Electronic devices generally operate to retrieve and relay data in a reliable and efficient manner. Some electric devices utilize wireless transmission of data and power. However, large losses of signal strength during wireless communications have generally made wireless power and data transmission unfavorable replacements for traditional wired electronic signal transmission.
As will be appreciated, electronic devices heavily rely on the transmission of power and data signals to operate in the current culture that includes a wide variety of mobile electronic devices.
In these and other types of electronic devices, it is often desirable to increase efficiency and accuracy of data and power transmission, particularly with regard to wireless transmissions in mobile electronic devices.
Various embodiments of the present invention are generally directed to a method and system for wirelessly transmitting data and power via capacitive coupling.
In accordance with various embodiments, a plurality of first electrodes is configured to wirelessly transfer power and data signals through an insulating layer to a plurality of second electrodes with capacitive coupling.
In other embodiments, a dielectric film is used as the insulating layer to facilitate wireless transmission of power and data as well as improve capacitive coupling.
These and various other features and advantages which characterize the various embodiments of the present invention can be understood in view of the following detailed discussion and the accompanying drawings.
A plurality of top electrodes 108 are coupled to the insulating layer 106 and are configured to receive data and power signals. The top electrodes 108 are also electrically connected to a load 110 positioned in an electrical device 112. It should be noted that the electrical device 112 can be a variety of devices including, but not limited to, mobile devices such as laptop computers, cellular phones, or music players. Alternatively, the electrical device 112 can be a device capable of receiving data such as, but not limited to, televisions, telephones, and desktop computers.
Although electrodes 102 and 108 are described as top and bottom electrodes, any appropriate orientation of electrodes are with the scope of the various embodiments of the present invention. Top and bottom electrodes are terms used for simplicity in this description.
A general illustration of a misaligned wireless transmission structure is shown in
A disadvantage of misaligned electrodes is the loss of signal strength of power or data signals either individually or in combination. The loss of signal strength would result in inefficient operation of the electrical device 112.
An alternative embodiment of a wireless transmission structure is displayed in
In addition, a smaller top electrode 108 size results in more electrode surface area to be active and a stronger signal to be wirelessly transferred reliably. However, a number of diodes 114 are used to regulate the direction of signals to and from the load 110. The diodes can be a variety of types including, but not limited to, Zener, Schottky, and Esaki diodes.
While power and data signals are wirelessly transmitted to one electrical device on a surface such as a wall 116, a second electrical device can receive power and data signals on the same surface or a different surface, such as a table 118. An electrical device such as a lamp 122 can be coupled to an insulating layer (104 of
It can further be appreciated that individual power or data signals can be wirelessly transmitted to a single or multiple electronic devices. In other words, placement of multiple electronic devices on a surface that has bottom electrodes and an insulating layer installed allows for one device to wirelessly receive data and power signals while a second electronic device receives only power signals wirelessly.
Further, the wireless transfer of data and power signals is accomplished through capacitive coupling. The capacitance as seen from the bottom surface (100 of
As can be appreciated by one skilled in the art, the various embodiments illustrated herein provide advantages in wireless transmission efficiency and compatibility. The ability to energize a portion of a surface or the entire surface to transmit power or data signals individually or in combination simultaneously allows for a more simple and reliable system. Moreover, the wireless transfer of power and data signals to virtually any electrical device provides vast compatibility that can service both mobile and stationary electrical devices. The utilization of capacitive coupling to wirelessly transfer signals provides energy savings as well as strong wireless signals needed to power modem electronics. However, it will be appreciated that the various embodiments discussed herein have numerous potential applications and are not limited to a certain field of electronic media or type of data storage devices.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the invention, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.