This relates generally to power systems, and, more particularly, to wireless power systems for charging electronic devices.
In a wireless charging system, a wireless power transmitting device such as a charging mat wirelessly transmits power to a wireless power receiving device such as a portable electronic device. The portable electronic device has a coil and rectifier circuitry. The coil of the portable electronic device receives alternating-current wireless power signals from the wireless power transmitting device. The rectifier circuitry converts the received signals into direct-current power.
A wireless power system has a wireless power transmitting device and multiple wireless power receiving devices. The wireless power transmitting device has a housing the multiple wireless power coils configured to operate respectively with the multiple wireless power receiving devices.
The wireless power transmitting device has a housing such as a foldable housing. A wired power port in the power is configured to couple to a cable providing wired power. An optional wireless power receiving coil and optional battery can be used to receive wireless power and store power.
The wireless power coils are used in transmitting wireless power to electronic devices such as cellular telephones, wristwatches, ear buds battery cases, ear buds, computer styluses, and other electronic devices. A rectifier can be coupled to a wireless power coil. In a first mode the coil transmits wireless power to a cellular telephone or other device. In a second mode, the coil is used in receiving wireless power from the cellular telephone or other device. In this way, power can be harvested from a battery of the cellular telephone or other device and redistribute to a wristwatch, computer stylus, ear buds battery case, ear buds, or other electronic devices.
A wireless power system includes a wireless power transmitting device. The wireless power transmitting device wirelessly transmits power to one or more multiple wireless power receiving devices. Power for the wireless power transmissions is received from external equipment or is harvested from one of the wireless power receiving devices. If desired, power for the wireless power transmissions may be stored in an optional internal battery.
The wireless power receiving devices are devices such as wrist watches, cellular telephones, tablet computers, laptop computers, wireless ear buds (in-ear headphones), battery cases for earbuds or other equipment, computer styluses, or other electronic equipment. The wireless power receiving devices use power from the wireless power transmitting device for charging internal batteries and powering internal circuitry.
The wireless power transmitting device has a housing. Coils for transmitting and/or receiving wireless power and other wireless power circuitry are housed within the housing. Magnets may also be housed within the housing. During charging operations, the magnets may be used to hold the wireless power receiving devices in place in alignment with the coils.
An illustrative wireless power system (wireless charging system) is shown in
Control circuitry in system 8 may be configured to perform operations in system 8 using hardware (e.g., dedicated hardware or circuitry), firmware and/or software. Software code for performing operations in system 8 is stored on non-transitory computer readable storage media (e.g., tangible computer readable storage media) in control circuitry 8. The software code may sometimes be referred to as software, data, program instructions, instructions, or code. The non-transitory computer readable storage media may include non-volatile memory such as non-volatile random-access memory (NVRAM), one or more hard drives (e.g., magnetic drives or solid state drives), one or more removable flash drives or other removable media, or the like. Software stored on the non-transitory computer readable storage media may be executed on the processing circuitry of control circuitry 16 and/or 30. The processing circuitry may include application-specific integrated circuits with processing circuitry, one or more microprocessors, a central processing unit (CPU) or other processing circuitry.
Power transmitting device 12 may operate as a stand-alone power adapter (e.g., a wireless charging mat that includes power adapter circuitry), may be coupled to a power adapter or other equipment by a cable, may be a portable device such as a foldable device, may include a battery, may serve as a cover or case, or may be other wireless power transfer equipment. Illustrative configurations in which wireless power transmitting device 12 transmits wireless power to multiple wireless power receiving devices 24 are sometimes described herein as an example.
Each of the power receiving devices in system 8 such as device 24 of
Direct-current power in device 12 is used to power control circuitry 16. During operation, a controller in control circuitry 16 uses power transmitting circuitry 52 to transmit wireless power to power receiving circuitry 54 of each device 24 in system 8. Power transmitting circuitry 52 may have switching circuitry (e.g., inverter circuitry 61 formed from transistors) that is turned on and off based on control signals provided by control circuitry 16 to create AC current signals through one or more wireless power transmitting coils such as wireless power transmitting coil(s) 36. These coil drive signals cause coil(s) 36 to transmit wireless power. Multiple coils 36 may be included in device 12 (e.g., at least two coils, at least three coils, at least five coils, 3-10 coils, fewer than ten coils, fewer than eight coils, or other suitable number of coils).
