The present invention relates to a wireless network system and devices for use in that system, and particularly but not exclusively for transmitting media content over a wireless network. In particular, the invention is applicable to a video broadcast receiver which distributes video content over a wireless local area network (WLAN).
With the widespread availability of digital media content, there has been intense interest in developing a media centre for storing and playing back a collection of digital media content, such as digitally encoded and compressed audio and video files. In particular, it is desirable to distribute selected media files from a wireless home media centre on demand to wireless audio and video players distributed around the user's house.
Currently, the most widely implemented WLAN standards are the IEEE 802.11 b and g standards, which provide a quoted bit-rate of 11 and 54 Mbps respectively. The IEEE 802.11g standard in particular has been adopted for wireless home media systems, in view of its higher bit rate. An MPEG-2 encoded video stream requires between 2 and 9 Mbps and an HDTV stream around 20 Mbps, so that at first sight the IEEE 802.11g standard seems suitable for carrying at least one video stream.
In reality, wireless home media systems based on the 802.11g standard have not provided satisfactory performance for consumers, for a number of reasons. First, the standard includes a high signaling overhead, and uses a fairly inefficient stop-and-wait medium access control (MAC) method, resulting in only about 16 Mbps being available to the application layer, even in ideal conditions. Next, the home environment causes significant blocking, if the transmitter and receiver are not in the same room; for example, a wall might incur 10 dB attenuation. Significant propagation loss is incurred as the distance between the receiver and the transmitter increases. Furthermore, the user cannot be required to position the media centre in an ideal, central location and at an ideal orientation. Also, the 2.4 GHz band used by 802.11 b/g is subjected to interference from domestic microwave ovens, and from Bluetooth devices. Finally, people moving around the house add fast fading to the transmitted signal. The result is that an 802.11g standard network cannot reliably distribute even one high-quality video stream throughout the typical house, because the existing wireless network technology cannot reliably provide a constant required minimum bandwidth.
Some solutions have been proposed. For example, a system from ViXs involves monitoring the available WLAN bandwidth and changing the video coding rate in real time so as to maintain a steady frame rate; although the video quality deteriorates with reduced bandwidth, the error rate is kept to an acceptable level and frames are not lost. The Air5™ system from Magis modifies the 802.11a standard to provide different quality of service (QoS) levels, allowing video to be prioritized over other data.
To some extent, fluctuations in available bandwidth could be overcome by buffering the media stream at the receiver. However, this solution is not suitable for an interactive system, where a user at the receiver wants to change the content of the media stream, for example to change channels or to rewind or fast forward a programme. The delay caused by buffering causes a corresponding delay in the response to commands from the user, which is not acceptable, particularly when the user wants to ‘surf’ by rapidly changing channels.
A further application of a wireless media centre is as a broadcast gateway for receiving video broadcasts and distributing them over a wireless link. For example, Sky™ digital broadcast receivers include a tvLINK™ function which allows audio and video output to be relayed to a remote display, via an analog wireless link with a return link for remote control commands. This system provides a simple point-to-point wireless link and does not allow multiple devices to receive wireless audio/video steams independently, and there is some loss of quality due to analog conversion prior to retransmission.
Digital broadcast receivers may receive broadcasts in an encrypted format, to enforce digital rights management (DRM) so that only subscribers having a card bearing the decryption key can access the service. Typically, the unencrypted broadcast is only output from the receiver in analog format, so that the content cannot be redistributed without loss of quality (and because most television sets only have analog video inputs). In this case, the media stream cannot be recoded for improved performance over a wireless network, as this would require decryption prior to transmission, which would allow the unencrypted data to be easily accessed in digital form. Even if the data were re-encrypted prior to transmission, this would require the re-encryption technology to be present in the transmitter, from which the necessary decryption key could be derived with relative ease. Hence, at least one of the proposed solutions is incompatible with DRM.
