The present invention relates to a system for communication in a wireless backhaul environment having wireless mesh networks connected in part to the Internet.
Internet connection in wireless mesh networks is satisfactory to cover limited range of communication. The Internet implicate addressing scheme of the wireless mesh networks.
When the wireless mesh networks are not connected to. the Internet, the addressing scheme can be flatten such that all nodes do not necessarily need to have the same logical Internet Protocol (IP) subnet. When the wireless mesh networks are connected to the Internet, nodes are required to have a topologically correct and globally routable IP address if the use of network address translation (NAT) is to be avoided.
To provide a multicast routing in hybrid wireless mesh networks, the implications of address management are stronger. This is because the standardized multicast routing protocols used in fixed IP networks rely on the assumption of topologically correct IP addresses. For instance, multicast access routers usually perform a process called Reverse Path Forwarding-check on every incoming packet.
The process drops any packet which arrives at an interface which that router would not use to reach the source of the packet. Thus, address auto-configuration is an important element for a fully integrated and seamless multicast interworking for wireless mesh networks that are connected to Internet.
Classical mechanism for address auto-configuration in traditional Internet connection is not feasible for wireless mesh networks because of their multi-hop characteristic. The mechanism used for address auto-configuration should allow wireless mesh nodes to discover routes towards the gateways. Therefore, address auto-configuration and gateway discovery systems must interoperate with routing protocols used within wireless mesh network.
It is an object of the present invention to provide a system and method for communication in wireless mesh networks for increasing the network throughput and wide coverage of communication which alleviate the above limitation.
According to the present invention, a system for communication in wireless backhaul environment having wireless mesh network connected in part to the Internet comprising a communication topology. The communication topology comprises communication cells each having a relay station and mobile nodes communicating to each other using 802.16j wireless technology wherein the cells is arranged in a grid fabric within the communication topology.
The system for communication in wireless backhaul environment having wireless mesh network connected in part to the Internet use WiMAX (Worldwide Interoperability for Microwave Access) gateways (GWs)/base stations (BSs), relay stations (RSs), and combination of mesh and IP nodes.
The system for communication in wireless backhaul environment having wireless mesh network connected in part to the Internet uses address auto- configuration system combined with gateway discovery system and must interoperate with multicast routing protocols used within the wireless mesh network.
According to the present invention, a cell is a WiMAX wireless vicinity of unity square kilometer is provided for the system. The cells are arranged to form a grid fabric of network for wireless communication. The cell comprises of a relay station which supports the wireless mesh nodes in the cell and exchanges the routing information in between the other cells. In this way the network throughput can be extended and the number of nodes per grid fabric of the network.
The present invention will be described by way of example only, with reference to the accompanying drawings in which:
Preferably, a system for communication in wireless backhaul environment having wireless mesh network connected in part to the Internet is provided to have a communication topology having WiMAX gateway/base station with multi-hop capability located at each corner. The topology has a plurality of communication cells each having relay station and mobile nodes communicating to each other using WiMAX wireless technology wherein the communication cell is arranged to be connected to each other in a grid fabric.
The system for communication in wireless backhaul environment having wireless mesh network connected in part to the Internet comprises the use of address auto-configuration system combined with gateway discovery system and must interoperate with the multicast routing protocols used within the wireless mesh network.
According to the present invention, a cell defines a WiMAX wireless vicinity of unity square kilometer is provided to the system. The cells are arranged to form a grid fabric of network for wireless communication. The cell comprises of a relay station which supports the wireless mesh nodes in the cell and exchanges the routing information in between the other cells. In this way the network throughput can be extended and the number of nodes per grid fabric of the network.
Preferably, a system and method for communication in wireless mesh networks connected to the internet use 802.16e and 802.16j wireless technologies. The topology may utilizes any future wireless technology with the same capability of 802.16e wireless technology and any future wireless technology with multi-hop capability of 802.16j wireless technology.
The grid fabric or topology of N×M square kilometers is provided to the system, wherein N and M can be of any integer number and N can be equal to M. WiMAX base stations with multi hop capability is located at each corner of the topology with WiMAX radio range as a network backbone.
The base stations (BSs) are connected to the Internet through a gateway (GW). A community network is provided comprising of a set of N x M cells each cell occupies an area of unity square kilometer wherein the N and M are integer number and can be equal.
Each cell comprises of one relay station (RS) located in the center of the cell having 802.16j technology and a WiMAX radio range. The neighbouring cells are mesh connected. The relay stations will relay signals between Mobile stations (MSs) and gateway (GW)/base stations (BSs) (i.e. Internet) within the same cell as well as exchanging information and control signals with other cells. The internal traffic within the cells is assumed to be 70% and the external traffic between cells and the Internet is assumed to be 30%.
The architecture of the communication system is illustrated in
As a result, the system will be benifited in one part of the Internet service provisioning such as Hypertext Transfer Protocol (HTTP), IPTV, Voice over Internet Protocol (VoIP) and in the other part of multicast service provisioning such as video streaming, short message services (SMS), video conferring, etc.
The interoperation with gateways is performed by wireless mesh nodes which have direct connectivity to access routers (i.e. Multicast Internet Gateways).
The reception of a Multicast Listener Discovery (MLD) Query or Internet Group Management Protocol (IGMP) Query message can be used by those nodes to detect that they must act as multicast internet gateways. If that is the case, they must send IGMP or MLD reports to the access router, to inform about which multicast groups have interested receivers within the mesh. Multicast Internet gateways know this information because receivers within the mesh will send IGMP or MLD reports to their selected wireless mesh node, which will in turn create a multicast path towards the gateway following its best path towards the gateway based on prefix continuity. Of course, those paths are created in advance by the periodic gateway advertisements explained before and all wireless mesh nodes know their parent in the prefix continuity tree.
The multicast internet gateway is also responsible for joining all the multicast groups with active senders within the wireless mesh and to forward all the multicast traffic towards the gateway so that it can detect that sources and execute the IP multicast routing specific functions.
As shown in
The wireless mesh nodes interact with IP nodes and multicast routers using Multicast Listener Discovery Protocol (MLD) for IPv6 or Internet Group Management Protocol (IGMP) messages for IPv4. The wireless mesh nodes use the multicast routing messages based on the membership information obtained.
The gateways are one hop away from the relay station of the closest cell. The main requirements to support Internet-wireless mesh network connectivity comprises of addresses assigned to mobile nodes need to be topologically correct and use prefix continuity further comprises of group membership messages using maximum Time-To-Leave (TTL).
The wireless mesh network must guarantee that the multicast router joins the multicast group for efficient multicast path between the gateways and sources in the mesh as shown in
Number | Date | Country | Kind |
---|---|---|---|
PI20084227 | Oct 2008 | MY | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MY2009/000166 | 10/9/2009 | WO | 00 | 10/17/2012 |