As AC current from inverter 61 passes through coils 36, alternating-current electromagnetic (e.g., magnetic) fields (wireless power signals 44) are produced that are received corresponding receiver coil(s) 48. Each wireless power receiving device 24 may have a single coil 48, at least two coils 48, at least three coils 48, at least four coils 48, or other suitable number of coils 48. Illustrative configurations in which each of devices 24 has a single wireless power receiving coil 48 may sometimes be described herein as an example.
When the alternating-current electromagnetic fields are received by coil 48 in device 24, corresponding alternating-current currents are induced in coil 48. The AC signals that are used in transmitting wireless power may have any suitable frequency (e.g., 100-250 kHz, less than 100 kHz, more than 250 kHz, etc.). Rectifier circuitry such as rectifier circuitry 50, which contains rectifying components such as synchronous rectification metal-oxide-semiconductor transistors arranged in a bridge network, converts received AC signals (received alternating-current signals associated with electromagnetic signals 44) from coil 48 into DC voltage signals for powering device 24.
The DC voltage produced by rectifier circuitry 50 (sometime referred to as rectifier output voltage Vrect) can be used in charging a battery such as battery 58 and can be used in powering other components in device 24. These components may include, for example, input-output devices 56. Input-output devices 56 may include input devices for gathering user input and/or making environmental measurements and may include output devices for providing a user with output. As an example, input-output devices 56 may include a display for creating visual output, a speaker for presenting output as audio signals, light-emitting diode status indicator lights and other light-emitting components for emitting light that provides a user with status information and/or other information, haptic devices for generating vibrations and other haptic output, and/or other output devices. Input-output devices 56 may also include sensors for gathering input from a user and/or for making measurements of the surroundings of system 8. Illustrative sensors that may be included in input-output devices 56 include three-dimensional sensors (e.g., three-dimensional image sensors such as structured light sensors that emit beams of light and that use two-dimensional digital image sensors to gather image data for three-dimensional images from light spots that are produced when a target is illuminated by the beams of light, binocular three-dimensional image sensors that gather three-dimensional images using two or more cameras in a binocular imaging arrangement, three-dimensional lidar (light detection and ranging) sensors, three-dimensional radio-frequency sensors, or other sensors that gather three-dimensional image data), cameras (e.g., infrared and/or visible cameras with respective infrared and/or visible digital image sensors and/or ultraviolet light cameras), gaze tracking sensors (e.g., a gaze tracking system based on an image sensor and, if desired, a light source that emits one or more beams of light that are tracked using the image sensor after reflecting from a user's eyes), touch sensors, buttons, capacitive proximity sensors, light-based (optical) proximity sensors such as infrared proximity sensors, other proximity sensors, force sensors, sensors such as contact sensors based on switches, gas sensors, pressure sensors, moisture sensors, magnetic sensors, audio sensors (microphones), ambient light sensors, optical sensors for making spectral measurements and other measurements on target objects (e.g., by emitting light and measuring reflected light), microphones for gathering voice commands and other audio input, distance sensors, motion, position, and/or orientation sensors that are configured to gather information on motion, position, and/or orientation (e.g., accelerometers, gyroscopes, compasses, and/or inertial measurement units that include all of these sensors or a subset of one or two of these sensors), sensors such as buttons that detect button press input, joysticks with sensors that detect joystick movement, keyboards, and/or other sensors. Device 12 may have one or more input-output devices 70 (e.g., input devices and/or output devices of the type described in connection with input-output devices 56). Some or all of input-output devices 70 in device 12 may also be omitted (e.g., to save space and reduce complexity for the circuitry of device 12).
Device 12 and/or device 24 may communicate wirelessly using in-band or out-of-band communications. Device 12 may, for example, have wireless transceiver circuitry 40 that wirelessly transmits out-of-band signals to device 24 using an antenna. Wireless transceiver circuitry 40 may be used to wirelessly receive out-of-band signals from device 24 using the antenna. Device 24 may have wireless transceiver circuitry 46 that transmits out-of-band signals to device 12. Receiver circuitry in wireless transceiver 46 may use an antenna to receive out-of-band signals from device 12. In-band transmissions between devices 12 and 24 may be performed using coils 36 and 48. With one illustrative configuration, frequency-shift keying (FSK) is used to convey in-band data from wireless power transmitting circuitry to wireless power receiving circuitry (e.g., from device 12 to device 24) and amplitude-shift keying (ASK) is used to convey in-band data from wireless power receiving circuitry to wireless power transmitting circuitry (e.g., from device 24 to device 12). Power may be conveyed wirelessly during these FSK and ASK transmissions.
