This invention relates, in general, to wireless telemetry systems for use with installations in oil and gas wells or the like. More particularly, the present invention relates to a method and system for a wireless modem to discover and communicate with other wireless modems for transmitting and receiving data and control signals between a location down a borehole and the surface, or between wireless modems (i.e., a first wireless modem, a second wireless modem, etc.) at various downhole locations.
One of the more difficult problems associated with any borehole is to communicate measured data between one or more locations down a borehole and the surface, or between downhole locations themselves. For example, in the oil and gas industry it is desirable to communicate data generated downhole to the surface during operations such as drilling, perforating, fracturing, and drill stem or well testing; and during production operations such as reservoir evaluation testing, pressure and temperature monitoring. Communication is also desired to transmit intelligence from the surface to downhole tools, equipment, or instruments to effect, control or modify operations or parameters.
Accurate and reliable downhole communication is particularly important when complex data comprising a set of measurements or instructions is to be communicated, i.e., when more than a single measurement or a simple trigger signal has to be communicated. For the transmission of complex data it is often desirable to communicate encoded digital signals.
One approach which has been widely considered for borehole communication is to use a direct wire connection between the surface and the downhole location(s). Communication then can be made via electrical signal through the wire. While much effort has been spent on “wireline” communication, its inherent high telemetry rate is not always needed and its deployment can pose problems for some downhole operations.
Wireless communication systems have also been developed for purposes of communicating data between a downhole tool and the surface of the well. These techniques include, for example, communicating commands downhole via (1) electromagnetic waves; (2) pressure or fluid pulses; and (3) acoustic communication. Conventional sonic sources and sensors used in downhole tools are described in U.S. Pat. Nos. 6,466,513, 5,852,587, 5,886,303, 5,796,677, 5,469,736 and 6,084,826, 6,137,747, 6,466,513, 7,339,494, and 7,460,435.
It is useful for the wireless modems to know various data regarding the other wireless modems so that such wireless modems can efficiently communicate. For example, knowledge of the nearest neighbor in a testing pipe string is useful to be energy efficient and to find the shortest path between the surface and the downhole tools, with fewer hops. In fact, the network stabilization is quicker and easier. In the past, wireless modems have been programmed or otherwise adapted to communicate with a known neighboring wireless modem before such wireless modems are installed on a testing pipe string. However, a potentially major problem can arise where a network of wireless modems are programmed to communicate with a known neighboring wireless modem, and where the field engineers assemble the tool string with the network of wireless modems in an improper order/arrangement. In such situation, a communication signal could be lost between hops, preventing data and control signals from transmitting between the surface and a location downhole. As such, there is a need for a new and improved method for finding the identity, position or relative order of wireless modems within a network of wireless modems coupled to a communication channel such as a testing/drill/tubing string. With such a network discovery algorithm, a field engineer does not have to rely on a perfect order of placement for each wireless modem so that the wireless modems will know the identity of their nearest neighbors and thereby ensure a reliable network of communication.
In network industries operating above the surface of the Earth, flooding algorithms are used to discover the neighboring wireless modems. Flood algorithms work very well, however, it is known that they require many exchanges of messages making flood algorithms impractical in a downhole environment where power consumption is important and data rates are much slower.
Despite the efforts of the prior art, there exists a need for a wireless modem that can determine the position or order of other wireless modems in a network communication system in a manner that is suitable for use in a downhole environment.
In one version, the present invention is directed to a wireless modem for communication in a network of wireless modems via a communication channel. The wireless modem is provided with a transceiver assembly, transceiver electronics and a power supply. The transceiver electronics is provided with transmitter electronics and receiver electronics. The transmitter electronics cause the transceiver assembly to send wireless signals into the communication channel, and the receiver electronics decodes signals received by the transceiver assembly. The transceiver electronics is also provided with at least one processing unit executing instructions to (1) enable the transmitter electronics to transmit an identification signal into the communication channel, (2) receive data from at least one other wireless modem via the receiver electronics indicative of a unique identifier identifying the other wireless modem, and data indicative of at least one local sensor measurement related to the depth of the other wireless modem below the surface of the Earth, and (3) determine the position of the other wireless modem using the data indicative of the local sensor measurement. The power supply supplies power to the transceiver assembly and the transceiver electronics.
In one aspect, the at least one processing unit executes instructions to enable the transmitter electronics to transmit data to the other wireless modem.
