Wireless power transfer for a seat-vest-helmet system

Information

  • Patent Grant
  • 9948145
  • Patent Number
    9,948,145
  • Date Filed
    Wednesday, December 31, 2014
    10 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
Wireless power transfer system include: a seat configured to support a human and including a first resonator featuring a conductive coil formed by a plurality of loops that each encircle a common first axis, a layer of magnetic material, and a conductive shield; an article of clothing featuring a second resonator having a conductive coil formed by a plurality of loops that each encircle a common second axis, so that when the article of clothing is worn by the human and the human is seated in the seat, the first and second axes are aligned; and a first electronic apparatus positioned in the seat and coupled to the first resonator, and configured to deliver electrical power to the first resonator so that during operation of the system, power is transferred wirelessly from the first resonator to the second resonator.
Description
TECHNICAL FIELD

This disclosure relates to wireless power transfer techniques.


BACKGROUND

Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques as detailed, for example, in commonly owned U.S. patent application Ser. No. 12/613,686 published on May 6, 2010 as U.S. 2010/010909445 and entitled “Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/860,375 published on Dec. 9, 2010 as 2010/0308939 and entitled “Integrated Resonator-Shield Structures,” U.S. patent application Ser. No. 13/222,915 published on Mar. 15, 2012 as 2012/0062345 and entitled “Low Resistance Electrical Conductor,” U.S. patent application Ser. No. 13/283,811 published on Oct. 4, 2012 as U.S. 2012/0248981 and entitled “Multi-Resonator Wireless Energy Transfer for Lighting,” and U.S. patent application Ser. No. 13/534,966 published on Jan. 2, 2014 as U.S. 2014/0002012 and entitled “Wireless Energy Transfer for Rechargeable Batteries,” the contents of which are incorporated by reference.


As advanced mobile communication, computing, and sensing devices become more essential, the burden of carrying, operating, and maintaining multiple batteries, fuel cells, and the like, increases. In both civilian and military scenarios, people are often required to carry and operate multiple electronic devices. One or more devices such as headlamps, portable computers, global positioning system devices (GPS), sensors, cameras, radios, flashlights, and the like may all be carried by a person. Each electronic device may require an energy source such as batteries, fuel cells, and the like to provide energy to each or a group of the devices. Large numbers of devices may mean a large number of batteries that may require management and/or monitoring by the user.


In systems where each device has its own energy source, i.e. batteries, the stored energy may be underutilized and may lead to significant or unnecessary extra weight that may need to be carried by the user. With each device or a group of devices having a separate energy source, the energy storage of each device may need to be large enough to power the device in the worst or maximum usage scenario, even if the device is typically used infrequently. As a result in many use scenarios, the user will be underutilizing the carried energy and perhaps carrying too much battery or stored energy capacity.


The underutilization of carried energy may be problematic for weight sensitive devices and applications. Underutilization of energy for a device attached to a helmet, for example, may mean a significant weight penalty that a user has to tolerate on their head. In many applications it is desirable to reduce or eliminate the weight attached to a person's head area since it may cause user discomfort, fatigue, or neck problems.


One way to reduce the burden of multiple batteries and improve their utilization is to use wearable battery packs and/or central energy generators that can provide power to various peripheral devices that are attached to or carried by a person. With one or several central batteries the potable energy may be shared and distributed to the devices that need the power. However, such devices may be tethered to the person's battery pack with cables. For devices such as headlamp, microphones, night vision goggles, and the like, that are carried on a person's head or helmet, the cables may be uncomfortable, limit movement, pose a safety risk (since cables may get snagged or caught on objects and obstacles), and reduce the reliability of the system.


Thus what is needed is a better way for energy distribution for person worn peripheral devices.


SUMMARY

Wireless energy transfer can enable such peripheral devices to be powered from a wearable battery pack or portable power generator, without the safety and ergonomic drawbacks of multiple wired connections that tether the mobile electronic devices, such as a head worn device or helmet to the user.


In one aspect, a system for wireless energy transfer includes a person-worn central energy source. The energy source may be used to provide power to one or more wireless power source resonators that generate an oscillating magnetic field. The oscillating magnetic field may be used to transfer energy wirelessly to wireless power repeaters and/or devices worn by a person or carried by a person. The energy source may be a rechargeable battery. To generate electricity from the oscillating magnetic fields the system may include one or more device resonators that are configured to interact with the oscillating magnetic fields and generate an electric current. The device resonator may be helmet mounted and the source resonator may be mounted on the person's body.