It is desirable for power transmitting device 12 and power receiving device 24 to be able to communicate information such as received power, battery states of charge, and so forth, to control wireless power transfer. However, the above-described technology need not involve the transmission of personally identifiable information in order to function. Out of an abundance of caution, it is noted that to the extent that any implementation of this charging technology involves the use of personally identifiable information, implementers should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users. In particular, personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.
Control circuitry 16 may have external object measurement circuitry 41. Circuitry 41 may be used to detect whether external objects are present on the charging surface of the housing of device 12 (e.g., to detect objects on the top of a charging mat or, if desired, to detect objects adjacent to the coupling surface of a charging puck). The housing of device 12 may have polymer walls, walls of other dielectric, metal structures, fabric, and/or other housing wall structures that enclose coils 36 and other circuitry of device 12. The charging surface may be a planer outer surface of the upper housing wall of device 12 or an outer surface having other shapes (e.g., concave, convex, etc.). Circuitry 41 can detect foreign objects such as coils, paper clips, and other metallic objects and can detect the presence of wireless power receiving devices 24 (e.g., circuitry 41 can detect the presence of one or more coils 48).
During object detection and characterization operations, external object measurement circuitry 41 can be used to make measurements on coils 36 and/or on other coils such as optional foreign object detection coils in device 12 to determine whether any devices 24 are present on device 12. In an illustrative arrangement, measurement circuitry 41 of control circuitry 16 contains signal generator circuitry such as a pulse generator that supplies control signals to inverter 61. These control signals cause inverter 61 to create impulses so that impulse responses can be measured by circuitry 41 (e.g., by using a voltage sensor, an analog-to-digital converter configured to convert analog voltage measurements to digital voltage measurements, and/or other sensing circuitry). Measurement circuitry 41 may also have alternating-current sources and other circuitry for making measurements on coil 36. In some embodiments, quality-factor measurements are made on coil 36 to determine whether a foreign object is present.
During wireless power transmission, the control circuitry of device 12 supplies signals to control input 82 of inverter circuitry 61 that cause inverter 61 to supply alternating-current drive signals to coil 36. Circuit components such as capacitor 70 may be coupled in series with coil 36 as shown in
In an illustrative embodiment, wireless power transmitting circuitry 52 is located in device 12 and wireless power receiving circuitry such as circuitry 54 of
Device 24A has circuitry of the type described in connection with device 24 of
Devices 24 may include devices such as device 24′ that can both transmit and receive wireless power (e.g., a cellular telephone, tablet computer, etc.) and devices 24″ that only receive wireless power (e.g., ear buds, a wrist watch, a computer stylus, etc.). Device 12 includes corresponding wireless power circuits. Wireless power circuits 124 are configured to only transmit wireless power and can be used with devices such as devices 24′ that only receive power (or, if desired, can be used with devices that can transmit and receive wireless power). Wireless power circuits such as wireless power circuit 122 can be used to both transmit and receive wireless power. Circuit 122 may be used with a wireless device that only receives wireless power, a wireless device that only transmits wireless power, or a device that both transmits and receives wireless power. Illustrative configurations in which circuit 122 is used with a device such as device 24′ that can transmit and receive wireless power are sometimes described herein as an example.
Device 12 may have circuitry for receiving wired or wireless power from an external power source. Device 12 may, as an example, have a power port such as port 108 for receiving wired power. Cable 112 may be coupled to a source of AC or DC power. Plug 110 of cable 112 may be removably coupled to port 108. When cable 112 is electrically coupled to port 108, cable 112 can be used to supply wired power to device 12.
Boost converter 104 (e.g., a switched-mode converter) can serve as a power regular and may, as an example, receive a DC input from cable 112 or from the DC output of power converter 14 (
If desired, device 12 may have wireless power receiving circuitry for receiving wireless power signals 106 from a wireless charging pad, wireless charging puck, or other external source of wireless power. For example, device 12 may include a wireless power receiving coil such as coil 100 that receives wireless power signals 106. Device 12 may use rectifier circuitry 102 to convert AC signals induced in coil 100 by wireless power signals 106 into rectified DC voltage. The DC voltage may be regulated by boost converter 104. Wirelessly received power and/or wired power from cable 112 may be used in charging optional internal battery 114 and otherwise powering the circuitry of device 12.