In another aspect, the data indicative of at least one local sensor measurement includes a communication methodology, such as a time slot indicative of the local sensor measurement. The local sensor measurement can be selected, for example, from the group consisting of a temperature measurement, a pressure measurement, a gravitational acceleration measurement, a magnetic field measurement, and a dip angle measurement.
In another version, the present invention is directed to a wireless modem for communication in a network of wireless modems via a communication channel. The wireless modem can be provided with a transceiver assembly, transceiver electronics, and a power supply. The transceiver electronics includes transmitter electronics, receiver electronics, and at least one processing unit. The transmitter electronics cause the transceiver assembly to send wireless signals into the communication channel. The receiver electronics decode signals received by the transceiver assembly. The at least one processing unit executes instructions to (1) enable the transmitter electronics to transmit an identification signal into the communication channel, (2) receive data from at least one other wireless modem via the receiver electronics indicative of a unique identifier identifying the other wireless modem, and data indicative of at least one local sensor measurement related to the depth of the other wireless modem below the surface of the Earth, and (3) determine the relative order of the other wireless modem using the data indicative of the local sensor measurement. The power supply supplies power to the transceiver assembly and the transceiver electronics.
In one aspect, the at least one processing unit executes instructions to enable the transmitter electronics to transmit data to the other wireless modem.
In another aspect, the data indicative of at least one local sensor measurement includes a communication methodology such as a time slot indicative of the local sensor measurement. The local sensor measurement can be selected from the group consisting of a temperature measurement, a pressure measurement, a gravitational acceleration measurement, a magnetic field measurement, and a dip angle measurement.
In another version, the present invention relates to a wireless modem for communication in a network of wireless modems via a communication channel. The wireless modem can be provided with a transceiver assembly, transceiver electronics, and a power supply. The transceiver electronics includes transmitter electronics, receiver electronics, and at least one processing unit. The transmitter electronics cause the transceiver assembly to send wireless signals into the communication channel. The receiver electronics decode signals received by the transceiver assembly. The at least one processing unit executes instructions to (1) enable the transmitter electronics to transmit an identification signal into the communication channel including a local sensor measurement, (2) receive an answer from at least one other wireless modem via the receiver electronics indicative of a unique identifier identifying the other wireless modem using a communication methodology indicative of at least one local sensor measurement related to the depth of the other wireless modem below the surface of the Earth, and (3) determine at least one of the position and relative order of the other wireless modem. The power supply supplies power to the transceiver assembly and the transceiver electronics. In one aspect, the communication methodology includes a particular time slot.
In another version, the present invention relates to a method for discovering a network of wireless modems in a downhole environment, comprising the steps of coupling a plurality of wireless modems to an elongated member extending from within a borehole to a surface location; and enabling at least one of the wireless modems to transmit a series of identification signals via the elongated member, to receive a series of answers from other wireless modems indicative of local sensor measurements, and to determining at least one of the relative position and relative order of the plurality of wireless modems. In one version, the wireless modems include acoustic transceivers, and the local sensor measurements can be selected from the group consisting of a temperature measurement, a pressure measurement, a gravitational acceleration measurement, a magnetic field measurement, and a dip angle measurement.
In yet another version, the present invention relates to a first wireless modem for communication in a network of wireless modems via a communication channel. The first wireless modem can be provided with a transceiver assembly, transceiver electronics, and a power supply. The transceiver electronics includes transmitter electronics, receiver electronics, and at least one processing unit. The transmitter electronics cause the transceiver assembly to send wireless signals into the communication channel. The receiver electronics decode signals received by the transceiver assembly. The at least one processing unit executes instructions to (1) receive an identification signal from a second wireless modem via the receiver electronics, and (2) enable the transmitter electronics to transmit an answer including data indicative of at least one local sensor measurement of the first wireless modem. The power supply supplies power to the transceiver assembly and the transceiver electronics.
In one aspect, the at least one processing unit executes instructions to compare a local sensor measurement in the identification signal to a local sensor measurement of the first wireless modem to determine whether to create the answer.
In other aspects, the at least one processing unit is programmed to enable the transmitter electronics to transmit the answer in a particular time slot related to the depth of the first wireless modem, or to transmit the answer in a random time slot.
