Wireless power apparatus and methods

Information

  • Patent Grant
  • 9774086
  • Patent Number
    9,774,086
  • Date Filed
    Tuesday, January 22, 2008
    16 years ago
  • Date Issued
    Tuesday, September 26, 2017
    7 years ago
Abstract
Wireless energy transfer system. Antennas are maintained at resonance with High Q. Techniques of maintaining the high-Q resonance matching are disclosed.
Description
COPYRIGHT

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.


All figures, tables, and Exhibits are Copyright © 2006, 2007 Third Option, LLC. All rights reserved.


BACKGROUND

Delivery of power to portable devices often uses wires of various types to carry out the power delivery. Devices such as cell phones, portable computers, or any other device that can operate from stored power such as a battery, all require and use such a source of power to operate the device and/or charge the battery.


SUMMARY

Techniques of wireless power transfer are disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 plots maximum power density versus frequency under the FCC and EN limits, respectively, illustrating how the US limits for radiation exposure are more generous at frequencies below 30 MHz and could offset the effect of reduced antenna efficiency at low frequency.



FIG. 2 plots maximum magnetic field strength versus frequency under the FCC and EN limits, respectively, illustrating how the US limits for radiation exposure are more generous at frequencies below 30 MHz and could offset the effect of reduced antenna efficiency at low frequency.



FIG. 3 illustrates a simplified schematic diagram of an air loop antenna, in accordance with a first set of exemplary embodiments of the present invention.



FIG. 4 illustrates a circuit diagram of a series-resonant circuit, operating to bring a receiving loop antenna to resonance and to maintain tuning, in accordance with the first set of exemplary embodiments of the present invention.



FIG. 5 illustrates a simplified schematic diagram of a wireless powering-charging system, configured to obtain a maximized power transfer between transmitting and receiving antennas, in accordance with a second set of exemplary embodiments of the present invention.



FIG. 6 plots high quality factor (Q) versus frequency, illustrating optimization of power transfer by using antenna design, in accordance with the second set of exemplary embodiments of the present invention.



FIG. 7 illustrates a physical implementation of an antenna, in accordance with the second set of exemplary embodiments of the present invention.



FIG. 8 illustrates a circuit diagram of an electrically small antenna, operating in a capacitive mode, in accordance with the second set of exemplary embodiments of the present invention.





DETAILED DESCRIPTION

Embodiments describe the use of wireless power transfer to a receiving source.


As used herein, the terms “wireless power” and “wireless energy” include without limitation any form of power or energy, including that associated with electric fields, magnetic fields, electromagnetic energy, or otherwise, that is transmitted between one point, area, location or device and another without having to use a wire line connection.


An embodiment discloses a wireless powering and charging system. An embodiment describes using a transmitter of a size allowing it to be embedded into another item, e.g., a desk or a shelf, or plugged into a wall, or embedded into another structure or surface such as a wall, floor, door, etc. A receiver is associated with a small mobile unit or client device carried by the user, or mounted on a portable device, vehicle, or with a stationary device such as a lamp, toaster, flat-screen TV on a wall, computer or computerized device, PDA, personal media device, etc. When the receiver is in range of the transmitter, power is delivered to the mobile unit.


In one embodiment, a wireless powering-charging system is disclosed, based on a transmitter that sends a substantially unmodulated signal or beacon (e.g., the carrier only). A receiver may be tuned to extract energy from the radiated field of the transmitter. The receiver powers an electronic device or charges a battery.


Other embodiments may use beacons that are slightly modulated.


Multiple receivers may be used. Multiple transmitters may be used to transmit to one or multiple receivers.


The antenna used by this system allows an efficient means of energy transmission and reception. The antenna is preferably of a small size to allow it to fit into a mobile, handheld device where the available space for the antenna may be limited. An embodiment describes a high efficiency antenna for the specific characteristics and environment for the power being transmitted and received.


Antenna theory suggests that a highly efficient but small antenna will typically have a narrow band of frequencies over which it will be efficient. Many of skill in the art have, therefore, avoided the use of these antennas, to enable more flexible transmit and/or receive characteristics. In an embodiment, an adaptive tuning circuit is used in certain configurations to allow tuning of an efficient yet narrowband antenna.


One embodiment describes an efficient power transfer between two antennas by storing energy in the near field of the transmitting antenna, rather than sending the energy into free space in the form of a travelling electromagnetic wave. This embodiment increases the quality factor (Q) of the antennas. This can reduce radiation resistance (Rr) and loss resistance (Rl).


In one embodiment, two high-Q antennas are placed such that they react similarly to a loosely coupled transformer, with one antenna inducing power into the other. The antennas preferably have Qs that are greater than 1000.


Another embodiment describes maximum Permissible Exposure (MPE) where the maximum exposure limits are defined by European and US standards (as well as others). They are defined in terms of power density limits (W/m2), magnetic field strength limits (A/m) and electric field strength limits (V/m). The limits are related through the impedance of free space, 377 W.


In the US, the applicable standard is FCC CFR Title 47: §2.1091 Radiofrequency radiation exposure evaluation: mobile devices. A mobile device is a transmitting device designed to be used in such a way that the separation distance of at least 20 cm is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. The limits to be used for evaluation are specified in §1.310 of Title 47.-§1.1310 Radiofrequency radiation exposure limits (see Table 1).


Table 1: FCC limits for radiation exposure Limits FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)









TABLE 1







FCC limits for radiation exposure


LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)












Electric
Magnetic




Frequency
field
field
Power
Averaging


range
strength
strength
density
time


(MHz)
(V/m)
(A/m)
(mW/cm2)
(minutes)










(A) Limits for Occupational/Controlled Exposures











0.3-3.0 
614
1.63
*(100)  
6


3.0-30  
1842/f
4.691
*(300.1)
6


30-300
61.4
0.163
1.0
6


300-1500


1/300 
6


  1500-100,000


5  
6







(B) Limits for General Population/Uncontrolled Exposure











0.3-1.34
614
1.63
*(100)
30


1.34-30  
824/1
2.191
*(180.f3)
30


30-300
27.5
0.073
0.2
30


300-1500


1/1500
30


  1500-100,000


1.0
30





f = frequency in MHz


* = Plane-wave equivalent power density


NOTE 1 TO TABLE 1:


Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.


NOTE 2 TO TABLE 1:


General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for or can not exercise control over their exposure.






In Europe, the applicable standard is EN60215. This has been derived from the ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines [ICN], The limits are given in Table 2.


Table 2: European limits for radiation exposure









TABLE 2







European limits for radiation exposure


Table 2: European limits for radiation exposure












Electric
Magnetic




Frequency
field
field
Power
Averaging


range
strength
strength
density
time


(MHz)
(V/m)
(A/m)
(W/m2)
(min)





0.15-1   
 87
0.73/f

6


1-10
 87/f1/2
0.73/f

6


10-400
 28
0.073
2
6


400-2000
1375 f1/2
0.0037 f1/2
f/200
6


  2000-300,000
 61
0.16
10
6









The power density limits and magnetic field limits are of particular interest in one embodiment. Using the data from Table 1 and Table 2, limit curves can be determined. FIG. 1 shows a plot of power density with the FCC limit curve 100, and the EN curve 102. FIG. 2 shows a plot of maximum H field, with the FCC curve 200, and the EN curve 202.



FIGS. 1 and 2 illustrate how the US limits are more generous at frequencies below 30 MHz and could offset the effect of reduced antenna efficiency at low frequency. This study tests a range of frequencies to see which frequencies are the best for wireless power transfer.


This application also provides an exemplary theoretical analysis of various aspects of wireless energy and power transfer.


Embodiments disclosed herein describe antenna types.


A loop antenna is a “magnetic” antenna and may be less sensitive to changes in its surroundings than a dipole, which is an “electric” antenna. The loop antenna may have certain advantages when the device is exposed to changes in its surroundings, e.g., when placed on a table, held in the hand, or put in a pocket, based on stray capacitance, or other effects. In an embodiment, an air loop antenna is used. Another embodiment may use a loop antenna with a ferrite core, or others may be used.


In one embodiment, an air loop antenna may be preferred over a loop antenna with a ferrite core. The air loop antenna may be more resistant to detuning from permanent magnets or other magnetic influences in its vicinity. The air loop antenna will, in general, be more efficient than the ferrite loop antenna, since the ferrite core can cause losses. The ferrite antenna is often heavier, and cannot typically have components placed “inside” it. In contrast, other components can be placed inside the loop of an air loop antenna. The form-factor of the loop may be modified or otherwise adapted to fit within a form-factor of certain portable devices being charged.


The same type of antenna may be used for both transmitter and receiver. The transmit and receive antennas can be the same or different sizes.


An embodiment describes a tuning circuit that becomes part of the antenna circuit. A typical loop antenna is inherently inductive. A capacitive element may be used in the tuning circuit to induce resonance in the antenna. Even though a loop antenna is less sensitive to changes in its surroundings than a dipole antenna, it will still be detuned to some degree by changes in its surroundings. Therefore, it may be desirable in certain embodiments to adaptively tune either the transmitter antenna or the receiver antenna or both, to maintain the quality of the link therebetween.


Adaptive tuning is achieved in one embodiment by changing the value of a capacitive element used in series with the loop antenna to adjust the resonant frequency of the circuit. The adaptive tuning circuit at the transmitter and/or at the receiver. A goal is to choose tuning components with high quality factors (Q) to ensure that that the Q of the overall receiver circuit is degraded as little as possible. In an embodiment, high Q is used to maximize efficiency, even at the cost of narrow bandwidth.



FIG. 3 illustrates an air loop antenna of an embodiment. The antenna may have maximum dimensions of 5 cm (i.e. a radius r of 2.5 cm) and N turns of wire 300 of diameter 2brx=500 um is used for one embodiment. The antenna can, for example, be placed around the perimeter of a mobile device. The loop will be assumed circular, but can be of other shapes. A capacitor 302 is used with the loop inductive resonator to bring the loop antenna to resonance. The capacitor value may be obtained from the well known resonance equation:







ω
2

=


+
1

LC





where ω denotes the angular frequency of resonance, L the inductance and C the capacitance.


By calculating the inductance of the air loop antenna using the Equation and a wire diameter of 500 urn, the required capacitance can be calculated for any of a number of frequencies.


In one embodiment, the capacitor 302 can be a high Q fixed chip capacitor in parallel with a high Q varactor diode operating as a voltage-tunable capacitor to bring the receiver air loop to resonance and to maintain tuning. FIG. 4 shows a schematic of the series-resonant circuit formed with tuning circuit 400, that itself is formed of variable capacitance 402, in series with its equivalent series resistance 404. A fixed capacitor is shows as 406 in series with its ESR 408. The antenna overall ohmic resistance 410 is shown separated as radiation resistance 410 in series with overall antenna resistance 412. Load resistance 414 and inductance 416 are also shown.


In the circuit, the symbols have the following meanings:

    • V0: The induced voltage across the loop antenna
    • Lrx: The inductance of the loop antenna
    • Rl_rx, Rr_rx, Ra_rx: Receive-antenna loss (ohmic) resistance, radiation resistance and overall antenna resistance (the sum of the previous two)
    • Cvar, Resr_var: The capacitance of the tuning varactor and its associated Equivalent Series Resistance (ESR)
    • Cfix, Resr lix: The fixed capacitance and its associated ESR
    • Rload rx: The load resistance


One embodiment selects a tuning range of roughly +/−5 percent of the chosen operating frequency, so as to cover variations in the capacitance and detuning from external factors. The varactor's tuning range could be approximately +/−10 percent the fixed capacitance value. Components used preferably have a high Q, so that they degrade the overall Q of the circuit as little as possible.


In one embodiment, tuning is carried out solely at the transmitter. In this embodiment, no varactor diode need be located at the receiver and the transmitter tracks the receiver resonant frequency. This is dependent on how much resonant frequency of the receiver loop is affected by changes in the environment near the loop. The opposite configuration can also be used.


