefit for WCD 100. For example, the device is usually closed when not in use. Therefore, all polling modes functions are disabled. This saves the power that would be needed by WCD 100 to actively poll for other devices, and prevents inadvertent connections and the transfer of information to other devices unknown to user 110. On the other hand, some basic answer mode functionality is enabled when the phone is closed. This allows user 110 to wirelessly deliver information, such as to a scanner for the MIFARE service, without having to open WCD 100. Since this service is used most frequently to pay for public transportation, the amount of use, which is high, outweighs the power burden and security risk, which is low.
When WCD 100 is opened, the device becomes totally enabled. This is shown in
Further, the open or closed state of WCD 100 may determine how different priority applications are enabled when power in the device is depleted. A high priority (1) application may be active regardless of a low power condition. A priority 2 application may be inactive when the device is closed, but may become active when the device is opened. A priority 3 application may be disabled when the device is closed, and then may require user intervention to activate it after WCD 100 is opened. While definitive examples of functional settings have been given, any combination of activation, security and priority level for power conservation may be established, depending on the particular requirements of user 110. Settings may further be used to determine a polling rate in searching for other devices, the types of other devices to be polled, the types of other devices to which to respond, the strength of polling signal to which to respond, the permitted duration of connection, etc.
V. User Interface
When user 110 wants to edit an existing table entry, or add a new table entry, they may invoke a configuration interface such as the one disclosed in
The present invention is an improvement over the prior art in that it allows a user to consolidate many individual wireless communication devices used in everyday commerce into a single wireless communication device without concerns related to any consequences from loss, theft or power depletion in the device. The present invention adds ingenuous intelligence to the wireless communication device, customizing the behavior of the device to account for user preferences according to the physical state or orientation of the device, the user's concerns regarding the security of applications and information on the device, and the criticality of various functions of the device when the power becomes low. These preferences are compiled in tables used to automatically control the behavior of the device, allowing the user to employ the wireless communication device more frequently for common transactions that are simple, secure and efficient.
Accordingly, it will be apparent to persons skilled in the relevant art that various changes in forma and detail can be made therein without departing from the spirit and scope of the invention. The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.