In yet another version, the present invention relates to a method for making a wireless modem, comprising the steps of: connecting a transceiver assembly to transceiver electronics having transmitter electronics, receiver electronics and at least one processing unit suitable for causing the transceiver assembly to transmit and receive wireless signals; and storing a network discovery algorithm on one or more machine readable medium accessible by one or more processing unit of the transceiver electronics with the network discovery algorithm having instructions that when executed by the one or more processing unit cause the one or more processing unit to (1) enable the transmitter electronics to transmit an identification signal into the communication channel, (2) receive data from at least one other wireless modem via the receiver electronics indicative of a unique identifier identifying the other wireless modem, and data indicative of at least one local sensor measurement related to the depth of the other wireless modem below the surface of the Earth, and (3) determine at least one of the position and relative order of the other wireless modem using the data indicative of the local sensor measurement.
These together with other aspects, features, and advantages of the present invention, along with the various features of novelty, which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. The above aspects and advantages are neither exhaustive nor individually or jointly critical to the spirit or practice of the invention. Other aspects, features, and advantages of the invention will become readily apparent to those skilled in the art from the following detailed description in combination with the accompanying drawings, illustrating, by way of example, the principles of the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.
Implementations of the invention may be better understood when consideration is given to the following detailed description thereof. Such description makes reference to the annexed pictorial illustrations, schematics, graphs, drawings, and appendices. In the drawings:
a and 3b depict logic flow diagrams of a method for discovering a network of wireless modems in a downhole environment in accordance with one aspect of the present invention.
a and 4b depict logic flow diagrams of an alternative method for discovering a network of wireless modems in a downhole environment in accordance with another aspect of the present invention.
a and 5b depict timing diagrams of versions of the interaction of several wireless modems in accordance with the methods depicted in
Numerous applications of the present invention are described, and in the following description, numerous specific details are set forth. However, it is understood that implementations of the invention may be practiced without these specific details. Furthermore, while particularly described with reference to transmitting data between a location downhole and the surface during testing installations, aspects of the invention are not so limited. For example, some implementations of the invention are applicable to transmission of data from the surface during drilling, in particular measurement-while-drilling (MWD) and logging-while-drilling (LWD). Additionally, some aspects of the invention are applicable throughout the life of a wellbore including, but not limited to, during drilling, logging, drill stem testing, fracturing, stimulation, completion, cementing, and production.
In particular, however, the present invention is applicable to testing installations such as are used in oil and gas wells or the like.
A packer 18 is positioned on the drill pipe 14 and can be actuated to seal the borehole around the drill pipe 14 at the region of interest. Various pieces of downhole equipment 20 for testing and the like are connected to the drill pipe 14, either above or below the packer 18, such as a sampler 22, or a tester valve 24. The downhole equipment 20 may also be referred to herein as a “downhole tool.” Other Examples of downhole equipment 20 can include:
As shown in
Referring to
The transmitter electronics 32 are arranged to initially receive an electrical output signal from a sensor 42, for example from the downhole equipment 20 provided from an electrical or electro/mechanical interface. Such signals are typically digital signals which can be provided to one or more processing unit 44 which modulates the signal in one of a number of known ways such as FM, PSK, QPSK, QAM, and the like. The resulting modulated signal is amplified by either a linear or non-linear amplifier 46 and transmitted to the one or more wireless transceiver assembly 37 so as to generate a wireless, e.g., acoustic, signal in the material of the drill pipe 14. The wireless transceiver assembly 37 will be described herein by way of example as an acoustic type of transceiver assembly that converts electrical signals to acoustic signals and vice-versa. However, it should be understood that the wireless transceiver assembly 37 can be embodied in other forms including an electromagnetic transceiver assembly, or a pressure-type transceiver assembly using technologies such as mud-pulse telemetry, pressure-pulse telemetry or the like.
The acoustic signal that passes along the drill pipe 14 as a longitudinal and/or flexural wave comprises a carrier signal which optionally includes an applied modulation of the data received from the sensors 42. The acoustic signal typically has, but is not limited to, a frequency in the range 1-10 kHz, preferably in the range 2-5 kHz, and is configured to pass data at a rate of, but is not limited to, about 1 bps to about 200 bps, preferably from about 5 to about 100 bps, and more preferably about 50 bps. The data rate is dependent upon conditions such as the noise level, carrier frequency, and the distance between the wireless modems 25Mi−2, 25Mi−1, 25M, 25Mi+1. A preferred embodiment of the present invention is directed to a combination of a short hop acoustic telemetry system for transmitting data between a hub located above the main packer 18 and a plurality of downhole equipment such as valves below and/or above said packer 18. The wireless modems 25Mi−2, 25Mi−1, 25M, 25Mi+1 can be configured as repeaters. Then the data and/or control signals can be transmitted from the hub to a surface module either via a plurality of repeaters as acoustic signals or by converting into electromagnetic signals and transmitting straight to the top. The combination of a short hop acoustic with a plurality of repeaters and/or the use of the electromagnetic waves allows an improved data rate over existing systems. The telemetry system 26 may be designed to transmit data as high as 200 bps. Other advantages of the present system exist.
