1. Field of the Invention
The present invention relates to method and apparatus for performing perforating operations, and, more particularly, to performing wireless perforating gun operations.
2. Description of the Prior Art
For purposes of enhancing production from a subterranean formation, a perforating gun typically is lowered down into a wellbore that extends through the formation. A perforating gun comprises a plurality of radially-oriented shaped charges which are detonated to penetrate and form perforations through the casing and cement into the formation proximate the wellbore. The shaped charges typically are distributed at points along a helical spiral that extends around the longitudinal axis of the perforating gun.
In wireline guns, there are normally two wires that run the length of the gun string. One of these wires is a live or hot wire which is connected to a positive or negative voltage, and the other wire is a ground wire. These wires are needed to connect a source of current and voltage which is located at or near the earth's surface to the electrical detonator in the body of the perforating gun. The electrical detonator is the apparatus that initiates the ballistic train including the detonating cord and subsequently the shaped charges which will perforate the well and permit flow between the reservoir in the formation and the wellbore. In some cases, the gun body has been used as the ground wire.
It frequently occurs that the live wire gets pinched during loading or transportation or even after arming of the perforating gun. The live wire may become an open circuit as a result of being pinched or may be shorted to ground which results in the hot wire no longer maintaining isolation from the ground. In either event, current and voltage never reach the detonator.
The presence of the wires decreases the amount of space in the gun for shaped charges and hence decreases the size of shaped charges which may be employed. The presence of the wires also increases the amount of time required to load a gun, and if a cable gets pinched or shorts out during the loading or transporting process, the wires must be replaced and reinstalled in the gun, which increases the time necessary for loading. The problems with the wires that are used in activating the electrical detonators are believed to contribute significantly to quality issues with respect to wireline perforating services.
In accordance with the present invention, a loading tube is provided for installation in the body of a perforating gun, where the loading tube holds a plurality of shaped charges, the detonation of which is electrically initiated. When installed in the body of the gun, the loading tube comprises at least a portion of the electrical circuit used to initiate the detonation of the shaped charges. In one embodiment, the loading tube comprises the hot portion of the electrical circuit, the body comprises the ground portion of the electrical circuit, and the loading tube and body are insulated from one another.
Insulation of the loading tube from the body may be effected in a number of ways. In one embodiment, the outer diameter of the loading tube may have a coating applied to it to insulate it from the body, while in another embodiment the inner diameter of the body may be coated to insulate it from the loading tube. In yet another embodiment, both the outer diameter of the loading tube and the inner diameter of the body may be coated with the insulating material.
Insulation of the loading tube from the body may also be effected by applying an insulating material to the loading tube. This insulating material may, for example, be a shrink wrap type material or an adhesive tape type material. Alternatively, the insulating material may comprise in-situ cured polymer tape or composite tape. These latter types of tapes may be wrapped onto the loading tube and then be cured under heat to become an integrated part of the loading tube. These tapes may be thermoset or thermoplastic polymers and/or their composites. Alternatively, sleeves of these in-situ cured insulating polymers and/or their composites may be slid onto the loading tube.
In a further embodiment of the present invention, insulating stand-offs are installed in the loading tube to insulate it from the body when the loading tube is placed within the body.
In yet another embodiment of the present invention, the loading tube comprises two pieces of conductive material. These pieces of conductive material are electrically isolated from one another and form the hot and ground portions of the electrical circuit.
In yet another embodiment of the present invention, the loading tube comprises a conductor which is disposed in the structure of the loading tube near the outer surface of the loading tube. This conductor forms a portion of the electrical circuit which is used to initiate the detonation of shaped charges and the detonating cord. This conductor is insulated from the loading tube, which forms another portion of the electrical circuit.
In accordance with the present invention, a perforating gun system for use in perforating the formation material proximate a wellbore is provided. The system comprises at least one perforating gun section comprising a body. A system in accordance with the present invention also comprises a plurality of radially oriented shaped charges whose detonation is electrically initiated and which when detonated produce jets to penetrate the formation material proximate the wellbore. A system in accordance with the present invention further comprises a loading tube which is installed in the body and which holds the shaped charges and the detonating cord. In a system according to the present invention, the loading tube comprises at least a portion of the circuit used to electrically initiate the detonation of the charges, and the loading tube may comprise any of the configurations described above for a loading tube.
In accordance with the present invention, a method is provided for establishing an electrical circuit in a perforating gun which electrical circuit is used to initiate the detonation of a plurality of shaped charges that are held in a loading tube in the body of the gun. A method in accordance with the present invention comprises the step of connecting the loading tube to the source of electricity used to initiate the detonation of the charges and passing electricity through the loading tube to initiate detonation of the charges. In one embodiment of the method of the present invention, the loading tube is used as the hot portion of the electrical circuit.