According to one aspect of the present invention, there is provided a wireless network device having orthogonally polarised antennas arranged to provide transmit and/or receive polarisation diversity. An advantage is that the polarisation diversity provides enhanced resistance to fast fading, and less sensitivity to the orientation of the device.
The antennas may be arranged so that their nulls do not coincide, to produce a combined antenna pattern without substantial variation in gain. The antennas may be collocated, but arranged orthogonally. Preferably, the combined antenna pattern is substantially hemispherical in elevation and omnidirectional in azimuth. An advantage is that this provides uniform coverage in a 3D environment.
The antennas may be integrated within or mounted on a housing of the device so that they do not physically project outside the housing. Where the housing is cuboid, the antennas may be flush with one or more of the faces of the housing. Advantages include reduced risk of damage to the antennas, greater ease of use in that there is no need to install or align the antennas, and convenient use of the housing as a ground plane for the antennas, where the housing is electrically conductive.
The invention may provide a wireless network system comprising a transmitter having two orthogonally polarised antennas and a receiver having either one antenna or two orthogonally polarised antennas. In the latter case, the receiver may apply maximal ratio combining to the signals received through the two antennas. The transmitter may transmit data using polarisation-time block codes, providing improved gain and resistance to fading.
The transmitter may transmit using OFDM; preferably, the receiver applies maximal ratio combining independently to each frequency channel. The transmitter may transmit in a spectrum substantially free from interference from domestic appliances, such as in the 5.2 GHz band. The wireless network physical layer may be similar to the 802.11a standard.
The transmitter may be a wireless media centre arranged to distribute digital media content over the wireless network. The transmitter may store the content prior to transmission. The transmitter may receive the content as a broadcast prior to distribution over the network. The transmitter may be responsive to commands received from a user of the receiver to vary the transmitted media content.
According to another aspect of the present invention, there is provided a slot antenna comprising a thin cavity with a slot in one major face, and a strip conductor extending orthogonally to the slot, substantially centrally within the cavity. The slot may be linear, or annular. The antenna is capable of generating a highly polarised beam. The antenna can be conveniently mounted on a conductive surface of a wireless device, which provides the ground plane. The device may have two such antennas, arranged orthogonally on the same or different faces of the housing. The antennas may be collocated, for example with their slots crossing orthogonally parallel to the same ground plane.
Specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
a and 4b are graphs of respectively BER and PER against SNR for different 802.11a modes in a simulation with no diversity;
a and 5b are graphs of respectively BER and PER against SNR for different 802.11a modes in a simulation with STBC and a single receive antenna;
a and 6b are graphs of respectively BER and PER against SNR for different 802.11a modes in a simulation with STBC and two receive antennas;
a and 7b show a linear slot antenna for use in the wireless network;
a and 8b show the far field gain patterns of the linear slot antenna for horizontal and vertical polarisation respectively;
a and 9b show the co-polar and cross-polar patterns of the linear slot antenna;
a and 11b show the far field gain patterns of the annular slot antenna for horizontal and vertical polarisation respectively;
a and 12b show respectively the co-polar and cross-polar components of the annular slot antenna for an equal signal applied to all feeds;
a and 13b show respectively the co-polar and cross-polar components of the annular slot antenna for a signal applied with opposite phase between two of the feeds;
a and 14b show respectively the co-polar and cross-polar components of the annular slot antenna for a signal applied to one feed and the same signal applied with opposite phase and half amplitude to the other two feeds;
The wireless gateway 4 is arranged to select one or more of the programmes for storage and/or distribution to one or more wireless receivers 10, 18. In this example, a first wireless receiver 10 is connected to an audiovisual display 12, such as a television, and receives audio and video signals from the wireless gateway 4 for output to the audiovisual display 12. The first wireless receiver 10 receives commands from a remote control 14 which are relayed back to the wireless gateway 4 to vary the audio and/or video signals. For example, the commands may change the channel and/or programme of the audio and video signals, or move backwards or forwards through a programme stored at the wireless gateway 4.