The receiver electronics 34 are arranged to receive the acoustic signal passing along the drill pipe 14 produced by the transmitter electronics 32 of another modem. The receiver electronics 34 are capable of converting the acoustic signal into an electric signal. In a preferred embodiment, the acoustic signal passing along the drill pipe 14 excites the transceiver assembly 37 so as to generate an electric output signal (voltage); however, it is contemplated that the acoustic signal may excite an accelerometer 50 or an additional transceiver assembly 37 so as to generate an electric output signal (voltage). This signal is essentially an analog signal carrying digital information. The analog signal is applied to a signal conditioner 52, which operates to filter/condition the analog signal to be digitalized by an A/D (analog-to-digital) converter 54. The A/D converter 54 provides a digitalized signal which can be applied to a processing unit 56. The processing unit 56 is preferably adapted to demodulate the digital signal in order to recover the data provided by the sensor 42 connected to another modem, or provided by the surface. The type of signal processing depends on the applied modulation (i.e. FM, PSK, QPSK, QAM, and the like).
The wireless modem 25Mi+1 can therefore operate to transmit acoustic data signals from the one or more sensor 42 in the downhole equipment 20 along the drill pipe 14. In this case, the electrical signals from the downhole equipment 20 are applied to the transmitter electronics 32 (described above) which operate to generate the acoustic signal. The wireless modem 25Mi+1 can also operate to receive acoustic control signals to be applied to the downhole equipment 20. In this case, the acoustic signals are demodulated by the receiver electronics 34 (described above), which operate to generate the electric control signal that can be applied to the downhole equipment 20.
In order to support acoustic signal transmission along the drill pipe 14 one or more of the wireless modems 25Mi−2, 25Mi−1, 25M, 25Mi+1 may be configured as a repeater and positioned along the drill pipe 14. In the example described herein, the wireless modems 25Mi−2, 25Mi−1, and 25M are configured as repeaters and can operate to receive an acoustic signal generated in the drill pipe 14 by a preceding wireless modem 25 and to amplify and retransmit the signal for further propagation along the drill pipe 14. The number and spacing of the repeater modems 25Mi−2, 25Mi−1, and 25M, will depend on the particular installation selected, for example or the distance that the signal must travel. A typical spacing between the modems 25Mi−2, 25Mi−1, 25M, 25Mi+1 is around 1,000 ft, but may be much more or much less in order to accommodate all possible testing tool configurations. When acting as a repeater, the acoustic signal is received and processed by the receiver electronics 34 and the output signal is provided to the processing unit 56 of the transmitter electronics 32 and used to drive the transceiver assembly 37 in the manner described above. Thus an acoustic signal can be passed between the surface and the downhole location in a series of short hops.
The role of a repeater modem, for example, 25Mi−2, 25Mi−1, and 25M, is to detect an incoming signal, to decode it, to interpret it and to subsequently rebroadcast it if required. In some implementations, the wireless modems 25Mi−2, 25Mi−1, and 25M, do not decode the signal but merely amplify the signal (and the noise). In this case the wireless modems 25Mi−2, 25Mi−1, and 25M are acting as a simple signal booster. However, this is not the preferred implementation selected for wireless telemetry systems of the present invention.
Wireless modems 25Mi−2, 25Mi−1, and 25M are positioned along the tubing/piping string 14. The wireless modems 25Mi−2, 25Mi−1, 25M, 25Mi+1 will either listen continuously for any incoming signal or may listen from time to time.