In the accompanying drawings:
It will be appreciated that the present invention may take many forms and embodiments. In the following description, some embodiments of the invention are described and numerous details are set forth to provide an understanding of the present invention. Those skilled in the art will appreciate, however, that the present invention practiced without those details and that numerous variations from and modifications of the described embodiments may be possible. The following description is thus intended to illustrate and not to limit the present invention.
While the following description may focus on the use of a apparatus according to the present invention in a wireline perforating system, those skilled in the art will appreciate that the such apparatus may also be utilized in other types of perforating systems when selective firing of the perforating guns in the string of perforating guns is desired. The applicants intend, therefore, that the appended claims, unless expressly limited to a wireline perforating system, should be interpreted so as to cover the invention when used in any type of perforating system
In the following description, the shaped charges are sometimes referred to as being “radially-oriented.” The radial orientation of the shaped charges is with respect to the longitudinal axis of the perforating gun.
With reference first to
Wireline perforating gun system 100 also includes a pair of wires 105 which runs the length of the perforating gun sections 101 and 102. One end of the pair of wires 105 is connected to a source of electricity 106 which is located at or near the earth's surface. The other end of the pair of wires 105 is connected to switch 108 which is in turn connected to detonator 107 in the lower adapter 104. The pair of wires 105 is also connected to a switch 109 and a detonator 110 in adapter 103. It is well known to those skilled in the art that the perforating guns in a wireline perforating system may be fired selectively, starting with the bottom-most gun. The firing of perforating guns 102 in the system of
With reference now to
A loading tube 31 in accordance with the present invention, when installed in gun body 30, comprises at least a portion of the electrical circuit used to initiate detonation of the shaped charges. In one embodiment, the loading tube 31 comprises the hot portion of that electrical circuit and the gun body 30 comprises the ground portion of that electrical circuit. In this embodiment, the loading tube 31 and the body 30 are insulated from one another and that insulation may be implemented in several ways.
One way to insulate loading tube 31 from gun body 30 is to coat the outer diameter of loading tube 31 with an insulating material, while another way to effect such insulation to coat the inner diameter of the body 30 with insulating material. If desired, both the inner diameter of body 30 and the outer diameter of loading tube 31 may be coated with insulating material. Examples of suitable coating materials include non-metallic paint, non-metallic epoxy paint and insulating coatings applied through an oven baking or dipping process.
Yet another way to insulate the loading tube 31 from the gun body 30 is to wrap the loading tube with an insulating material, such as shrink wrap type material or self-adhesive tape. Suitable shrink wrap type material may be obtained through several suppliers, and, as known in the prior art, the shrink wrap material would be applied to the loading tube using techniques such as heat, light or exposure to gases. Utilization of shrink wrap material will, of course, require that the profiles on the loading tube, e.g., the locations where the shaped charges will be installed, be cut out after the shrink wrap material is applied to loading tube 31. Suitable self-adhesive tape is believed to be available from a number of suppliers.
Alternatively, the insulating material may comprise in-situ cured polymer tape or composite tape. These types of tapes may be wrapped onto the loading tube and then be cured under heat to become an integrated part of the loading tube. These tapes may be thermoset or thermoplastic polymers and/or their composites, and can be made in a very thin layer. Additionally, sleeves made of these in-situ cured polymers as their composites may be slid onto the loading tube 31.
Yet a further way to insulate loading tube 31 from body 30 is illustrated in
With reference now to
Referring to
A system according to the present invention comprises at least one perforating gun section where each perforating gun section comprises a loading tube having any of the alternative characteristics described above.
Number | Name | Date | Kind |
---|---|---|---|
2317238 | Mennecier | Apr 1943 | A |
2947251 | Jilly | Aug 1960 | A |
3685448 | Magneville | Aug 1972 | A |
4285153 | Crouch | Aug 1981 | A |
5060573 | Montgomery et al. | Oct 1991 | A |
5160801 | Andersen et al. | Nov 1992 | A |
5347929 | Lerche et al. | Sep 1994 | A |
5505134 | Brooks et al. | Apr 1996 | A |
6283227 | Lerche et al. | Sep 2001 | B1 |
6386108 | Brooks et al. | May 2002 | B1 |
6837310 | Martin | Jan 2005 | B2 |
20050178282 | Brooks | Aug 2005 | A1 |
20050247450 | Ratanasirigulchai et al. | Nov 2005 | A1 |
20060124311 | Lopez de Cardenas | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
2290855 | Jan 1996 | GB |
2384140 | Jul 2003 | GB |
2406870 | Apr 2005 | GB |
Number | Date | Country | |
---|---|---|---|
20080047456 A1 | Feb 2008 | US |