At higher frequencies, or with larger loop dimensions, or with more loop turns, a very small capacitance may be required to bring the loop to resonance. In an embodiment, only a varactor diode or only a fixed capacitor would be used without the other.


Another effect to be considered is the self-resonance of the loop, especially at higher frequencies. This effect will occur as inter-winding capacitance and stray capacitances on the loop antenna come into resonance with the inductance of the winding itself. This decreases as frequency increases.


At a lower operating frequency such as 1.3 MHz, a larger fixed capacitor will be required. For example, the loop antenna with the dimensions given in FIG. 3 with 5 turns of loop antenna would require a fixed capacitance of about 3 nF. Capacitance variations of +/−1 percent (30 pF) are typical for these types of capacitors. As will be shown, this exceeds the tuning range of most available tunable capacitors. Therefore, at low frequencies, one embodiment locates the adaptive tuning only in the transmitter.


Increasing the operating frequency or increasing the number of turns allows reducing the size of the fixed capacitance. A larger number of turns may make the packaging more difficult. Therefore, with a large number of turns, practical implementation for certain types of applications could become difficult. A higher frequency therefore might allow certain benefits in applications where this factor might otherwise be limiting.


However, at frequencies of 250 MHz and above, the size of fixed capacitor required is extremely small—e.g. on the order of 1 pF for N=1, and even less for more turns. At these frequencies, the fixed capacitor can be eliminated altogether in some cases, and only a very small tuning capacitor used. This physical limit on capacitor size also places a limit on the frequencies that can be used, for given loop dimensions. A smaller receiver loop size would allow a higher frequency or more loops to be used.


Exemplary high Q/low ESR capacitors with capacitances from the low picofarad to the low nanofarad range can be obtained commercially, e.g, from AVX Corp. Details of some potentially suitable AVX capacitors are tabulated in Table 3, although any number of other devices may be used.


Table 3















TABLE 3





Capacitor
Capacitance







Family
Range of



Voltage


(all AVX)
Family
Tolerance
Q
ESR
Rating
Dimensions







HQ series,
3.3 pF to
+/−0.25 pF
Varies according
Varies according
600 V to
9.4 mm ×


E case
6800 pF
to +/−1%
to capacitance
to capacitance
7200 V
9.9 mm ×





and frequency -
and frequency -

3.3 mm





see FIG. 19
see FIG. 20


SQ AQ or
0.1 pF to
+/−1%
Claimed greater
Approx 0.004 at
50 V
2.79 mm ×


CDR1
5100 pF

than 10000 at 1
1 MHz

2.79 mm ×


series, style


MHz


2.59 mm


13 or 14









Note that in general, Q ESR and C are related by the following equation:






C
=

1

ω






R
esr


Q






Another embodiment uses MEMS (Microelectromechanical Systems) varactors. This may lower the power consumption.


The circuit of FIG. 4 at resonance is analyzed to evaluate performance. In a first approach, the varactor will be replaced by a fixed value capacitor one-tenth the size of the main fixed capacitor. The AVX data will be used for both capacitors. The tuning circuit 100 in FIG. 4 is modeled as a single R/C impedance. Values used are:


Irx is the current in the receiver loop.


Prx is the power at the load resistor.


Cser is the equivalent series capacitance of the fixed capacitor and varactor, and


Rser is the equivalent series resistance of the fixed capacitor and varactor.


At resonance, the reactances can be neglected since XL=−Xc. Only the resistive (real) losses in the circuit are considered.


The inventors found that when the resistances of the tuned antenna are matched to the load resistance, the maximum amount of power Prx is available at the load. In other words, the optimum condition is when


RL_rX+Rr_rx+Rser=Rload_rx. The values may vary by 20% while still staying within “optimum” resonance.


In the embodiment, therefore, the transmitter circuit is modeled as a resonant loop where the loop is power-matched to the source. An exemplary air loop antenna with maximum dimensions of 20 cm (i.e. a radius r of 10 cm), a wire radius of 1 mm and a single turn (N=1) is used for an embodiment, although other types, sizes and dimensions of antenna may be used for the transmitter in other embodiments.


In one embodiment, the transmitter antenna could, for example, sit vertically on a bench or a table inside a home, within a wall, around a wall power outlet, on or within a garage floor, behind a refrigerator, etc. To simplify calculations, the loop will be assumed circular, as FIG. 3. A single wire loop transmitting antenna of FIG. 3, having a wire diameter of 10 cm radius, wire radius of 1 mm, has an inductance of approximately 840 nH. Different frequencies will require different capacitance values for resonance with this antenna. For example, 1.3 MHz will require a capacitor of 17.85 nF; 13.56 MHz will require 164.1 pF; 64 MHz will require 7.365 pF; 250 MHz will require 0.483 pF and 500 MHz will require 0.121 pF.


A number of different antennas are described as embodiments herein. For testing of the embodiments, the antennas were built of 1.5 mm2 copper wire and fixed onto a wooden frame.


The transmit antenna has a radius of 0.2 m, 6 turns, and 3 MHz operating frequency. The matching is realized with two tunable capacitors. The receiving antenna has a radius of 0.1 m. Before considering power transfer/pathgain, the antennas were tuned and measured independently. The resulting characteristics are summarized in Table 6.











TABLE 6






Transmitting
Receiving



antenna (TX)
antenna (RX)















Measured unmatched characteristics @ 3 MHz











R [Ω]
23
1.7



L [μH]
43
12.5







Used matching network











Cs [pF]
36.5
33



Cp [pF]
27.6
187



Match [dB]
−24
−24



3 dB-bandwidth [kHz]
34
90



Quality factor Q
89
33









A quality factor increase may further increase power transfer. The quality factor, for example, can be increased using a Matlab simulation. The mathematical investigations done for the simulation, leads to the following approximation for the path gain:







η


(
x
)


=



π
2



a
6



Q
ul
2



16




x
6



[

ln


(


8


a
b


-
2

)


]


2








Where:


a=loop radius [m]


b=wire radius [m]


Qul=unloaded quality factor


X=distance between transmitter and receiver antenna [m]


The Equation above shows that for a practical antenna, the loop radius has a high impact on the path gain.


Second Embodiment Antennas


FIG. 5 illustrates a second embodiment of the antennas. This embodiment obtains a maximized power transfer between a coupling loop 500 to which the transmitted power 502 is delivered. The coupling loop radiates to a resonator 510 with optimized Q. This embodiment uses a coupling loop which acts as a resonator instead of a coupling network made of two capacitors. This reduces losses by omitting a matching network. The coupling between the coupling loop and the antenna can be conceptualized as an ideal transformer.


The antenna may be made out of e.g., copper tube or the like in order to decrease the loss resistance by increasing the wire surface. In addition, the surface may be plated with silver (Ag) or another such high conductance material well known in the art. With this type of construction, a quality factor in the order of 103 is achieved, as described in greater detail below. The resonator part of the antenna may also be optimized for a high quality factor (Q). This is done by increasing the number of turns, increasing the surface of the wire and reducing dielectric losses due to isolation or the mounting of the antenna.


To tune the resonance frequency of the antennas, tunable capacitors 504, 512 may be integrated at the bottom of both antennas. The capacitors may be metal plates that are tunable by using three screws 514 to change the distance between the two plates of the capacitor. The capacitors dominate the self-capacitance (Cs) of the antennas. Table 6A illustrates the characteristics of these antennas.











TABLE 6A






Transmitting
Receiving



antenna (TX)
antenna (RX)



















Radius [m]
0.085
0.085



Length [m]
0.078
0.078



Number of turns
7
7



Operating frequency [MHz]
Resonance
Resonance









The exemplary embodiments of the antennas are built of copper tube with an outer diameter of 6.0 mm. The surface is silver-plated. This protects the copper from corrosion and slightly increases the conductivity of the surface.


With an exemplary plate-distance of the tuneable capacitor of 8 mm, the resulting calculated resonance frequency is 14.4 MHz.


Using a Q of 1300 at both transmit and receive antenna, pathgain is approx. −10 dB, at 1 m, which corresponds to a factor of 0.1. In other words, a transmitting power of 10 watts must be used to receive 1 W at the receiver.


The system should be defined around the unloaded Q (Qul) of the antennas, starting with:











Q
ul

=


1
R

·


L
C




,




Equation





1


-


1








The total loss resistance of either the Tx or Rx antenna can be defined by:









R
=


1

Q
ul


·



L
C


.






Equation





1


-


2








At resonance, it can be written as

pin=I2·R.  Equation 1-3

The resulting current in the TX-antenna can now be specified by









I
=




P

i





n


R


.





Equation





1


-


4








Using Equation 1-2, the current can be rewritten as









I
=




P

i





n


·

Q

u





l


·


C
L




.





Equation





1


-


5








The magnitude of the H-field generated by the current in the TX-antenna in a distance x is











H


(
x
)


=



r
A
2

·
I
·
N


2
·



(


r
A
2

+

x
2


)

3





,




Equation





1


-


6








and induces a voltage

Uind(x)=2πfres·N·πrA2·μ0·H(x)  Equation 1-7

in the RX-antenna. The parameter rA is the radius, N the number of turns of the loop-antenna. The available output power Pout can now be calculated with











P
out



(
x
)


=





U
ind



(
x
)


2


4
·
R


.





Equation





1


-


8








P
out



(
x
)


=




U
ind



(
x
)


2

·


Q
ul

4

·



C
L


.






Equation





1


-


9








Finally, pathgain is defined as











η


(
x
)


dB

=

10
·



log
10



(



P
out



(
x
)



P

i





n



)


.






Equation





1


-


10








To further simplify and understand the behavior of Equation 1-10 and Equation 1-9, models for L and C are needed. The capacitance can simply be defined over the resonance frequency









C
=


1


ω
0
2

·
L


.





Equation





1


-


11








For the inductivity, an empiric formula was found to be the most accurate for the type of antenna used in this system.









L
=


μ






π
·

N
2




r
A
2




0.9






r
A


+

l
A







Equation





1


-


12








The parameter IA is the width of the antenna.


Under the assumption that the separation x between the antennas is large compared to the radius of the antennas rA (x>rA), and with Equation 1-11 and Equation 1-12, Equation 1-10 can be written as:











η


(
x
)


dB

=

10
·


log
10



(



r
A
2

·



Q
ul
2



(


0.9






r
A


+

l
A


)


2



16






x
6



)







Equation





1


-


13







The term in brackets in 1-13 is the linear pathgain. Note that this linear pathgain is not a direct function of the frequency or the number of turns, although these parameters are implicitly contained in the quality factor. The pathgain is approximately proportional to loop radius rA6, if the loop radius is much larger than the loop length lA. It is inversely proportional to the separation x6 between the antennas. It is also proportional to the quality factor Qul2.


For a given antenna dimension, as the quality factor is increased, the pathgain is improved. This is validated in an embodiment via simulation. The above equations were simulated using Matlab® to test antennas with different sizes and quality factors. The following parameter set was defined to run the script:


% Parameter definitions


Q=1000; % target unloaded quality factor [l]


N=7; % number of turns [l]


r_loop=85e-3; % radius of loop antenna [m]


r_wire=3e-3; % radius of wire [m]


pitch=12e-3; % distance between two turns (center to center) [m]


freq=13.0e6; % system frequency [Hz]


dist=1:0.1:3; % distance of antennas [m]


P_in =1% input power [W]


The resulting simulation showed a pathgain variation


of −60 dB per decade which is caused by the term x6 in Equation 1-13. If Q is doubled, for example from 1000 to 2000, pathgain increases by 6 dB. If the distance is doubled, pathgain decreases by 18 dB. The exemplary defined parameters are valid for both TX- and RX-antennas, and hence can assist with forming an optimal antenna for the parameters.


The simulation also calculates the reactive voltages. The reactive voltages occurring at the inductance and the capacitance are directly proportional to the quality factor and proportional to the square root of the transmitting power as set forth in Equation 1-14.