In another aspect, the power output or the frequency of the person-worn source resonators may be adjusted depending on the type of tissue that is in proximity or interacts with the magnetic fields of the source resonator. The system may further include field shaping structures comprising magnetic materials and/or conducting materials, to reduce the interaction of the magnetic fields with the person's tissue and body parts.


In another aspect, a person-worn wireless energy transfer system may include a rechargeable battery and a source resonator configured to receive electrical energy from the battery and generate an oscillating magnetic field. A device resonator configured and positioned to interact with the oscillating magnetic fields may be positioned or attached to a person's helmet to transfer energy wirelessly to electronic devices mounted to the helmet or near the helmet from the rechargeable battery which may be worn near or on the torso of the person. The system may include more than one source resonator and a controller that may selectively energized each of the source resonators. The source resonators may be spaced or positioned to enable wireless energy transfer from the body of a person to the device resonator on the helmet even if the person moves, rotates, or tilts their head. The source resonators that provide the best coupling to the device resonator on the helmet may be energized depending on the rotation of the helmet. In another aspect the system may include more than one device resonator, the resonators may be positioned such that at least one resonator has good coupling to the source resonator despite any head rotations of the person wearing the helmet.


In a further aspect, the disclosure features wireless power transfer systems that include: (a) a seat configured to support a human, where the seat includes a first resonator featuring a conductive coil formed by a plurality of loops that each encircle a common first axis, a layer of magnetic material positioned adjacent the conductive coil and intersecting the first axis, and a conductive shield positioned adjacent the layer of magnetic material, where the layer of magnetic material is sandwiched between the conductive coil and the conductive shield; (b) an article of clothing for the human, the article of clothing featuring a second resonator having a conductive coil formed by a plurality of loops that each encircle a common second axis, where the second resonator is positioned in the article of clothing so that, when the article of clothing is worn by the human and the human is seated in the seat, the first and second axes are aligned; and (c) a first electronic apparatus positioned in the seat and coupled to the first resonator, and configured to deliver electrical power to the first resonator so that during operation of the system, power is transferred wirelessly from the first resonator to the second resonator.


Embodiments of the systems can include any one or more of the following features.


Each loop in the plurality of loops of the conductive coil of the first resonator can extend in a common first plane that is orthogonal to the first axis. The plurality of loops of the conductive coil of the first resonator can define a spiral in a first plane orthogonal to the first axis. The first resonator can have a dipole moment aligned along the first axis.


Each loop in the plurality of loops of the conductive coil of the second resonator can extend in a common second plane that is orthogonal to the first axis. The plurality of loops of the conductive coil of the second resonator can define a spiral in a second plane orthogonal to the first axis. The second resonator can have a dipole moment aligned along the second axis.


The plurality of loops of the conductive coil of the first resonator can define a first dipole moment oriented along a first dipole axis, the plurality of loops of the conductive coil of the second resonator can define a second dipole moment oriented along a second dipole axis, and the second resonator can be positioned in the article of clothing so that, when the article of clothing is worn by the human and the human is seated in the seat, the first and second dipole axes are parallel to within 20 degrees or less (e.g., within 15 degrees or less, within 10 degrees or less, within 5 degrees or less).


The article of clothing can be configured to be worn on a torso of the human.


The magnetic material can include a ferrite material, and the conductive shield can include a metal material. The first electronic apparatus can be configured to deliver electrical power to the first resonator in an oscillating electrical signal having a frequency of between 50 kHz and 500 kHz (e.g., between 150 kHz and 300 kHz, between 200 kHz and 300 kHz, between 240 kHz and 260 kHz, of about 250 kHz, of about 200 kHz).


The first electronic apparatus can include power and control circuitry featuring one or more switches, and the first electronic apparatus can be configured so that during operation of the system, the first electronic apparatus monitors a power transfer rate between the first and second resonators relative to a lower power transfer rate threshold and an upper power transfer rate threshold, increases a phase angle of the one or more switches if the power transfer rate is above the upper power transfer rate threshold, and decreases the phase angle if the power transfer rate is below the lower power transfer rate threshold, where the one or more switches are part of a switching amplifier in the first electronic apparatus, and where the phase angle is defined between the one or more switches in the switching amplifier.


The article of clothing can be configured to be worn on an upper torso of the human, and the article of clothing can include a battery coupled to the second resonator, a third resonator coupled to the battery, and a second electronic apparatus coupled to the second and third resonators. The system can include a helmet configured to be worn by the human and featuring a fourth resonator, the second electronic apparatus can be configured so that during operation of the system, the second electronic apparatus stores energy in the battery in response to electrical power wirelessly received by the second resonator, and the third resonator can be configured to transmit electrical power to the fourth resonator by generating an oscillating magnetic field using power from the battery. At least one of the third resonator and the fourth resonator can include a curved magnetic material and a conductive wire wrapped around the curved magnetic material. The curved magnetic material can include grooves into which the conductive wire is wound. The curved magnetic material can include two or more pieces of magnetic material.