A second wireless receiver 18 is connected to an audio player 20, and receives audio signals from the wireless gateway 4 for output to the audio player 20. Commands generated by user input at the audio player 20 are relayed back to the wireless gateway 4 to vary the audio signals, for example to change audio channel or programme, or to move backwards or forwards through a programme stored at the wireless gateway.
The wireless gateway transmits and receives through a pair of antennas 6a, 6b having orthogonal polarisation. It is not necessary that the antennas are completely orthogonal, but the performance of the system improves with greater isolation between the two antennas.
The first receiver 10 receives through a pair of antennas 8a, 8b, also having orthogonal polarisation, and may transmit through one or both of these antennas. The second receiver 18 has a single antenna 16 through which it receives signals from both of the transmit antennas 6a, 6b. The single antenna 16 need not be polarised.
Using orthogonally polarised receive and transmit antennas provides polarisation diversity, which helps to overcome fast fading as the orthogonal polarisations are likely to be attenuated by different amounts and at different times. The signals received by the two antennas 8a, 8b can be switched so that the signal of higher amplitude is selected as input to a demodulator, or the two signals can be combined using maximal ratio combining with a variable phase selected so as the maximize the summed amplitude of the two signals before demodulation. Such a system with multiple transmit antennas and multiple receive antennas is known as a MIMO (multiple input, multiple output) system.
A greater gain can be obtained by the application to polarisation diversity of space-time block coding (STBC), as described for example in “A simple transmit diversity technique for wireless communications”, Alamouti M, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 8, October 1998 and U.S. Pat. No. 6,185,258 (‘Alamouti’), and generalised in “Space-time block coding for wireless communications: performance results”, Tarokh V, Jafarkhani H, Calderbank A R, IEEE Journal on Selected Areas in Communications, Vol. 17 No. 3, March 1999, pp. 451-460 (‘Tarokh’). In the coding scheme proposed by Alamouti, the data to be transmitted is mapped onto blocks each comprising two symbols s1, s2. The symbols correspond to modulation symbols of the modulation scheme to be used for transmission. The output to the two transmit antennas a1, a2 at time intervals t1 and t2 is as follows:
Alternatively, the symbols may be transmitted at two different frequencies, instead of at different times. At the receiver, the received signal is applied to a channel estimator and to a combiner, which provide inputs to a maximum likelihood detector which recovers the two symbols s1, s2.
This technique is applied in the present embodiment as shown in
Although the two symbols transmitted at any one time are transmitted with different polarisation between the two transmit antennas 6a, 6b, the signals received at the receive antennas 8a, 8b each comprise a component of both symbols, with variable phase shift, polarisation and attenuation. The orthogonal polarisation between the symbols is not preserved in transmission, as a result of reflection and transmission through different materials. Furthermore, there is no requirement that the polarisation of the transmit antennas 6a, 6b be aligned with that of the receive antennas 8a, 8b.
At the first wireless receiver 10, the input from each antenna 8a, 8b is demodulated by a respective demodulator 28a, 28b and the result output to a respective channel estimator 32a, 32b and to a maximum likelihood detector 30 to derive the transmitted symbols. The result is de-mapped from the symbols to the data stream by a de-mapper 34, and is output to subsequent stages.
Note that STBC can also be used with only one receive antenna, as shown in
Hence, the preferred embodiment uses polarisation-time block coding (PTBC).
The effect of the different diversity techniques was tested using a narrowband 802.11a simulator for each of the 7 modes of operation, as follows:
a and 4b show the bit error rate (BER) and packet error rate (PER), for a packet size of 54 bytes, against signal to noise ration (SNR), without any diversity technique.
The polarisation-time block coding described above can be applied to wideband transmission, such as OFDM, as well as narrowband. In OFDM, a data stream is multiplexed redundantly between multiple orthogonal frequency channels, which helps to overcome frequency-selective fading of the radio channel such as multi-path fading; see for example “A space-time coded transmitter diversity technique for frequency selective fading channels”, Lee K F and Williams D B, Sensor Array and Multichannel Signal Processing Workshop, 2000, pp. 149-152. In an embodiment using OFDM, the modulators 26a, 26b are multicarrier modulators and the demodulators 28a, 28b are multicarrier demodulators. Channel estimation and maximum likelihood detection is performed independently on each frequency carrier. This embodiment can be used to implement the 802.11a standard, which uses OFDM.