ULC=Qul√{square root over (Pin·R)}  Equation 1-14


Both reactive voltages will be very high in a practical implementation, thus planning for those voltages becomes more critical. With a Q of 1000 and a transmitting power of 10 W, the voltages may be 2.7 kV. If a plate capacitor is used with a plate distance of 0.01 m, the resulting field strength is 270 kV/m. Capacitors that can withstand these high voltages become critical. For example, it may be necessary to use 2000 V or 3000 V or higher voltage withstanding capacitors. It is believed that at least one reason why systems of this type did not operate properly in the past is that they were not properly sized for the amount of reactive voltage that was actually present. In fact, the unexpectedly high voltage above 2 KV is found as part of these reactive voltages even when much smaller voltages are being transmitted. This unexpectedly high voltage needs to be handled by the circuit components.


Definition of the Quality Factor also becomes important, because a major focus of the antenna design process is on optimizing the quality factor. Accordingly, the following describes an in-depth analysis of Q.


The fundamental equation about the quality factor is given by Equation 1-1 above.










Q
ul

=


1
R

·



L
C


.






Equation





1


-


1








FIG. 6 illustrates a plot of Q vs frequency for a number of different frequencies.


Note that the proportion of L and C is important in this equation. For a given resonance frequency, there are an infinite number of possible L-C combinations. However, higher Q is obtained when the inductance L is as high as possible compared to the capacitance.


The quality factor is also inversely proportional to the resistance R. This resistance consists of a loss resistance (Rl) and a radiation resistance (Rr). Both should be minimized in order to increase the quality factor.


The loss resistance is dependent of the material used to build the antenna, and due to the skin effect of frequency used for the system. A highly conductive material with good skin effect is preferable.


A high resonance frequency increases losses and hence decreases the quality factor. This is why the curve of FIG. 6 decreases at the upper end of the frequency-scale. However, a lower resonance frequency is obtained by increasing the capacitance. This decreases the L/C ratio, and since L is independent of the frequency, this lowers Q. Hence, the FIG. 6 curve shows how Q decreases at both the upper and lower end of the frequency-scale, making an ideal quality factor around a frequency of 29 MHz for the given antenna dimensions.


This shows an ideal frequency or frequency range for each antenna geometry.


The resonance frequency of 13 MHz used during testing described herein is below this ideal frequency. This is because self resonance, which is the resonance frequency without the tunable capacitor, below the resonator of the antennas is around 35 MHz. If the resonator is used at this frequency without the tunable capacitor, the sensitivity of the antenna against close-by objects may become significant.


An embodiment minimizes this effect and at the same time makes it possible to change the resonance frequency. A tunable capacitor of a value which dominates the self-capacitance of the resonator is used for this purpose. The added capacitance lowers the resonance frequency of the antenna.


Quality factor typically cannot be measured directly. Instead, the definition









Q
=


ω
0


Δ





ω






Equation





2


-


1








may be used as a starting point, where Δ0 is the center or resonance frequency and Δω corresponds to the 3 dB-bandwidth. Q can therefore be found by measuring the two parameters ω0 and Δω.


The 3 dB-bandwidth can be found as follows. The impedance Z of a first order series RLC-circuit is given by












Z

_

=

R
+

j





ω





L

+

1

j





ω





C







Equation





2


-


2








With the help of










ω
0

=

1

LC






Equation





2


-


3





and











Q
=


1
R

·


L
C




,




Equation





2


-


4








The inductance L and capacitance C can be written in terms of Q and ω0









L
=

QR

ω
0






Equation





2


-


5






C
=

1

QR
·

ω
0







Equation





2


-


6








If Equation 2-5 and Equation 2-6 is used in Equation 2-2, impedance can be expressed with










Z
_

=

R
+


j
·
QR








(


ω

ω
0


-


ω
0

ω


)

.







Equation





2


-


7








The quality factor can also be used to define the bandwidth (like in Equation 2-1)











Δ





ω

2

=



ω
0


2

Q


.





Equation





2


-


8







The impedance phase is given by the inverse tangent of the imaginary part of Z, divided by the real part of Z. In this division, R cancels out. If in addition Equation 2-8 is used and the function is evaluated at the upper cut-off frequency, then the phase is given by










φ


(


ω
0

+


Δ





ω

2


)


=


tan

-
1




(

Q


(




ω
0

+


ω
0


2

Q




ω
0


-


ω
0



ω
0

+


ω
0


2

Q





)


)






Equation





2


-


9







If the expression in the bracket is simplified, the phase gets dependent only from Q.










φ


(


ω
0

+


Δ





ω

2


)


=


tan

-
1


(

Q
+

1
2

-

Q

1
+

1

2

Q





)





Equation





2


-


10







If Q increases, the function in the bracket tends to 1.










φ


(


ω
0

+


Δ





ω

2


)


=



tan

-
1




(
1
)


=


π
4

.






Equation





2


-


11







The result from Equation 2-11 corresponds to an angle of 90 degrees which implies that the imaginary part of Z is equal to the real part of Z. Those two points can then be found with a network analyzer, and then Equation 2-1 can be used to calculate Q. Hence, using this framework, the Q value of such an antenna can be actually determined.


A second embodiment of the antenna is shown in FIG. 7. A coupling loop 700 is placed approximately 0.1 m away from the main part of the antenna 710. A plate capacitor is formed between two copper plates 721, 722. Screws 723, 724, 725 are formed of a capacitively-inert material such as polyimide. These screws are used to adjust the capacitance provided by the tuneable capacitor 720 and in turn adjust the resonance frequency of the antenna.


A glass body 730 or other dielectric may be below the antenna to minimize losses due to obstacles below the antenna.


Moreover, as described above, surface conduction is important to maximize Q. A silver plating or other non-corrosive material, may be applied to protect the copper from corrosion.


The coupling loop 700 may be formed of the same copper tube material, but has only one turn and about half the diameter of the antenna. The coupling loop is placed around 0.1 m away from the antenna to get a 50 Ohm matching.


The following explains how the resonance frequency of the antenna parts can be determined. In the following equations, L is the inductance of the resonator itself, Cs is the self-capacitance of the resonator and CT is the tuneable capacitor associated with the resonator, Rr is the radiation resistance, Rl the loss resistance of the resonator.










L
=



μ
0



π
·

N
2




r
A
2




0.9


r
A


+

l
A










where


:









r
A

=

loop





radius








N
=

number





of





turns









l
A

=

length





of





antenna









μ
0

=

1.2566
·

10

-
6








Equation





3


-


1










C
S

=




π
2

·
2




r
A

·

ɛ
0




ln
(


p

2


r
A



+




(

p

2


r
A



)

2

-
1



)









where


:









p
=

pitch





of





the





antenna


,









corresponds





to





the





distance





between
















two





turns





plus





the





diameter





of





a





turn








ɛ
0

=

8.8542
·

10

-
12










Note


:







see


[
GRA
]







for





a





derivation





of





this





formula

,




Equation





3


-


2








C
T

=



ɛ
0

·
A

d








where


:








A
=

area





of





the





plate





capacitor








d
=

distance





between





the





plates








Note


:






this





is





an





approximate





formula





because











fringing





is






neglected
.




The






real





capacitance











is





higher





than





the






calculated
.






Equation





3


-


3







f
0

=

1

2


π
·


L
·

(


C
T

+

C
S


)










Equation





3


-


4








R
r

=

320






π
4




N
2

(


π
·

r
A
2



λ
2


)










where


:







λ
=

wavelength





at





the





frequency






f
0







Equation





3


-


5








R
t

=

1.25
·


N
·
π
·

r
A



r
w


·




f
0

·

μ
0



σ
·
π











where


:








σ
=

conductivity





of





the





metal





used





for





the












antenna
,

45
-


10
6






S


/


m





used





for





calculations










r
w

=

radius





of





the





copper





tube






Equation





3


-


6







Table 8 shows the values obtained for the current values of antenna parameters.











TABLE 8








L [μH] (calculated value)
9.05



CS [pF] (calculated value)
1.9



CT [pF] (calculated value with the plate-
6.2-18.6



distance varying from 5 mm-15 mm)




Rr [Ohm]
0.0028



Rl [Ohm]
0.264



fR65 [MHz] (measured)
12.5



Quality factor Q (calculated)
2780



Quality factor Q (measured)
1300









An exemplary test arrangement for the pathgain-measurement may be carried out to obtain the actual values. This measurement may completely decouple the transmitter from the receiver, to avoid power transfer on the surface of the coaxial shields and on the power lines. A signal generator and a battery powered spectrum analyzer may be used on the transmitter and the receiver side respectively.


To measure the quality of the matching, the energy returning from the transmitting antenna is measured with a power meter which was connected through a directional coupler. The forward coupling port of the directional coupler was terminated with a 50 Ohm load. During the measurements, the matching was at least 20 dB (return loss). Matching can be varied by adjusting the distance between the antenna and the coupling loop.


On the receiver side, the spectrum analyzer is directly connected to the receiving antenna.


The same resonance frequencies are used for both antennas. Detuning results in a dramatically reduced power transfer. The receiving antenna may use a tuning aid, e.g., a Teflon bar that is selectively insertable into the tunable capacitor of the antenna, resulting in a resonance-shift of approximately 40 kHz, or may use an adjustable capacitor as previously described. For each distance measured, the receiving antenna is tuned to receive the maximum power available. The transmitting antenna is tuned by slightly adjusting the signal generator's frequency.


Table 9 shows the measured pathgains.












TABLE 9






Level at
Level at
Pathgain


Distance [m]
receiver [dBm]
transmitter [dBm]
[dB]


















1.1
3.3
12.5
−9.2


1.5
−3.7
12.5
−16.2


2.0
−10.5
12.5
−23.0


2.5
−18.5
12.5
−31.0


3.0
−25.3
12.5
−37.8









Moreover, since the reactive voltage can easily exceed several kV, it may be useful to test the antenna prototypes to determine that reactive voltage, in order to allow determination of proper sizing for the capacitors. An electrically decoupled system may be used. A source signal from the signal generator is amplified by a 50 dB RF amplifier. The 20 dB attenuator in-between is used to limit the available power on the TX antenna.


The 3 dB attenuator after the amplifier is used to protect the amplifier in case of a mismatched antenna. To measure the quality of the matching, a power meter is used to show the energy returning from the antenna. On the receiver side, a small light bulb (50 Ohm/3 W) may be used to indicate the received power. Tuning and matching was realized by using the tuning aid, by varying the frequency of the signal generator and by varying the distance between the antennas and the coupling loop.


The results are summarized in the Table 10:











TABLE 10








Distance [m]
1.2



Pathgain in dB
−11



Transmitting power [W]
10



Receiving power [W]
0.8



Approximate reactive voltage [kV]
3.1



Approximate field strength in the
310



tuneable capacitor [kV/m]









In one embodiment, sensitivity to close-by objects or humans may cause a shift of the resonance frequency due to e.g., stray capacitance. This may be mitigated by a shield, e.g., a slotted or other shield, disposed around the antenna.


In another embodiment, a piece of mica which has a high dielectric strength and very good isolating capabilities is used in place of the polyimide screws noted above. This also raises the quality factor. It is postulated suggesting that less energy is absorbed by the mica compared to the polymer.


In another configuration, very thin pieces of mica or Teflon are used to hold the capacitor and limit transmitting power.


There is a tradeoff between Q and bandwidth. Due to the high quality factor, the bandwidth of the exemplary second antennas is somewhat narrow, e.g., around 9 kHz at a resonance frequency of 13 MHz. This results in certain tuning requirements, because both antennas have to work on almost exactly the same resonance frequency. Hence, in another embodiment, the antenna sensitivity to approaching objects as described above is reduced using the shield described above. An electronic tuning circuit may be used to automatically tune the antenna circuit(s) to maintain coherence. The detuning issue becomes especially important in a system like this where the Q is very narrow. This narrow Q implies narrow bandwidth, which requires that the tuning be more accurate.