A coil-to-coil efficiency of power transfer between the first resonator and the second resonator can be 20% or greater (e.g., 30% or greater, 40% or greater, 50% or greater). The coil-to-coil efficiency of power transfer between the first resonator and the second resonator can be 99% or less (e.g., 98% or less, 95% or less, 90% or less, 85% or less, 80% or less). A quality factors of each of the first and second resonators can be greater than 100.


During operation, the system can be configured to sustain a transfer of at least 10 W of power between the first and second resonators when the second resonator is displaced laterally in a direction orthogonal to the first axis by up to 5 cm from an initial position. During operation, the system can be configured to sustain a transfer of at least 12 W of power between the first and second resonators when the second resonator is displaced laterally in a direction orthogonal to the first axis by up to 4 cm from an initial position.


A thickness of the first resonator, measured in a direction along the first axis, can be 5 cm or less (e.g., 1 cm or less). The conductive shield can include a metallic material attached directly to a surface of the magnetic material.


Embodiments of the system can also include any of the other features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.


In another aspect, the disclosure features articles of clothing that include: (a) a first resonator featuring a conductive coil formed by a plurality of loops each extending in a common first plane to define a dipole moment for the first resonator that is aligned orthogonal to the common first plane, where the first resonator is configured to wirelessly receive electrical power from an oscillating magnetic field; (b) a battery; (c) an electrical apparatus coupled to the first resonator and configured to store energy in the battery in response to the electrical power wirelessly received by the first resonator; and (d) a second resonator featuring a conductive coil coupled to the battery, where the second resonator is configured to transmit electrical power by generating an oscillating magnetic field using power from the battery.


Embodiments of the articles can include any one or more of the following features.


The second resonator can include a curved magnetic material and a conductive wire wrapped around the curved magnetic material. The curved magnetic material can include two or more pieces of magnetic material. The second resonator can be configured to transmit electrical power to a third resonator disposed in an additional article of clothing.


A coil-to-coil efficiency of power transfer between the second and third resonators can be 40% or greater (e.g., 50% or greater, 60% or greater). A quality factor of each of the second and third resonators can be greater than 100.


The third resonator can include a curved magnetic material and a conductive wire wrapped around the curved magnetic material. The second and third resonators can have a substantially similar radius of curvature.


Embodiments of the articles can also include any of the other features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.


In a further aspect, the disclosure features methods of controlling wireless power transfer between a source and a receiver, the methods including monitoring a rate of wireless power transfer from the source to the receiver, increasing a phase angle of a switch of the source if the wireless power transfer rate is larger than an upper threshold value, and decreasing the phase angle if the wireless power transfer rate is smaller than a lower threshold value, where the switch is part of a switching amplifier in the source.


Embodiments of the methods can include any one or more of the following features.


The lower threshold value can be 12.5 W. The upper threshold value can be 14.5 W.


Embodiments of the methods can also include any of the other steps and features disclosed herein, including steps and features disclosed in connection with different embodiments, in any combination as appropriate.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the subject matter herein, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description, drawings, and claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic diagram of an embodiment of a system for wireless energy transfer to a helmet.



FIG. 2A is a schematic diagram showing vertically aligned dipole structures.



FIG. 2B is a diagram showing horizontally aligned dipole structures.



FIG. 3 is a schematic diagram of two resonators comprising a conductor wrapped around a block of magnetic material.



FIG. 4 is a schematic diagram of an embodiment of a system for wireless energy transfer to a helmet.



FIG. 5 is a graph showing energy transfer efficiency as a function of azimuth angle for a helmet wireless energy transfer system.



FIG. 6 is a graph showing energy transfer efficiency as a function of coil separation for a helmet wireless energy transfer system.



FIG. 7 is a schematic diagram of an embodiment of a system for wireless energy transfer to a helmet using multiple source and device resonators.



FIG. 8 is a schematic diagram of an embodiment of a system for wireless energy transfer to glasses using a shoulder mounted source resonator.



FIGS. 9A-9B are images showing embodiments of a wireless power transfer system for a soldier.



FIG. 10 is a schematic diagram of an embodiment of a wireless power transfer system.



FIGS. 11A-11B are schematic diagrams of embodiments of a wireless power transfer system.



FIGS. 12A-12B are schematic diagrams of embodiments of a wireless power transfer system.



FIGS. 13A-13B are schematic diagrams of embodiments of a wireless power transfer system.