The acoustic wireless signals, conveying commands or messages, propagate in the transmission medium (the drill pipe 14) in an omni-directional fashion, that is to say up and down. It is not necessary for the wireless modem 25Mi+1 to know whether the acoustic signal is coming from another wireless modem 25Mi−2, 25Mi−1, and/or 25M, above or below. The direction of the message is preferably embedded in the message itself. Each message contains several network addresses: the address of the transmitter electronics 32 (last and/or first transmitter) and the address of the destination modem, for example, the wireless modem 25Mi+1. Based on the addresses embedded in the messages, the wireless modems 25Mi−2, 25Mi−1, and 25M configured as repeaters will interpret the message and construct a new message with updated information regarding the transmitter electronics 32 and destination addresses. Messages being sent from the surface will usually be transmitted from the wireless modem 25Mi−2 to the wireless modem 25Mi−1 to the wireless modem 25M, to the wireless modem 25Mi+1 and slightly modified along the way to include new network addresses.
Referring again to
In the embodiment of
References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc. indicate that the embodiments described may include a particular feature, structure or characteristic, but every embodiment may not necessarily include the particular feature, structure or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such future, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Embodiments of the invention with respect to the processing units 44 and 56, and the control system 64 may be embodied utilizing machine executable instructions provided or stored on one or more machine readable medium. A machine-readable medium includes any mechanism which provides, that is, stores and/or transmits, information accessible by the processing units 44 and 56 or another machine, such as the control system 64. The processing units 44 and 56 and the control system 64 include one or more computer, network device, manufacturing tool, or the like or any device with a set of one or more processors, etc., or multiple devices having one or more processors that work together, etc. In an exemplary embodiment, a machine-readable medium includes volatile and/or non-volatile media for example read-only memory, random access memory, magnetic disk storage media, optical storage media, flash memory devices or the like. In one embodiment, the processing units 44 and 56 can be implemented as a single processor, such as a micro-controller, digital signal processor, central processing unit or the like.
Such machine executable instructions are utilized to cause a general or special purpose processor, multiple processors, or the like to perform methods or processes of the embodiments of the invention.
Wireless modems 25 can be programmed with a network discovery algorithm stored by one or more machine readable medium that when executed by the processing units 44 and/or 56 cause one of the wireless modems 25 to discover the identity, position, and/or relative order of other wireless modems 25 which are capable of communicating with each other via the communication channel 29. The network discovery algorithm can be stored as one or more files, one or more sections of instructions, in one or more database as separate or same records, or in any other suitable manner accessible by the processing unit(s) 44 and/or 56.
In general, the processing unit 44 and/or the processing unit 56 of the wireless modems 25 execute instructions of the network discovery algorithm to enable the transmitter electronics 32 to transmit an identification signal into the communication channel 29, (2) receive data from at least one other wireless modem 25 by the receiver electronics 34 indicative of (a) a unique identifier identifying at least one other wireless modem 25, and (b) at least one local sensor measurement related to the depth or altitude of the at least one other wireless modem 25 relative to the surface of the earth, and (3) determine the position, and/or relative order of at least one or more other wireless modem 25 using the data indicative of the local sensor measurement. More particularly,
The data indicative of at least one local sensor measurement can be provided in a variety of manners, such as information of the local sensor measurement, e.g., 50 degrees centigrade, information used to look up the local sensor measurement from a table or database, or the manner in which the wireless modems 25 communicate, such as a particular protocol or frequency or use of a particular time slot as discussed below with respect to
Referring now to
As shown in
If the network discovery algorithm determines that any answers have been received in the step 108, then such network discovery algorithm branches to a step 112 where the network discovery algorithm compares its own local sensor measurement with data indicative of a measurement received from another one of the wireless modems 25, and then the network discovery algorithm branches to a step 114 where it determines the identification, position and/or relative order of the wireless modems 25 that have answered. The network discovery algorithm can determine the identification, position, and/or relative order in any suitable manner, however, it is specifically contemplated that the local sensor measurements taken by the particular wireless modems 25 are correlated to the depth of the particular wireless modems 25. This correlation will be described in more detail below.
When a particular wireless modem 25 broadcasts the identification signal as discussed above in step 106, such identification signal can be received and decoded by the other wireless modems 25 within the network. As shown in
The particular wireless modem 25 that transmitted the identification signal in the step 106, then receives the answer and processes such answer as discussed above with respect to steps 108, 112, and 114 to determine information regarding its neighbors. After the wireless modem 25 transmits its answer in a random timeslot, for example, as indicated by the step 124, such network discovery algorithm branches to a step 126 where the network discovery algorithm waits to receive a further identification message.