To further evaluate the effects of various external factors or design factors on Q, various aspects of the experimental setup are considered, including e.g. the glass body under the antenna, the piece of mica in the capacitor, the losses of the coupling loop, and the losses of all the objects within the near field of the antenna.


To evaluate these factors, the environment of the antenna should be as ideal as possible. Therefore, the exemplary antenna was suspended with two thin nylon strings. Two coupling loops are used to measure transmission (S 12/S21) instead of reflection (S 11). The coupling loops were placed on both sides of the antenna, about 0.6 m away from the antenna, to achieve an undercritical coupling. That is, when an equal amount of power is dissipated in the external circuit as in the resonator itself, the coupling is said to be critical (and the antenna is matched). An undercritical coupling means that more power is dissipated in the resonator than in the external circuit, while an overcritical coupling means that more power is lost in the external circuit than in the resonator.


The theoretically expected Q for this embodiment is 2877. The realized Q of 2263 is 78.6% of the theoretical value. The theoretical value was almost reached in this test. It was also noted that higher Q, however, may make the antenna more susceptible to influence by its environment. Thus, in practice, the Q will likely always be lower than the theoretical value.


A second measurement showed another characteristic of the quality factor. The loaded quality factor QL should be half of the unloaded quality factor (Qul) under the condition when the resonator is critically coupled.


The foregoing transmitter and receiver apparatus (e.g., antenna, and any associated electronic or electrical components) may also be combined in another embodiment as a transceiver: i.e. a device adapted to both transmit and receive power. This may comprise for example a common form factor (e.g., a single unit or “box” having both transmit and receive antennas and circuitry disposed therein). Moreover, the device may be used as a repeater to receive energy from one source via the receive antenna, and then transmit the received power to another source (or back to the same on) using the transmit antenna. These events (transmission and reception) may occur at the same time or with one delayed relative to each other. Values can be modified depending on the polarization, strength, geometry, relative spacing and placement, and other factors associated with the transmit and receive antennas, or may also be conducted according to any number of well known multiple access schemes such as e.g., frequency division or FDMA (e.g., wherein the resonant frequency of the first antenna (receiver or transmitter) is different or separated from that of the second antenna (transmitter or receiver). As yet another option, the two antennas may use the same or different frequency, and be time-divided or slotted as to their operation (e.g., TDMA).


In another alternative, a “CSMA” like approach may be used (whether with our without “collision detection”), such as where one device actively or passively detects or senses the activity of the other, and adjusts its behavior accordingly. In one such embodiment, the transmitter, before transmitting, detects the state of the receiver (e.g., whether in resonance, generating current, etc.) and uses this as a gating criterion for transmission).


Another embodiment uses a “resonant frequency hopping” approach, wherein multiple access or other aims, such as defeating or mitigating Rayleigh or antenna diversity fading or other such issues, is accomplished by way of periodically or deterministically or psuedorandomly hopping the resonant frequency as a function of time. For example, the transmitter and receiver may “seed” corresponding deterministic algorithms so as to mutually generate a common hop sequence that allows them to maintain synchronized. Alternatively. “in-band” (e.g., modulated power signal) signaling may be used to transmit the hop sequence in advance (or as it proceeds) to the receiver from the transmitter; e.g., “I will hop to frequency X at next interval, and frequency X+Y after that . . . ”, and so forth. A separate low power transmitter, e.g., RF or Bluetooth, can be used to synchronize the specific information. Clocking information may also be sent in an analogous way.


In another embodiment, a passive “collision detection” or CD approach is used, such as where the transmitter attempts to transmit, and determines whether an interfering operation is occurring at the same time. For example, the determination may be by detecting a resonant frequency, a transmission efficiency, a feedback from a receiver, or some other detection. This interfering operation may be caused by the operation of the receiver, a parasitic or stray capacitance effect, a loss of tuning, or other similar effect.


The transmitter may take an action at that point to avoid the issue.


In an embodiment, since the interference is typically temporary, the transmitter can terminate the ongoing transmission and retry a later time. One example of this is via a random backoff via an anti-collision algorithm. One embodiment allows the power has transmitted to be stored in a storage part such as a battery. Because of this, the device can the power transmission can be stopped temporarily; while still allowing the powered device to operate.


The transmitter can attempt to tune itself to a different resonant frequency so as to mitigate the interference and/or attempt to tune or otherwise vary the operation of the receiver.


Another option is to increase the gain so as to increase an energy transfer rate. This may operate to “blast through” the interference as it were).


A system of adjusting polarization or orientation of transmitter and/or receiver can be used, such as via a motor drive or similar mechanism that physically alters the position of the antenna(s).


Any combination of the above can alternatively be used. These features can be implemented at the transmitter, and/or at the receiver basis, or in tandem or coordination between the transmitter and receiver.


Another embodiment uses signaling information between the devices that relates to the level or rate of power transfer as determined by the receiver (e.g., “here's what I'm actually receiving, so you can compare this to what you are actually sending to tune yourself, transmitter”). Moreover, the aforementioned multiple access schemes can be implemented in this fashion; e.g., backoff or CD based on a drop in receiver received power as communicated back to the transmitter via a communication channel.


As yet another alternative embodiment, multiple transmitters and/or receivers may be used, and the aforementioned features implemented as between the multiple transmitters (and/or receivers). For example, the FDMA, TDMA, CSMA or CD techniques may be applied as between two potentially conflicting transmitters.


The foregoing functions may be implemented at an electrical or electronic component level; e.g., via simple gate logic or the like implemented as anything from discrete components through highly integrated circuits, as computer programs or applications running on e.g., a micro-controller or digital processor, via firmware disposed on a IC, manually, or in hardware to the degree applicable (e.g., electromechanical tuners, motors, etc.)


Moreover, the present application contemplates the dynamic alteration or variation of one or more antenna or circuit parameters by environmental characteristics. For example, this can change antenna characteristics. The characteristics that can be changed can include tuning capacitance, resistance value, radius of the loop or coil, e.g. via a thermal effect that causes elongation or contraction of the material used to form the antenna loop(s), thereby changing its effective radius, the properties of the antenna or components in proximity thereto (e.g by selectively applying a particular electric field or magnetic field, alignment of dipoles within the material or components might be selectively altered, thereby affecting the properties of the antenna), as well as electrical or electronic processing such as power signal processing, filtration, modulation, and others.


For example, in one embodiment, the (predominantly) magnetic field of the transmitter is modulated or impressed with information so as to transfer information, along with power.


In another embodiment this information comprises control signaling between the receiver and transmitter, thereby obviating any separate data or communications link (and hence simplifying the system and making it more robust). For instance, the transmitter may modulate the transmitted narrowband signal as a function of time, e.g., via an amplitude modulation, phase modulation, sideband or frequency modulation; e.g., GMSK or sideband shift up or down to encode a data “0” or “1”, pseudo-noise modulation, or other technique. This allows transfer of information relating to inter alia transmitter parameters (such as resonant frequency, polarization, etc. that might otherwise allow the receiver to better “lock on” to the transmitter to optimize power transfer. Duty cycle, clock, or timing information might also be encoded: e.g., windows during which the transmitter will be operational, to synchronize time frames of reference etc.


The theoretical limits on antenna performance are explained herein. Aspects such as the antenna efficiency, quality factor (bandwidth) and size are considered. In addition, a model for the radio wave propagation in the near-field and in the far-field is established.


An electrically small antenna is an antenna that can be fitted into a fraction of a radiansphere, which is a sphere of radius rmax










r
max

=


1
k

=


λ

2

π


=


c

2

π





f


=


d
max

2








(

eq





A


-


1

)







where: k is the wavenumber in m−1


Δ is the wavelength in m


c is the speed of light 299792458 ms-1


f is the frequency in Hz, and


dmax is the diameter of the radiansphere


The antennas used for this application will be electrically small in almost all cases (i.e. k*r<1), where k*r=d*π/λ with r and d the radius and diameter, respectively, of a sphere encompassing the antenna structure.


Electrically small antennas are not typically self-resonant. For low frequencies, the antennas are either capacitive (dipole antenna) or inductive (loop antenna). They can be approximated for example by a first-order series RC or parallel RL circuit. They are brought to resonance by tuning with a reactor of an opposite kind.


The equivalent circuit of such an antenna is shown in FIG. 8 for the capacitive case. One main element of the antenna is the radiation resistance Rr. In the equivalent circuit, this resistor models the radiated power Pr. The loss resistor RL accounts for the conduction and dielectric losses of the antenna. The capacitor C represents the reactive component of the antenna. This, together with the external matching inductor L forms a resonant circuit, which is tuned to the operating frequency. This circuit can also be modeled as an equivalent representation as a parallel resonant circuit.












R
o

+

j






ω
o


L


=


(



R
L

+

R
r





R
a



)

-

j






1


ω
o


C





,


ω
o

=


1

LC







where


:







R
o






is





the





source





resistence





in





Ω






R
a






is





the





antenna





resistence





in





Ω






R
L






is





the





loss





resistence





in





Ω






R
r






is





the





radiation





resistence





in





Ω






ω
o






is





the





resonance





frequency





in






rads

-
1







L





is





the





matching





inductance





in





H





C





is





the





antenna





capacitance





in





F






(

eq





A


-


2

)







For maximum power transfer, the antenna and matching network impedance is complex conjugate matched at resonance to the antenna impedance.


A similar circuit can be derived for the case of an inductive antenna.


Applicants believe that there are fundamental limits on the efficiency and quality Factor of such an antenna. If a certain antenna performance is required, the size of an antenna cannot be reduced to an arbitrary value. Like the well-known Shannon limit in communication theory, which relates channel capacity to bandwidth and dynamic range, there is also a fundamental limit in antenna theory that relates minimum antenna size to the radiation quality factor.


There have been many attempts to calculate the theoretical limits on antenna size. The fundamental work was done by Chu [CHU] and Harrington [HAR]. Their theory states that the antenna is completely enclosed by a sphere of radius r, The field outside the sphere, can be expressed as a sum of weighted spherical waves propagating radially outward. Each wave (mode) exhibits power orthogonality and therefore carries power independently from the others.


It can be mathematically proven that a particular field outside the sphere can be generated with an infinite number of different source distributions. The field outside the sphere is therefore independent from a particular implementation of the antenna. From Chu's calculation it has been shown that an antenna that excites only one mode (either TE01 or TM01) achieves the lowest possible radiation quality factor of any linearly polarized antenna. Based on the above-described fundamental work. Hansen derived an approximate analytical expression for this quality factor Qr [HAN], which has been cited many times in the literature. Mclean further developed and corrected the work from Hansen [MLE], giving an exact expression for the radiation quality factor Qr of a linear polarized antenna:












Q
=

{





2

ω







W
e


P
r



,


W
e

>


W
m



(

capactive





antenna

)










2

ω







W
e


P
r



,


W
m

>


W
e



(

inductive





antenna

)







}







=


1


(
kr
)

3


+

1
kr









Equation





3







where:


Qr is the radiation quality factor (unitless)


ω is the radian frequency in rads−1


We is the time-averaged, non-propagating, stored electric energy in J


Wm is the time-averaged, non-propagating, stored magnetic energy in J


Pr is the radiated power in W


This equation shows that the dominant term for electrically small antennas (k*r<<1) is the cubie term. However, for large antennas (k*r>>1) the radiation quality factor will be governed by the linear term.