Preferred forms of antenna for the transmit and receive antennas will now be described. A first form of antenna is a linear slot antenna as shown in
A prototype of the linear slot antenna was constructed by sandwiching the strip conductor 40 between two rectangular pieces of dielectric board, each clad with copper on its outer surface. The board may be RT/Duroid, with a dielectric constant of 2.2. The slot 42 was etched into one outer surface, and the edges of the boards were sealed with copper foil to form the cavity 46. An SMA connector port 44 was attached to the end of the strip conductor 40 protruding from the cavity 46. In this example, the antenna was designed for use both at the 2.4 and 5.2 GHz bands and had dimensions of 50×20×3.2 mm.
The linear slot antenna was mounted on a 250×250 mm ground plane and the far field gain at 5.2 GHz at different polarisations was measured in three dimensions.
A second form of slot antenna suitable for use in embodiments of the invention is an annular slot antenna, as shown in
The far field antenna pattern of the annular slot antenna is shown in
By feeding more than one of the ports with signals of differing phase or amplitude, different beam patterns can be created. For example,
Hence, a single annular slot antenna can produce two orthogonally polarised beams with one beam overlapping the null of the other, and can be used to implement the two antennas 6a, 6b or 8a, 8b.
The dimensions of the linear and annular slot antennas allow them to be conveniently mounted on the outer surface of a metallic housing, such as a housing for the wireless gateway 4. The surface of the housing then acts as a ground plane. Moreover, this allows the antenna to be mounted substantially flush to the outer surface of the wireless gateway 4, preferably protected by non-conductive cover of low dielectric constant material, such as plastic.
The antenna pattern for each of the positions a1-a8, and for combinations of orthogonal pairs of positions, were tested. The main difference between antenna patterns in different positions is in the orientation of the antenna pattern, and the effect of the different dimensions of the faces of the housing 48 on which the antennas were mounted, and which act as ground planes. Better performance is achieved where the ground plane is larger, as for example with positions a7 and a8. However, the optimum coverage pattern was achieved for the combination of positions a3 and a4, in which the antennas are substantially collocated but orthogonal. These positions could be rotated by 45° parallel to the front face to reduce the effect of the relatively short height of the housing 48. In this example, the dimensions of the housing 48 were 300×60'210 mm in the x, y and z directions shown in
As can be seen from
More than one pair of transmit antennas 6a, 6b or receive antennas 8a, 8b can be used by the same device. For example, if complete spherical coverage were required, one pair of antennas could be positioned on each of two opposite faces of the housing 48, with one of each pair being driven by the same signal.
A similar orthogonal antenna arrangement can be used in the first wireless receiver 10. The combined uniform coverage of the orthogonal antennas means that the receiver device does not have to be aligned with the transmit antennas 6a, 6b to achieve good reception. This is particularly important where the receiver 10 is portable.
The coverage advantages of the orthogonal slot antennas are particularly marked when data is transmitted redundantly between the different polarisations of the transmit antennas, as is the case with the polarisation-time block codes described above. If a receiver is located in the null of one antenna, then the data can still be received in the directed beam of the other antenna.
Details of a wireless gateway 4 in one specific embodiment of the invention are shown in
A dish antenna 50 receives satellite television broadcast signals from a satellite television broadcast network. The received signals are input to first and second tuners 52a, 52b, although any plural number of tuners may be used. The tuners 52a, 52b are tuneable into the same or different channels of the satellite television broadcast network for simultaneous reception of the same or different television programmes. Signals from the first and second tuners 52a and 52b are passed to a Quadrature Phase Shift Key (QPSK) demodulator 56, which may also perform forward error correction. The gateway 4 has a hard disk 58 which receives from the demodulator 56 compressed video and audio data representing received television programmes for recording and subsequent playback.