As shown in
When it is desired to transmit wireless power from device 12 to device 24′, inverter 61 of circuit 122 drives AC signals onto coil 118 of circuit 122 that produce wireless power signals 44. These wireless power signals are received by coil 126 and converted into DC power for charging battery 58 in device 24′ by rectifier 50 in device 24′. In some scenarios, it may be desired to transmit wireless power from device 24′ to device 12. For example, device 12 may not include battery 114 or battery 114 may be depleted. Device 12 may also not be within range of a device supplying wireless power signals 106 and may not be coupled to cable 112. In this type of situation, power from battery 58 of device 24′ can be harvested by device 12 and redistributed to one or more of devices 24″. As an example, some of the battery power from a cellular telephone (device 24′) may be redistributed to a computer stylus and earbuds (devices 24″). This allows a user to resupply accessories with power by sacrificing a relatively small fraction of the power available in device 24′ when the user is not able to plug device 12 into a wired power source.
When it is desired to transmit wireless power from device 24′ to device 12, inverter 120 (e.g., inverter circuitry such as the circuitry of inverter 61 of
In a device that contains both a rectifier and an inverters (e.g., a device such as device 122 or a device such as device 24′ in the example of
Devices 24″ may include one or more computer styluses (sometimes referred to smart pencils or smart pencils with wireless charging), one or more wristwatches, one or more ear buds, and/or other smaller devices and/or accessories. If desired, devices 24″ may include one or more battery cases. As an example, devices 24″ may include an ear bud battery case that includes a) a battery, b) recesses for receiving ear buds, c) circuitry for charging the ear buds from the battery using wired and/or wireless power techniques, and d) wireless power receiving circuitry and/or wired power receiving circuitry for charging the battery. Each of devices 24″ may include a wireless power receiving coil 48, a rectifier 50 for rectifying AC signals induced in the coil by received wireless power signals 44, and a battery 58 that may be charged with the output of the rectifier.
Wireless power receiving devices 24″ may mate with corresponding wireless power transmitting circuits 124 of device 12. Each of circuits 124 may include an inverter 61 for supplying AC drive signals to a corresponding wireless power transmitting coil 36. During wireless power transfer operations, coils 36 supply wireless power signals to coils 48 of devices 24″. One or more types of device 24″ may receive power from each coil 36. For example, a given coil 36 may be used in transmitting wireless power to a first device during operation in a first mode and may be used in transmitting wireless power to a second device (e.g., a device of a different type than the first device) during operation in a second mode. If desired, one or more of coils 36 may only be used in transmitting power to a particular type of receiving device.
There may be any suitable number of wireless power circuits in device 12. A top view of device 12 in an illustrative configuration in which device 12 has a foldable housing is shown in
As shown in
As shown in
As shown in
Housing 92 may be insufficiently large to store all of devices 24′ and 24″ when closed or may be sufficiently large to store one, some, or all of devices 24′ and 24″ when closed (e.g., housing 92 may optionally serve as an enclosure that receives one, some, or all of devices 24′ and 24″ when housing portions 92-1 and 92-2 are folded together). Configurations in which device 12 is insufficiently large to store any of devices 24′ and/or 24″ (or in which device 12 can only store a computer stylus in location 132 and ear buds in locations 138 and 140 when closed) may be relatively compact. In some embodiments, the interior of device 12 may, if desired, have sufficient room to store cable 112 and/or other items (e.g., credit cards, identification cards, etc.).
In a configuration in which housing portions 92-1 and 92-2 have been unfolded with respect to each other about fold axis 131, device 24′ of
In the illustrative arrangement of
In general, device 12 (which may sometimes be referred to as a wireless power transmitting item, an electronic device, an electronic item, a portable item, etc.) may have a housing such as housing 92 that is formed from polymer, glass, metal, fabric, other materials, and/or combinations of these materials. One or more electronic devices may receive wireless power from device 12. In some configurations, an electronic device (e.g., a cellular telephone, etc.) may be coupled to device 12 by a wired connection and may supply power to device 12 over the wired connection and/or may wirelessly transmit power to device 12. Housing 92 may be foldable, may have no folds, may have sliding portions, may form a removable case, may have a rigid structure (e.g., so that device 12 may snap onto the exterior of another device), may have soft and rigid portions, may have portions that form straps, may form a stand or other support structure, may have wearable support structures that allow device 12 to be worn on an arm or head or other user body part, and/or may have other suitable configurations. The embodiments of device 12 described in connection with
The foregoing is merely illustrative and various modifications can be made to the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of provisional patent application No. 62/981,698, filed Feb. 26, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62981698 | Feb 2020 | US |