A physical implementation of an antenna exhibits losses, i.e. its radiation efficiency is smaller than unity due to non-ideal conductors and dielectrics. The reduction of the efficiency has an impact on the overall quality factor, called the antenna quality factor. Assuming the antenna is power-matched to the source, the antenna quality factor Qa results in:

QnrQr


where:


Qn is the antenna quality factor (unitless)


Eq A4


where:


Qr is the radiation quality factor (unitless)


Three important relations can be derived from Equation A3 and Equation A4: For small antennas the efficiency is proportional to the cube of the relative antenna size and therefore also proportional to the cube of the antenna size and to the cube of the frequency:

ηr∝(kr)2∝r3∝f3  Equation 5

For large antennas the efficiency is proportional to the relative antenna size and therefore also proportional to the antenna size and the frequency:

ηr∝kr∝r∝f  Equation 6

In general, the radiation efficiency is proportional to the antenna quality factor:

ηr∝Qa  Equation 7

For the antenna models in FIG. 4 and FIG. 5 the values for radiation quality factor Qr and radiation efficiency ηr are given as:










Q

r
,
cap


=



Im


{

Z
a

}



Re


{

Z
a

}



=

1


ω
o



R
r


C







Equation





8







Q

r
,
ind


=



Im


{

Y
a

}



Re


{

Y
a

}



=


R
r



ω
o


L







Equation





9







η
r

=



P
r


P

i





n



=


R
r



R
r

+

R
L








Equation





10








where:


ηr is the radiation efficiency (unitless)


Zn is the antenna input impedance in Ω


Ya is the antenna input admittance Ω−1

Pr is the radiated power at resonance in W


Pin is the power input to the antenna at resonance in W


This shows that for a given radiation efficiency, reducing antenna size leads to increased antenna quality factor. For a given antenna size, decreasing radiation efficiency results in lower antenna quality factor. Consequently, for a given radiation efficiency, a higher antenna quality factor is the penalty for a small antenna size.


The antenna quality factor decreases with increasing frequency and increasing antenna size when the radiation efficiency is kept constant. For the wireless powering and charging system the antenna efficiency is the most important criterion, as this determines how much power can be transmitted between two antennas. Equation 5 illustrates that the antenna efficiency is proportional to the cube of the relative antenna size and therefore also proportional to the cube of the absolute antenna size. Increasing the size by a factor of 10 results in an improvement of antenna efficiency of 30 dB (factor 1000), assuming that the antenna quality factor is kept constant.


Equation 7 shows that the antenna quality factor is proportional to the antenna efficiency. Increasing by 10 times the antenna quality factor yields an increase of the antenna efficiency of 10 dB (factor 10), assuming a constant relative antenna size. Antenna efficiency is proportional to the cube of the frequency. An increase by a factor of 10 in the frequency leads to an improvement of the antenna efficiency by 30 dB (factor 1000), assuming that the antenna size and the antenna quality factor are kept constant.


Unlike the fundamental limits on efficiency and quality factor that have been described above, the gain does not present a physical limit. However, as opposed to the gain, there is a good knowledge of the directivity that can be achieved with certain antenna types. The directivity is linked to the gain as follows:

G=η*D  (A11)

Where η is the antenna radiation efficiency


According to Balanis [BAL], the directivity of a small dipole is D=1.5. The same directivity applies also to a small loop. This similarity becomes clear when the principle of duality of the electric and magnetic field is applied, as a small loop can be described with the help of a magnetic dipole.


Higher directivities can be expected from antennas that are not electrically small. This is the case e.g. for the dipole as can be seen from Figure Al. If the maximum antenna dimension is in the order of a wavelength, the directivity is higher than that of the small dipole. However, for the wireless powering and charging system this is only the case for frequencies above 1 GHz.


Radio Wave Propagation


The characteristics of an antenna show a strong dependence on the point (in terms of distance) where their fields are observed. A distinction between near field and far field is often made. In the near-field region, the electromagnetic energy is mainly stored and not radiated (stationary wave). The boundary for this region is usually defined as:

    • Near-field: In the near-field region the electromagnetic energy is mainly stored and not radiated (stationary wave). The boundary for this region is usually defined as:








kr


<<
1




r


<<

λ

2

π





,




where:


k is the wave number, and


r is the observation distance to the antenna


In the far-field region most of the electromagnetic energy is radiated and not stored. The boundary for this area is usually defined as:

    • Far-field: In the far-field region most of the electromagnetic energy is radiated and not stored. The boundary for this area is usually defined as:






kr
>>

1

r

>>

λ

2

π






Between the near-field and the far-field a transition from a stationary into a propagating wave occurs. This is the so-called transition region.


For a distance of 0.5 to 5 m to the antenna the boundary between the near-field and the far-field is in the frequency range of 10 to 100 MHz.


All radio waves propagate in a very different manner in the near-field and in the far-field. From radio communication theory the Friis transmission equation is well known. It describes the ratio of received power to power of a transmit antenna, assuming a certain receive and transmit antenna gain, as well as a certain separation between these antennas:











P
Rx


P
Tx


=


G
Tx





G
Rx



(

λ

4

π





r


)


2






Equation





12







This equation is only valid in the Far-field. For a more general treatment of energy transmission between two antennas, a new equation is developed that also covers the near-field.


The radiated fields of an electrically small dipole will be considered as a basis for this general radio wave propagation model. The dipole can also be used to model a loop antenna because of the principle of duality of the electric and magnetic field. Because of this, the electric field component of a dipole corresponds to the magnetic field component of the loop and vice versa.


Equation 13 and Equation 14 show the components of the electric and the magnetic field of a small dipole. The radial component of the electric field has been omitted, as it accounts only for the reactive energy that is stored in the near-field.










E
θ

=

j





η





k






I
o


l





sin





θ


4

π





r




[

1
+

1
jkr

-

1


(
kr
)

2



]


·

e

-
jkr








Equation





13







H
ϕ

=

j





k






I
o


l





sin





θ


4

π





r




[

1
+

1

j





kr



]


·

e


-
j






kr








Equation





14







In these equations, r is the distance to the antenna and not the antenna radius. After some algebraic manipulations, the following simplified equations for the field magnitude can be obtained:













E
θ



2




1


(
kr
)

2


-

1


(
kr
)

4


+

1


(
kr
)

6





P

RX
,
E






Equation





15










H
ϕ



2




1


(
kr
)

2


+

1


(
kr
)

4





P

RX
,
H






Equation





16







The received power from a co-polarized antenna, that is, one in which the transmit and the receive antenna are parallel to each other, is proportional to the time averaged value of the incident field squared as described above. Thus, the path gain can be calculated as follows










G

path
,

E
ϕ



=



P

RX
,
E



P
TX


=




G
Tx



G
Rx


4



[


1


(
kr
)

2


-

1


(
kr
)

4


+

1


(
kr
)

6



]







Equation





17







G

path
,

H
ϕ



=



P

RX
,
H



P
TX


=




G
Tx



G
Rx


4



[


1


(
kr
)

2


+

1


(
kr
)

4



]







Equation





18







Equation 17 is the propagation law for like antennas (propagation from a dipole to another co-polarized dipole or propagation from a loop to another co-polarized loop). Equation 18 is the propagation law for unlike antennas (propagation from a dipole to a co-polarized loop or propagation from a loop to a co-polarized dipole). The path gain in the near-field is much higher than what would be expected by applying the far-field theory (Friis equation). For the transmission between like antennas in the near-field a path loss of 60 dB/decade can be seen, whereas the transmission between unlike antennas in the near-field has a path loss of 40 dB/decade. This is contrasted to the path loss of 20 dB/decade that is seen in the far-field.


These equations can be used to determine additional antennas and characteristics that can be used for this purpose.


Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art.


For example, other antenna forms and selections can be used. The term “power” as used herein can refer to any kind of energy, power or force transfer of any type. The receiving source can be any device that operates from stored energy, including a computer or peripheral, communicator, automobile, or any other device. Myriad applications of the foregoing transmitter, receiver and transceiver apparatus of the invention are recognized. By way of example and without limitation, such applications include: (i) powering or charging portable computers. PMDs. client devices. cellular phones. etc.; (ii) powering or charging flat screen or wall-mounted televisions or displays; (iii) powering or charging refrigerators (e.g., by placing a transmitter on the wall behind the refrigerator. and a receiver in the refrigerator proximate to the transmitter); (iv) powering or charging electric cars; e.g., by placing or building in a transmitter in the floor of a garage, and placing a receiver on the bottom of the car: (v) powering or charging home or office lighting: e.g., incandescent, fluorescent or LED, based lamps with no cords: (vi) powering or charging home or office appliances such as toasters, blenders, clocks, televisions, microwave ovens, printers, computers, etc.: (vii) powering or charging multiple devices simultaneously (e.g., through the use of a substantially omni-directional transmitter arrangement); and (viii) powering or charging devices where the presence of electrical conductors with voltage would represent a hazard; e.g., near water, near children, etc.


As used herein, the terms “electrical component” and “electronic component” are used interchangeably and refer to, without limitation, components adapted to provide some electrical or electronic function, including without limitation inductive reactors (“choke coils”), transformers, filters, gapped core toroids, inductors, capacitors, resistors, operational amplifiers, varactors, MEMS devices, FETs and other transistors and diodes, whether discrete components or integrated circuits, whether alone or in combination.


As used herein, the term “integrated circuit (IC)” refers to any type of device having any level of integration (including without limitation ULSI, VLSI, and LSI) and irrespective of process or base materials (including, without limitation Si, SiGe, CMOS and GAs). ICs may include, for example, memory devices (e.g., DRAM, SRAM, DDRAM, EEPROM/Flash, ROM), digital processors, SoC devices, FPGAs, ASICs, ADCs, DACs and other devices, as well as any combinations thereof.


As used herein, the term “digital processor” is meant generally to include all types of digital processing devices including, without limitation, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose (CISC) processors, microprocessors, gate arrays (e.g., FPGAs), Reconfigurable Compute Fabrics (RCFs), and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components.


As used herein, the terms “computing device”, “client device”, and “end user device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes such as the Motorola DCT2XXX15XXX and Scientific Atlanta Explorer 2XXX13XXX/4XXX18XXX series digital devices, personal digital assistants (PDAs) such as the Blackberry® or “Palm®” family of devices, handheld computers, personal communicators, J2ME equipped devices, cellular telephones, or literally any other device capable of using power, or interchanging data with a network.


As used herein, the term “memory” includes any type of integrated circuit or other storage device adapted for storing digital data including, without limitation, ROM, PROM, EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDOIFPMS, RLDRAM, SRAM, “flash” memory (e.g., NANDINOR), and PSRAM.


Also, the inventors intend that only those claims which use the words “means for” are intended to be interpreted under 35 use 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims.


The operations and/or flowcharts described herein may be carried out on a computer, or manually. If carried out on a computer, the computer may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation. The computer may be an Intel (e.g., Pentium or Core 2 duo) or AMD based computer, running Windows XP or Linux, or may be a Macintosh computer. The computer may also be a handheld computer, such as a PDA, cellphone, or laptop. Moreover, the method steps and operations described herein can be carried out on a dedicated machine that does these functions.


The programs may be written in C or Python, or Java, Brew or any other programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, wired or wireless network based or Bluetooth based Network Attached Storage (NAS), or other removable medium or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.


Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.