Referring to
As shown in
Referring now to
a is a timing diagram of a version of the network discovery algorithm illustrated in
In this example, the wireless modems 25Mi−2, 25Mi−1, 25M, 25Mi+1 and 25Mi+2. can be placed along the drill pipe 14 separated with a 1000 m spacing. The local sensor measurement can be temperature or pressure since it is known that the relation between depth and pressure, for example, is:
Pi=ρmud·g·di
where ρmud is the density of the mud in the annular, g is the gravity acceleration and di is the distance measured from the surface. It can be assumed that the temperature at the surface is 25° C. and the gradient of the temperature in the pipe is 25° C./Km
For example, assuming ρmud=1.5·ρwater and g=10 ms−2:
If each wireless modem 25 interchanges its local sensor measurement with its neighbors, the other modems 25 position, and/or relative order of the wireless modems 25 can be determined using a correlation similar to the one shown above. The term local sensor measurement, as used herein, refers to a measurement of an environmental condition associated with a particular wireless modem 25 that is sufficiently precise to distinguish the particular wireless modem's measurement from the measurements of the other wireless modems 25. The sensor 42 can be part of the downhole equipment 20 or part of the wireless modem 25. The local sensor measurements can be taken in a borehole or any other suitable locations associated with the wireless modems 25. Examples of local sensor measurements include a temperature measurement, a pressure measurement, a gravitational acceleration measurement, a magnetic field measurement, a dip angle measurement and combinations thereof.
Referring now to
It should be understood that the components of the inventions set forth above can be provided as unitary elements, or multiple elements which are connected and/or otherwise adapted to function together, unless specifically limited to a unitary structure in the claims.
From the above description it is clear that the present invention is well adapted to carry out the disclosed aspects, and to attain the advantages mentioned herein as well as those inherent in the invention. While presently preferred implementations of the invention have been described for purposes of disclosure, it will be understood that numerous changes may be made which readily suggest themselves to those skilled in the art and which are accomplished within the spirit of the invention disclosed.
Number | Name | Date | Kind |
---|---|---|---|
5148408 | Matthews | Sep 1992 | A |
5293937 | Schultz et al. | Mar 1994 | A |
5469736 | Moake | Nov 1995 | A |
5796677 | Kostek et al. | Aug 1998 | A |
5850369 | Rorden et al. | Dec 1998 | A |
5852587 | Kostek et al. | Dec 1998 | A |
5886303 | Rodney | Mar 1999 | A |
5995449 | Green et al. | Nov 1999 | A |
6084826 | Leggett, III | Jul 2000 | A |
6137747 | Shah et al. | Oct 2000 | A |
6310829 | Green et al. | Oct 2001 | B1 |
6434084 | Schultz | Aug 2002 | B1 |
6466513 | Pabon et al. | Oct 2002 | B1 |
6847585 | Macpherson | Jan 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
7139218 | Hall et al. | Nov 2006 | B2 |
7265682 | Memarzadeh et al. | Sep 2007 | B2 |
7324010 | Gardner et al. | Jan 2008 | B2 |
7339494 | Shah et al. | Mar 2008 | B2 |
7397388 | Huang et al. | Jul 2008 | B2 |
7460435 | Garcia-Osuna et al. | Dec 2008 | B2 |
8162055 | Lewis et al. | Apr 2012 | B2 |
8172007 | Dolman et al. | May 2012 | B2 |
20020195247 | Ciglenec et al. | Dec 2002 | A1 |
20030098799 | Zimmerman | May 2003 | A1 |
20050011645 | Aronstam et al. | Jan 2005 | A1 |
20050022402 | Ash et al. | Feb 2005 | A1 |
20050035874 | Hall et al. | Feb 2005 | A1 |
20060114746 | Gardner et al. | Jun 2006 | A1 |
20060219438 | Moore et al. | Oct 2006 | A1 |
20080231467 | Jeffryes | Sep 2008 | A1 |
20080236814 | Roddy | Oct 2008 | A1 |
20090190484 | Johnson et al. | Jul 2009 | A1 |
20090192731 | De Jesus et al. | Jul 2009 | A1 |
20100051275 | Lewis et al. | Mar 2010 | A1 |
20100286916 | Wang | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1882811 | Jul 2007 | EP |
1887181 | Jul 2007 | EP |
1950586 | Jan 2008 | EP |
Entry |
---|
Office Action issued May 22, 2014 in corresponding Mexican Patent Application No. MX/a/2012/007646 and Mexican agent's English translation thereof, 7 pages total. |
Number | Date | Country | |
---|---|---|---|
20110158050 A1 | Jun 2011 | US |