The received signals comprise digitally encoded data. In this example, the data is compressed using the Digital Video Broadcast/Moving Pictures Expert Group 2 (DVB/MPEG 2) standard which permits both programme data and additional data (for example interactive service data) to be transmitted in a single channel. DVB/MPEG 2 enables high compression ratios to be achieved. The data may include both media data, such as video data and audio data, and service data, such as user services data and programme scheduling data. The service data may be processed and stored separately from the media data, and used to provide programme guide functionality. The hard disk 58 receives and stores the compressed and encrypted media data.
The functions of the wireless gateway 4, including the receiver, are controlled by a processor 70 which is interconnected to the other components by a bus 72. The processor 70 has access to memory 68, including RAM, flash memory for storing an operating system and applications, and ROM.
The processor 70 controls operation of the receiver by tuning the tuners 52a and 52b to receive signals for the desired channels and by controlling the hard disk 58 to record desired television programmes or to play back previously recorded television programmes. Viewer selection of desired programmes and customer services is controlled by remote user commands received via one or both of the antennas 6a, 6b and decoded by a command receiver 76. The commands use a low bandwidth signal and therefore do not require diversity reception, although this may be used.
A selected programme or service is output as an encrypted media stream, either directly from the demodulator 56 or from the hard disc 58, to the STBC encoder 24, which for sake of clarity includes the mapper function 22, and the modulators 26a and 26b, for transmission through the antennas 6a, 6b using the PTBC transmission technique described above.
The MAC layer and wireless network protocol may be implemented by the processor 70 and/or by a dedicated chipset. In this example, the network protocols are in accordance with the 802.11a standard, with transmission in the 5.2 GHz band. Preferably, operation is restricted to modes 5, 6 and 7 to provide the necessary bandwidth for at least one video stream. The MAC layer of Hiperlan/2, 802.11 or 802.11e may be used.
The network protocol allows simultaneous transmission of different media streams to different receivers 10, 18, if sufficient bandwidth is available. The wireless gateway is capable of reading multiple streams substantially simultaneously from the hard disc 58, for example by using multiple heads, a hard disk array with redundancy, or time-divided reading and buffering, and/or from the demodulator 56.
The wireless gateway may include a data communications interface 66, such as a dial-up modem for connection to a PSTN, or a DSL modem, to allow interactive communication services with a remote system, and to receive streaming media data from the internet.
A more detailed diagram of the receiver 10 for use with the wireless gateway 4 in this embodiment will now be described with reference to
The decoded media stream is passed to a media decoder 80 which decrypts the media stream and decodes it using the MPEG 2 standard into audio and video data. The decryption may be by means of an encryption key stored on a smart card 86 and read by a smart card reader 84. The audio and video data are converted by a video interface 82 for output to the audiovisual display 12. The video interface 82 may be a SCART interface.
The remote control 14 has user actuable keys which generate corresponding IR codes, for example as defined by the RC6 standard developed by Philips. These signals are received by an IR receiver 92, decoded by a command decoder 90, and input to a processor 88 which is connected to the components of the receiver by a bus 94. The processor 88 sends corresponding command signals via a modulator 96 and one or both of the antennas 8a, 8b over the wireless network to the wireless gateway 4.
The wireless gateway 4 responds to the command signals by varying the content of the media stream sent to the receiver 10 over the wireless network. For example, the user may use the remote control 14 to change the received television programme, to skip or scan backwards or forwards through the received television programme, or to change the channel received by either of the tuners 52a, 52b. The user may also interact with an interactive programme executed by the wireless gateway 4.
A detailed version of the second receiver 18 in this embodiment is shown in
The above embodiments have been described by way of example and are not intended to limit the scope of the present invention. Other alternatives may be envisaged on reading the above description, which may nevertheless fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
0414819.3 | Jul 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/02595 | 7/1/2005 | WO | 00 | 3/6/2008 |