Claims
  • 1. A method of transferring power, comprising: transmitting power from a transmitter to a receiver, wherein the transmitter comprisesa coupling loop driven by a source, anda resonating circuit magnetically coupled to the coupling loop, and spaced apart from the coupling loop, the resonating circuit comprisingan inductive loop antenna, anda capacitor electrically coupled to the inductive loop antenna, the inductive loop antenna spaced apart from the coupling loop, the coupling loop configured to inductively excite the resonating circuit, and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of the receiver;receiving signaling information from the receiver, the signaling information indicating a level of received power as determined by the receiver;comparing the level of the received power to a level of the transmitted power; andtuning the resonant frequency of the transmitter based at least in part on the comparison of the level of the received power to the level of the transmitted power.
  • 2. The method as in claim 1, wherein said tuning comprises matching impedances between the transmitter and the receiver.
  • 3. The method as in claim 2, wherein the capacitor comprises an adjustable capacitor, and wherein said tuning comprises electrically adjusting a capacitance value of the adjustable capacitor in the transmitter.
  • 4. The method as in claim 3, wherein said tuning comprises adjusting a distance between plates in the adjustable capacitor.
  • 5. The method as in claim 3, wherein said adjustable capacitor comprises an electrically adjustable capacitor, and said tuning comprises automatically tuning.
  • 6. The method as in claim 5, wherein said electrically adjustable capacitor comprises a varactor diode.
  • 7. The method as in claim 3, further comprising a fixed value capacitor in addition to said adjustable capacitor.
  • 8. The method as in claim 7, further comprising a variable capacitor that has 8-12% of a capacitance value of the fixed value capacitor.
  • 9. The method as in claim 1, further comprising detecting an object in response to detecting a reduction in matching between the transmitter and the receiver.
  • 10. The method as in claim 1, wherein the capacitor comprises an electrically-adjustable capacitor, and wherein said tuning comprises electrically adjusting a capacitance value of the electrically-adjustable capacitor in the transmitter to a desired value.
  • 11. The method as in claim 1, wherein said transmitting comprises storing energy in a near field of the transmitter and inducing said energy into the receiver.
  • 12. The method as in claim 1, wherein inductive loop antenna has a Q of at least 1000.
  • 13. The method as in claim 1, wherein the inductive loop antenna is a magnetic antenna which is tuned to within 10% of its resonant value.
  • 14. The method as in claim 2, wherein the transmitter includes at least one additional capacitor therein, and further comprising sizing the capacitor and the additional capacitor to withstand at least 2 KV of reactive voltage.
  • 15. A wireless power transmitter, comprising: a coupling loop driven by a source;a resonating circuit magnetically coupled to the coupling loop, and spaced apart from the coupling loop, the resonating circuit comprising an inductive loop antenna and a capacitor electrically coupled to the inductive loop antenna, the inductive loop antenna spaced apart from the coupling loop, the coupling loop configured to inductively excite the resonating circuit, and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of a receiver;a receiving signaling information circuit configured to receive signaling information from the receiver, the signaling information indicating a level of received power as determined by the receiver, and the receiving signaling information circuit further configured to compare the level of the received power to a level of the transmitted power; anda tuning circuit configured to tune the resonant frequency of the inductive loop antenna based at least in part on the comparison of the level of the received power to the level of the transmitted power.
  • 16. The transmitter as in claim 15, wherein said tuning circuit comprises an adjustable capacitor.
  • 17. The transmitter as in claim 16, wherein said adjustable capacitor comprises a capacitor with plates whose relative distance can be adjusted.
  • 18. The transmitter as in claim 15, wherein said tuning circuit comprises an electrically adjustable capacitor.
  • 19. The transmitter as in claim 18, wherein said tuning circuit comprises a varactor diode.
  • 20. The transmitter as in claim 18, further comprising a fixed value capacitor in addition to said adjustable capacitor.
  • 21. The transmitter as in claim 20, wherein the adjustable capacitor is a variable capacitor that has 8-12% of a capacitance value of the fixed value capacitor.
  • 22. The transmitter as in claim 15, further comprising a detection circuit configured to detect, during operation, interference caused by an object reducing the matching between the inductive loop antenna and a receiving antenna, the detection circuit further configured to terminate power transmission until the reduction of matching is terminated.
  • 23. The transmitter as in claim 15, wherein the capacitor comprises an electrically-adjustable capacitor connected to the inductive loop antenna and wherein said tuning circuit electrically adjusts a capacitance value of the electrically-adjustable capacitor to improve said matching.
  • 24. The transmitter as in claim 15, wherein said inductive loop antenna has a Q of at least 1000.
  • 25. The transmitter as in claim 15, wherein said inductive loop antenna is a magnetic antenna which is tuned to within 10% of its resonant value.
  • 26. The transmitter as in claim 15, wherein at least part of said inductive loop antenna is electrically decoupled from said power transmitter.
  • 27. A system for transferring power, the system comprising: means for transmitting power to a receiver, wherein the transmitting means comprises a coupling loop driven by a source; anda resonating circuit magnetically coupled to the coupling loop and spaced apart from the coupling loop, the resonating circuit comprisingan inductive loop antenna; anda capacitor electrically coupled to the inductive loop antenna, the inductive loop antenna spaced apart from the coupling loop, the coupling loop configured to inductively excite the resonating circuit and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of the receiver;means for receiving signaling information from the receiver, the signaling information indicating a level of received power as determined by the receiver;means for comparing the level of the received power to a level of the transmitted power; andmeans for tuning the resonant frequency of the transmitting means based at least in part on the comparison of the level of the received power to the level of the transmitted power.
  • 28. A system for transferring power, the system comprising: a power transmitter configured to transmit power to a receiving antenna of a receiver, wherein the power transmitter comprises a coupling loop driven by a source, and a resonating circuit magnetically coupled to the coupling loop, and spaced apart from the coupling loop, the resonating circuit and comprising an inductive loop antenna and a capacitor electrically coupled to the inductive loop antenna, the inductive loop antenna spaced apart from the coupling loop, the coupling loop configured to inductively excite the resonating circuit and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of the receiver;a signaling information receiver configured to receive signaling information from the receiver, the signaling information indicating a level of received power as determined by the receiver, and the signaling information receiver further configured to compare the level of the received power to a level of the transmitted power; anda controller configured to tune the resonant frequency of the power transmitter based at least in part on the comparison of the level of the received power to the level of the transmitted power.
  • 29. A wireless power transmitter, comprising: means for transmitting power to a receiver, wherein the transmitting means comprises a coupling loop driven by a source; anda resonating circuit magnetically coupled to the coupling loop, and spaced apart from the coupling loop, the resonating circuit comprisingan inductive loop antenna and a capacitor electrically coupled to the inductive loop antenna, the inductive loop antenna spaced apart from the coupling loop, the coupling loop configured to inductively excite the resonating circuit and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of the receiver;a receiving signaling information circuit configured to receive signaling information from the receiver, the signaling information indicating a level of received power as determined by the receiver, and the receiving signaling information circuit further configured to compare the level of the received power to a level of the transmitted power; anda tuning circuit configured to tune the resonant frequency of the inductive loop antenna based at least in part on the comparison of the level of the received power to the level of the transmitted power.
  • 30. The method as in claim 1, wherein the magnetic field modulates the signaling information, and wherein receiving signaling information comprises demodulating the modulated magnetic field.
  • 31. The transmitter as in claim 15, wherein the magnetic field modulates the signaling information, and wherein the receiving signaling information circuit is further configured to demodulate the modulated magnetic field.
  • 32. A wireless power transmitter, comprising: a coupling loop driven by a source;a resonating circuit magnetically coupled to the coupling loop, and spaced apart from the coupling loop, the resonating circuit comprisingan inductive loop antenna; anda capacitor electrically coupled to the inductive loop antenna, the coupling loop configured to inductively excite the resonating circuit and the coupling loop further configured to provide matching between the source and the resonating circuit based at least in part on the spacing between the coupling loop and the resonating circuit, the resonating circuit configured to generate a magnetic field based on being excited by the coupling loop to transmit power sufficient to charge or power a load of a receiver.
  • 33. The transmitter as in claim 32, wherein the capacitor is a fixed capacitor, and wherein the resonating circuit further comprises a tunable capacitor.
  • 34. The transmitter as in claim 33, wherein the tunable capacitor has a tuning range of about ±10 percent of a fixed capacitance value of the fixed capacitor.
  • 35. The transmitter as in claim 33, wherein the fixed capacitor is larger in size than the tunable capacitor.
  • 36. The transmitter as in claim 32, further comprising a second capacitor electrically coupled to the coupling loop, wherein the coupling loop further comprises a tunable capacitor.
  • 37. The transmitter as in claim 36, wherein a quality factor is selected to be inversely proportional to a loss resistance and a radiation resistance.
  • 38. The transmitter as in claim 32, wherein the inductive loop antenna comprises a wire having a plurality of turns, and wherein the quality factor is selected to be proportional to the number of the turns and a surface area of the wire, and inversely proportional to a dielectric loss of the wire.
  • 39. The transmitter as in claim 32, wherein a quality factor of the resonating circuit comprises loaded and unloaded quality factors, and wherein the loaded quality factor has a value half that of the unloaded quality factor.
  • 40. The transmitter as in claim 33, wherein the tunable capacitor of the resonating circuit has a value greater than a self-capacitance of the resonating circuit.
  • 41. The transmitter as in claim 36, wherein each of the tunable capacitors has a tuning range of about ±5 percent of the resonant frequency.
  • 42. The transmitter as in claim 32, wherein the coupling between the coupling loop and the resonating circuit is greater than the coupling between the resonating circuit and a receive antenna of the receiver.
  • 43. The transmitter as in claim 32, wherein the coupling between the coupling loop and resonating circuit substantially behaves as an ideal transformer as compared to coupling between the resonating circuit and a receive antenna of the receiver that behaves as a loosely coupled transformer.
  • 44. The transmitter as in claim 32, wherein the coupling loop has less turns than the inductive loop of the resonating circuit.
  • 45. The transmitter as in claim 32, wherein the coupling loop is at a fixed distance from the resonating circuit and is closer to the resonating circuit as compared to distances between the resonating circuit and a receive antenna of the receiver.
  • 46. The transmitter as in claim 32, wherein the resonating circuit is not electrically connected to a load that uses power received from the coupling loop.
  • 47. The transmitter as in claim 32, further comprising a tuning circuit configured to tune the resonant frequency of the inductive loop antenna, the tuning circuit comprising a fixed capacitor in parallel with a varactor diode.
  • 48. The transmitter as in claim 32, further comprising a tuning circuit configured to tune the resonant frequency of the inductive loop antenna, the tuning circuit comprising comprises an electrically adjustable variable capacitor and a fixed value capacitor.
  • 49. The transmitter as in claim 48, wherein the variable capacitor has 8-12% of a capacitance value of the fixed value capacitor.
RELATED APPLICATIONS

This application is related to co-owned and co-pending U.S. patent application Ser. No. 11/408,793 Filed Apr. 21, 2006 and entitled “Method and System for Powering an Electronic Device Via a Wireless Link”, and U.S. patent application Ser. No. 11/654,883 filed Jan. 17, 2007 entitled “Method and Apparatus for Delivering Energy to an Electrical or Electronic Device Via a Wireless Link”, each of the foregoing incorporated herein by reference in its entirety. This application claims priority from provisional application No. 60/904,628, filed Mar. 2, 2007; the disclosure of which is herewith incorporated herein by reference.

US Referenced Citations (294)
Number Name Date Kind
3098971 Richardson Jul 1963 A
3480229 Entremont Nov 1969 A
3588905 Dunlavy, Jr. Jun 1971 A
3675108 Nicholl Jul 1972 A
3938018 Dahl Feb 1976 A
3999185 Polgar, Jr. et al. Dec 1976 A
4088999 Fletcher et al. May 1978 A
4388524 Walton Jun 1983 A
4390924 Nebiker, Jr. Jun 1983 A
4473825 Walton Sep 1984 A
4524411 Willis Jun 1985 A
4760394 Takeuchi et al. Jul 1988 A
4914539 Turner et al. Apr 1990 A
4959568 Stokes Sep 1990 A
4959764 Bassett Sep 1990 A
5027709 Slagle Jul 1991 A
5072233 Zanzig Dec 1991 A
5153583 Murdoch Oct 1992 A
5175561 Goto Dec 1992 A
5225847 Roberts et al. Jul 1993 A
5287262 Klein Feb 1994 A
5387818 Leibowitz Feb 1995 A
5396538 Hong Mar 1995 A
5397962 Moslehi Mar 1995 A
5400036 Kochiyama et al. Mar 1995 A
5400037 East Mar 1995 A
5438699 Coveley Aug 1995 A
5450305 Boys et al. Sep 1995 A
5455466 Parks et al. Oct 1995 A
5491715 Flaxl Feb 1996 A
5519262 Wood May 1996 A
5574441 Roes et al. Nov 1996 A
5596567 DeMuro et al. Jan 1997 A
5608417 De Vall Mar 1997 A
5621322 Ehnholm Apr 1997 A
5621913 Tuttle et al. Apr 1997 A
5654621 Seelig Aug 1997 A
5684828 Bolan et al. Nov 1997 A
5701121 Murdoch Dec 1997 A
5734255 Thompson et al. Mar 1998 A
5754948 Metze May 1998 A
5767601 Uchiyama Jun 1998 A
5796240 Saito et al. Aug 1998 A
5812065 Schrott et al. Sep 1998 A
5821638 Boys et al. Oct 1998 A
5826178 Owen Oct 1998 A
5856710 Baughman et al. Jan 1999 A
5936575 Azzarelli et al. Aug 1999 A
5963012 Garcia et al. Oct 1999 A
5966941 Ghoshal Oct 1999 A
5975714 Vetorino et al. Nov 1999 A
5982139 Parise Nov 1999 A
6016046 Kaite et al. Jan 2000 A
6028413 Brockmann Feb 2000 A
6031708 Guermeur Feb 2000 A
6040680 Toya et al. Mar 2000 A
6040986 Sakamoto et al. Mar 2000 A
6104354 Hill et al. Aug 2000 A
6114834 Parise Sep 2000 A
6118249 Brockmann et al. Sep 2000 A
6127799 Krishnan Oct 2000 A
6175124 Cole et al. Jan 2001 B1
6184651 Fernandez et al. Feb 2001 B1
6265789 Honda et al. Jul 2001 B1
6275681 Vega et al. Aug 2001 B1
6291901 Cefo Sep 2001 B1
6317338 Boys Nov 2001 B1
6321067 Suga et al. Nov 2001 B1
6337628 Campana, Jr. Jan 2002 B2
6341076 Kadatskyy et al. Jan 2002 B1
6411824 Eidson Jun 2002 B1
6437685 Hanaki Aug 2002 B2
6501364 Hui et al. Dec 2002 B1
6507152 Matsumoto et al. Jan 2003 B2
6515878 Meins Feb 2003 B1
6523493 Brcka Feb 2003 B1
6556054 Goodman et al. Apr 2003 B1
6633026 Tuominen Oct 2003 B2
6636146 Wehoski Oct 2003 B1
6670864 Hyvonen et al. Dec 2003 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6879076 Long Apr 2005 B2
6882128 Rahmel et al. Apr 2005 B1
6891287 Moret May 2005 B2
6912137 Berghegger Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6965352 Ohara et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6972542 Patino et al. Dec 2005 B2
6972543 Wells Dec 2005 B1
7012405 Nishida et al. Mar 2006 B2
7068991 Parise Jun 2006 B2
7076206 Elferich et al. Jul 2006 B2
7095301 Hidaka et al. Aug 2006 B2
7110462 Monsen Sep 2006 B2
7116018 Strobl Oct 2006 B2
7154451 Sievenpiper Dec 2006 B1
7164344 Deguchi et al. Jan 2007 B2
7167139 Kim et al. Jan 2007 B2
7180265 Naskali et al. Feb 2007 B2
7180291 Chmielewski et al. Feb 2007 B2
7209792 Parramon et al. Apr 2007 B1
7212414 Baarman May 2007 B2
7215061 Kihara et al. May 2007 B2
7248165 Collins et al. Jul 2007 B2
7256532 Viehland et al. Aug 2007 B2
7257093 Witzke et al. Aug 2007 B1
7262701 Nguyen Aug 2007 B1
7380150 Meier et al. May 2008 B2
7423518 Yamada Sep 2008 B2
7511500 Schiano et al. Mar 2009 B2
7522846 Lewis et al. Apr 2009 B1
7525283 Cheng et al. Apr 2009 B2
7554316 Stevens et al. Jun 2009 B2
7598646 Cleveland Oct 2009 B2
7603077 Onomatsu et al. Oct 2009 B2
7675197 Tetlow Mar 2010 B2
7676263 Harris et al. Mar 2010 B2
7688036 Yarger et al. Mar 2010 B2
7755552 Schantz et al. Jul 2010 B2
7760151 Poilasne et al. Jul 2010 B2
7777396 Rastegar et al. Aug 2010 B2
7825543 Karalis et al. Nov 2010 B2
7839124 Yamazaki et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7885050 Lee Feb 2011 B2
8055310 Beart et al. Nov 2011 B2
8159412 Yun et al. Apr 2012 B2
8169185 Partovi et al. May 2012 B2
8253278 Cook et al. Aug 2012 B2
8373514 Cook et al. Feb 2013 B2
8378522 Cook et al. Feb 2013 B2
8378523 Cook et al. Feb 2013 B2
20010012208 Boys Aug 2001 A1
20010026244 Ieda et al. Oct 2001 A1
20010029167 Takeda et al. Oct 2001 A1
20020017979 Krause et al. Feb 2002 A1
20020029797 Mikami et al. Mar 2002 A1
20020036977 Lenssen et al. Mar 2002 A1
20020057161 Katsura et al. May 2002 A1
20020057584 Brockmann May 2002 A1
20020077138 Bark et al. Jun 2002 A1
20020123779 Zarinetchi et al. Sep 2002 A1
20020150065 Ponnekanti Oct 2002 A1
20020160722 Terranova et al. Oct 2002 A1
20020180584 McGregor et al. Dec 2002 A1
20020190908 Andrews et al. Dec 2002 A1
20030090353 Robinson et al. May 2003 A1
20030144031 Ono et al. Jul 2003 A1
20030162566 Shapira et al. Aug 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030193438 Yoon Oct 2003 A1
20030199778 Mickle et al. Oct 2003 A1
20030203733 Sharon Oct 2003 A1
20030214961 Nevo et al. Nov 2003 A1
20040001029 Parsche et al. Jan 2004 A1
20040002835 Nelson Jan 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040150521 Stilp Aug 2004 A1
20040160323 Stilp Aug 2004 A1
20040178680 Fishman Sep 2004 A1
20040183622 Gevorgian et al. Sep 2004 A1
20040212500 Stilp Oct 2004 A1
20040227002 Watanabe Nov 2004 A1
20040227057 Tuominen et al. Nov 2004 A1
20040227619 Watanabe Nov 2004 A1
20050007239 Woodard et al. Jan 2005 A1
20050017677 Burton et al. Jan 2005 A1
20050029351 Yoshinaga et al. Feb 2005 A1
20050043055 Vance Feb 2005 A1
20050057422 Deguchi et al. Mar 2005 A1
20050075697 Olson et al. Apr 2005 A1
20050104457 Jordan et al. May 2005 A1
20050119716 McClure et al. Jun 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050127867 Calhoon et al. Jun 2005 A1
20050131495 Parramon et al. Jun 2005 A1
20050194926 Di Stefano Sep 2005 A1
20050264452 Fujishima et al. Dec 2005 A1
20050273143 Kanzius Dec 2005 A1
20060017438 Mullen et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060061325 Tang et al. Mar 2006 A1
20060071790 Duron et al. Apr 2006 A1
20060094449 Goldberg May 2006 A1
20060103355 Patino et al. May 2006 A1
20060103506 Rodgers et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060121639 Tai et al. Jun 2006 A1
20060125703 Ma et al. Jun 2006 A1
20060145659 Patino et al. Jul 2006 A1
20060145660 Black et al. Jul 2006 A1
20060159536 Pu Jul 2006 A1
20060160517 Yoon Jul 2006 A1
20060164312 Mathieu Jul 2006 A1
20060176676 Kuroda et al. Aug 2006 A1
20060208903 Loh et al. Sep 2006 A1
20060239043 Ohbo Oct 2006 A1
20060273756 Bowling et al. Dec 2006 A1
20070010295 Greene et al. Jan 2007 A1
20070029965 Hui et al. Feb 2007 A1
20070046433 Mukherjee Mar 2007 A1
20070054705 Liow et al. Mar 2007 A1
20070060221 Burgan et al. Mar 2007 A1
20070082611 Terranova et al. Apr 2007 A1
20070087719 Mandal et al. Apr 2007 A1
20070091006 Thober et al. Apr 2007 A1
20070096910 Waters May 2007 A1
20070103110 Sagoo et al. May 2007 A1
20070103291 Adams May 2007 A1
20070105524 Fullam et al. May 2007 A1
20070114945 Mattaboni et al. May 2007 A1
20070120678 Posamentier May 2007 A1
20070126395 Suchar Jun 2007 A1
20070126650 Guenther Jun 2007 A1
20070135078 Ljung Jun 2007 A1
20070139000 Kozuma et al. Jun 2007 A1
20070145830 Lee et al. Jun 2007 A1
20070146218 Turner et al. Jun 2007 A1
20070156204 Denker et al. Jul 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070171681 Baarman Jul 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070188326 Pluss et al. Aug 2007 A1
20070188375 Richards Aug 2007 A1
20070205881 Breed Sep 2007 A1
20070214940 Stoneback Sep 2007 A1
20070222542 Joannopoulos Sep 2007 A1
20070229281 Shionoiri et al. Oct 2007 A1
20070281625 Boys Dec 2007 A1
20070285819 Gerhardinger Dec 2007 A1
20070296393 Malpas et al. Dec 2007 A1
20070296548 Hall et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080003963 Turner Jan 2008 A1
20080014897 Cook et al. Jan 2008 A1
20080054638 Greene et al. Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080093454 Yamazaki et al. Apr 2008 A1
20080093934 Kato Apr 2008 A1
20080108862 Jordan et al. May 2008 A1
20080122294 Simon et al. May 2008 A1
20080122297 Arai May 2008 A1
20080129147 Thiesen et al. Jun 2008 A1
20080152183 Janik et al. Jun 2008 A1
20080167755 Curt Jul 2008 A1
20080186129 Fitzgibbon Aug 2008 A1
20080191897 McCollough Aug 2008 A1
20080211455 Park et al. Sep 2008 A1
20080211630 Butler et al. Sep 2008 A1
20080225564 Bohm et al. Sep 2008 A1
20080293446 Rofougaran et al. Nov 2008 A1
20080296978 Finkenzeller et al. Dec 2008 A1
20080309452 Zeine Dec 2008 A1
20080317274 Kim Dec 2008 A1
20090002175 Waters Jan 2009 A1
20090009177 Kim et al. Jan 2009 A1
20090026907 Davidowitz et al. Jan 2009 A1
20090045772 Cook et al. Feb 2009 A1
20090051224 Cook et al. Feb 2009 A1
20090052721 Dabrowski Feb 2009 A1
20090058361 John Mar 2009 A1
20090072627 Cook et al. Mar 2009 A1
20090079268 Cook et al. Mar 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090102419 Gwon et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090111531 Cui et al. Apr 2009 A1
20090121713 Van Helvoort May 2009 A1
20090146892 Shimizu et al. Jun 2009 A1
20090167449 Cook et al. Jul 2009 A1
20090171178 He Jul 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090243394 Levine Oct 2009 A1
20090273242 Cook Nov 2009 A1
20090299918 Cook et al. Dec 2009 A1
20090308933 Osada Dec 2009 A1
20100013434 Taylor-Haw et al. Jan 2010 A1
20100068998 Zyambo et al. Mar 2010 A1
20100109445 Kurs et al. May 2010 A1
20100134366 Yu Jun 2010 A1
20100176936 Garber et al. Jul 2010 A1
20100277387 Schantz et al. Nov 2010 A1
20100289331 Shionoiri et al. Nov 2010 A1
20100289449 Elo Nov 2010 A1
20100315045 Zeine Dec 2010 A1
20110031821 Greene et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110069516 Greene et al. Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20120299540 Perry Nov 2012 A1
Foreign Referenced Citations (171)
Number Date Country
1202025 Dec 1998 CN
1231069 Oct 1999 CN
1237009 Dec 1999 CN
2582188 Oct 2003 CN
1497768 May 2004 CN
1545747 Nov 2004 CN
1677791 Oct 2005 CN
1689190 Oct 2005 CN
1768467 May 2006 CN
4023412 Feb 1992 DE
19509918 Sep 1996 DE
19729722 Jan 1999 DE
19938460 Feb 2001 DE
102004009896 Sep 2005 DE
102005053111 May 2007 DE
0568920 Nov 1993 EP
298707 Sep 1994 EP
724308 Jul 1996 EP
773509 Apr 2002 EP
1233547 Aug 2002 EP
1302822 Apr 2003 EP
1315051 May 2003 EP
1003266 Apr 2006 EP
1413975 May 2007 EP
1892799 Feb 2008 EP
1280516 Jul 1972 GB
1343071 Jan 1974 GB
2070298 Sep 1981 GB
2318696 Apr 1998 GB
S55111632 Aug 1980 JP
S55133106 Oct 1980 JP
57032144 Feb 1982 JP
S58170330 Oct 1983 JP
62071430 Apr 1987 JP
S6312824 Jan 1988 JP
1298901 Dec 1989 JP
H037034 Jan 1991 JP
H0317483 Jan 1991 JP
H0449483 Feb 1992 JP
4115606 Apr 1992 JP
H04112635 Apr 1992 JP
04271201 Sep 1992 JP
5038232 Feb 1993 JP
H0541335 Feb 1993 JP
H05300663 Nov 1993 JP
6044207 Feb 1994 JP
06133476 May 1994 JP
6044207 Jun 1994 JP
6303726 Oct 1994 JP
6327172 Nov 1994 JP
6339232 Dec 1994 JP
H07147212 Jun 1995 JP
8033244 Feb 1996 JP
8079976 Mar 1996 JP
8088942 Apr 1996 JP
H08103039 Apr 1996 JP
8130840 May 1996 JP
8162689 Jun 1996 JP
9037475 Feb 1997 JP
H0962816 Mar 1997 JP
9182322 Jul 1997 JP
H1069533 Mar 1998 JP
10097931 Apr 1998 JP
10145987 May 1998 JP
10225020 Aug 1998 JP
H1132471 Feb 1999 JP
H1155878 Feb 1999 JP
H1197262 Apr 1999 JP
11143600 May 1999 JP
11188113 Jul 1999 JP
11191146 Jul 1999 JP
H11188113 Jul 1999 JP
H11196541 Jul 1999 JP
11215802 Aug 1999 JP
H11220813 Aug 1999 JP
11332135 Nov 1999 JP
H11308033 Nov 1999 JP
H11345292 Dec 1999 JP
2000078763 Mar 2000 JP
2000133542 May 2000 JP
2000173825 Jun 2000 JP
2000175379 Jun 2000 JP
2000184606 Jun 2000 JP
2000217279 Aug 2000 JP
2000285214 Oct 2000 JP
2001024548 Jan 2001 JP
2001177916 Jun 2001 JP
2001186676 Jul 2001 JP
2001197672 Jul 2001 JP
2001238372 Aug 2001 JP
2001264432 Sep 2001 JP
2001326526 Nov 2001 JP
2001526374 Dec 2001 JP
2002017058 Jan 2002 JP
2002078247 Mar 2002 JP
2002508916 Mar 2002 JP
2002152191 May 2002 JP
2002163634 Jun 2002 JP
2002198868 Jul 2002 JP
2002290131 Oct 2002 JP
2002315209 Oct 2002 JP
2002320347 Oct 2002 JP
2003047177 Feb 2003 JP
2003047178 Feb 2003 JP
2003069335 Mar 2003 JP
2003111312 Apr 2003 JP
2003158651 May 2003 JP
2003189507 Jul 2003 JP
2003218624 Jul 2003 JP
3465078 Nov 2003 JP
2004096262 Mar 2004 JP
2004187429 Jul 2004 JP
2005020231 Jan 2005 JP
2005039756 Feb 2005 JP
2005045298 Feb 2005 JP
2005137040 May 2005 JP
3692541 Sep 2005 JP
2005250545 Sep 2005 JP
2005261187 Sep 2005 JP
2006042519 Feb 2006 JP
2006048580 Feb 2006 JP
2006053833 Feb 2006 JP
2006510101 Mar 2006 JP
2006115592 Apr 2006 JP
2006149163 Jun 2006 JP
2006518179 Aug 2006 JP
2006254679 Sep 2006 JP
2006296123 Oct 2006 JP
2006296144 Oct 2006 JP
2006523363 Oct 2006 JP
2006317787 Nov 2006 JP
2006323683 Nov 2006 JP
2007060829 Mar 2007 JP
2007110842 Apr 2007 JP
2007129658 May 2007 JP
2007200370 Aug 2007 JP
2007280372 Oct 2007 JP
2008508842 Mar 2008 JP
2009501510 Jan 2009 JP
2010539821 Dec 2010 JP
102000017058 Mar 2000 KR
1020010030472 Apr 2001 KR
20020064451 Aug 2002 KR
20050016879 Feb 2005 KR
20060070795 Jun 2006 KR
20070017804 Feb 2007 KR
100691255 Mar 2007 KR
20070048071 May 2007 KR
20100083846 Jul 2010 KR
WO8807732 Oct 1988 WO
9323908 Nov 1993 WO
WO9619028 Jun 1996 WO
9850993 Nov 1998 WO
WO9857413 Dec 1998 WO
WO9930090 Jun 1999 WO
WO9950780 Oct 1999 WO
WO9950806 Oct 1999 WO
WO0167413 Sep 2001 WO
WO0260215 Aug 2002 WO
WO03077364 Sep 2003 WO
WO2004038887 May 2004 WO
WO2004052563 Jun 2004 WO
WO-2004073150 Aug 2004 WO
WO2004077550 Sep 2004 WO
WO2005086279 Sep 2005 WO
WO2006006636 Jan 2006 WO
WO2006011769 Feb 2006 WO
WO2007008646 Jan 2007 WO
WO2007048052 Apr 2007 WO
2007083574 Jul 2007 WO
WO2007077442 Jul 2007 WO
Non-Patent Literature Citations (32)
Entry
Dong-Gi Youn et al, “A Study on the Fundamental Transmission Experiment for Wireless Power Transmission System,” 1999 IEEE Conference, TENCON 99, vol. 2, pp. 1419-1422, Sep. 1999.
Finkenzeller, “RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification,” Second Edition, Translated by Rachel Waddington, 2003, John Wiley & Sons Ltd., pp. 106-111.
McSpadden et al., “A High Conversion Efficiency 5.8 GHz Rectenna,” 1997 IEEE Microwave Symposium, vol. 2, pp. 547-550, Jun. 1997.
McSpadden et al., “Theoretical and Experimental Investigation of a Rectenna Element for Microwave Power Transmission,” 1992 IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 2359-2366, Dec. 1992.
Kim et al., Switchable polymer-based thin film coils as a power module wireless neural interfaces, Sensors and Actuators, vol. A 136, Issue 1, May 2007 (available online Nov. 27, 2006), pp. 467-474.
Myers et al., “A transcutaneous power transformer,” Trans. Amer. Soc. Artif. Inter. Organs, vol. 14, 1968, pp. 210-219.
Shinohara et al., “Experimental Study of Large Rectenna Array for Microwave Energy Transmission,” 1998 IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 261-268, Mar. 1998.
Onizuka, et al., A design methodology of chip-to-chip wireless power transmission system, Univ. of Tokyo, International Conference on Integrated Circuit Design and Technology, 2007 (ICICDT '07), IEEE, May-Jun. 2007, pp. 1-4.
Schuder et al., “High Level electromagnetic energy transfer through a closed wall”, Inst.Radio Engrs. Int.Conf Record 9, pp. 119-126, 1961.
Schuder J.C., “Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960”, Artificial organs , vol. 26, No. 11, 2002, pp. 909-915.
Tae-Whan Yoo et al., “Theoretical and Experimental Development of 10 and 35 GHz Rectennas,” 1992 IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 1259-1266, Jun. 1992.
Sekitani et al., “A Large-area Wireless Power-Transmission Sheet Using Printed Organic Transistors and Plastic MEMS Switches,” Nature Materials Letter, pp. 413-417; Jan. 2007.
Kurs et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, scimag.org, Jul. 6, 2007, Science, 317: 83-86.
Chunbo et al.,“Research on the topology of wireless energy transfer device”, Sch. of Electr. Eng. & Autom., Harbin Inst. of Technol., Harbin This paper appears in: Vehicle Power and Propulsion Conference, 2008. VPPC '08. IEEE Issue Date : Sep. 3-5, 2008 On p. 1 Print ISBN: 978--14244-1848-0 INSPEC Accession Number: 10394615 Digital Object Identifier : 10.1109/VPPC.2008.4677798 Date of Current Version : Nov. 18, 2008.
Karalis et al., “Efficient wireless no-rediative mid-range energy transfer”, Science Direct, Annals of Physics, 323(1),34-48.(Jan. 2008). doi:10.1016/j.aop.2007.04.017.
Kim et al., “Electrically Small Magnetic Dipole Antennas With Quality Factors Approaching the Chu Lower Bound”, Antennas and Propagation, IEEE Transactions on vol. 58 Issue: 6 Publication Date: Jun. 2010 pp. 1898-1906 Digital Object Identifier: 10.1109/TAP.2010.2046864.
Miranda et al.,“Wireless power transfer using weakly coupled magnetostatic resonators”, Energy Conversion Congress and Exposition (ECCE), 2010 IEEE Digital Object Identifier: 10.1109/ECCE.2010.5617728 Publication Year: 2010 , pp. 4179-4186 IEEE Conferences.
Yates et al., “Optimal transmission frequency for ultralow-power short-range radio links”, Source: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, v 51, No. 7, 1405-13, Jul. 2004; ISSN: 1057-7122; DOI: 10.1109/TCSI.2004.830696; Publisher: IEEE, USA Author affiliation: Dept. of Electr. & Electron. Eng., Imperial Coll. London, UK.
Harrist, Wireless battery charging system using radio frequency energy harvesting, Master of Science Thesis, University of Pittsburgh, 2004.
International Search Report and Written Opinion—PCT/US08/055600—International Search Authority, European Patent Office—dated Aug. 13, 2008.
Ozawa, R., et al., “Wireless Energy Transmission for Micro Aerial Vehicles Using a Microwave Phased Array,” 3rd International Energy Conversion Engineering Conference, Aug. 15-18, 2005, San Francisco, CA, pp. 1-6.
Bayrashev, Andrey, et al., “Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites,” Sensors & Actuators A: Physical, Sep. 2004, vol. 114, Issue 2/3, pp. 244-249.
Dudek, et al., “High permeability micro-magneto-mechanical systems,” International Journal of Applied Electromagnetics and Mechanics (2007), vol. 25, pp. 103-108.
Supplementary European search report—EP08731198—Search Authority—Munich—dated Dec. 10, 2012.
Onizuka K., et al., “Chip-to-Chip Inductive Wireless Power Transmission System for SiP Applications,” Conference 2006, IEEE Custom Integrated Circuits, IEEE, Piscataway, NJ, USA, Sep. 1, 2006 (Sep. 1, 2006), pp. 575-578, XP031052537.
Lo E., et al., “Wireless Battery Charger” (RF/Microwave to DC Conversion), EE 198B Final Report, Dec. 2, 2005, pp. 1-20. http://www.engr.sjsu.edu/rkwok/projects/EE198B%20-%20Wireless%20Battery%20Charger.pdf.
ATIS Telecom Glossary, available at http://www.atis.org/glossary/definition.aspx?id=5951, retrieved on Mar. 23, 2015, 1 Page.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, the Institute of Electrical and Electronics Engineers, Inc. Published Dec. 2000, p. 121.
“Wireless Non-Radiative Energy Transfer”, MIT paper, publication and date unknown, believed to be 2007.
“Efficient wireless non-radiative mid-range energy transfer”, MITpaper, publication and date unknown, believed to be 2007.
“Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Kurs et al, Science Express, Jun. 7, 2007.
“Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Kurs et al, scimag.org, Jul. 6, 2007.
Related Publications (1)
Number Date Country
20080211320 A1 Sep 2008 US
Provisional Applications (1)
Number Date Country
60904628 Mar 2007 US