FIG. 13C shows a plot of coupling as a function of azimuthal rotation angle in degrees for each of the embodiments shown in FIG. 13A and FIG. 13B.



FIG. 14A is a schematic diagram of an embodiment of a wireless power transfer system.



FIG. 14B is a plot showing coupling as a function of gap between the wireless power source and device of FIG. 14A.



FIG. 14C is a plot showing efficiency as a function of gap between the wireless power source and device of FIG. 14A.



FIG. 15A-15B are schematic diagrams of embodiments of a wireless power transfer system.



FIG. 16A is an image of an embodiment of wireless power transfer in a seat-vest-helmet system.



FIG. 16B is an image of an embodiment of wireless power transfer in a seat-vest-helmet system.



FIG. 17 is a plot showing coil-to-coil efficiency as a function of offset in the X-direction for an embodiment of a wireless power transfer system.



FIGS. 18A-18B are schematic diagrams showing coil-to-coil efficiencies with and without a model of a human body in an embodiment of a wireless power transfer system.



FIGS. 19A-19D are schematic diagrams of embodiments of source resonators.



FIGS. 20A-20E are schematic diagrams of embodiments of device resonators.



FIG. 21 is a schematic diagram of an embodiment of a wireless energy transfer system.



FIG. 22A is a plot of efficiency as function of offset in the X-direction for an embodiment of a wireless energy transfer system.



FIG. 22B is a plot of efficiency as a function of offset in the Y-direction for the embodiment of the wireless energy transfer system of FIG. 22A.



FIG. 23A is a plot of power to a load as function of offset in the X-direction for an embodiment of a wireless energy transfer system.



FIG. 23B is a plot of power to a load as function of offset in the Y-direction for the embodiment of the wireless energy transfer system of FIG. 23A.



FIGS. 24-25 are images showing an embodiment of a wireless energy transfer system in a seat and a vest.



FIG. 26A is an image of an embodiment of a wireless energy transfer system as part of a vest and helmet.



FIG. 26B is an image of an embodiment of a wireless energy transfer system as part of a seat, vest, and helmet.



FIG. 27 is an image of an embodiment of a wireless energy transfer system in a vest and helmet.



FIG. 28 is a plot of coupling as a function of distance between a helmet coil and vest coil for an embodiment of a wireless energy transfer system.



FIG. 29 is a plot of power at a load as a function of voltage into a source for the embodiment of the wireless energy transfer system of FIG. 28.



FIG. 30 is a plot of efficiency as a function of azimuth rotation for an embodiment of a wireless energy transfer system.



FIG. 31A-31B are schematic diagrams showing coil-to-coil efficiencies with and without a model of a human body for a wireless energy transfer system.



FIGS. 32-33 are schematic diagrams showing embodiments of a curved resonator.



FIG. 34 is a schematic diagram of an embodiment of a wireless power transfer source.



FIG. 35 is a plot of efficiency as function of azimuth angle for an embodiment of a wireless energy transfer system.



FIG. 36 is plot of power to a load function of azimuth angle for an embodiment of a wireless energy transfer system.



FIG. 37 is a plot of efficiency as a function of azimuth angle for an embodiment of a wireless energy transfer system.



FIG. 38 is a plot of power to a load function of azimuth angle for an embodiment of a wireless energy transfer system.



FIG. 39 is an image of an embodiment of a wireless power transfer system as part of a vest and helmet.



FIG. 40A is a schematic diagram of an embodiment of a wireless power transfer system near a model of a human body.



FIG. 40B is a plot of power as a function of frequency for the embodiment of FIG. 40A.



FIG. 41A is a schematic diagram of an embodiment of a wireless power transfer system near a model of a human body.



FIG. 41B is a plot of power as a function of frequency for the embodiment of FIG. 41A.



FIG. 42A is a schematic diagram of an embodiment of a wireless power transfer system near a model of a human body.



FIG. 42B is a plot of power as a function of frequency for the embodiment of FIG. 42A.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

A wireless energy transfer system may be used to wirelessly transfer energy from one or more central batteries and/or fuel cells and/or solar panels and/or other types of energy packs worn on a vest, backpack, harness, shirt, pant, belt, coat, or any type of clothing and the like, to a head worn or helmet mounted electric or electronic device. The wireless energy transfer system may use strongly-coupled magnetic resonators. The resonators may have a high quality factor Q>100. The two resonators exchanging energy by have sqrt(Q1Q2)>100. The system comprises at least one wireless energy source resonator, which might be embedded or attached to the user's equipment, clothing, vest, backpack and the like. The source resonator generates an oscillating magnetic field which may be received by one or more energy capture device resonators which may be integrated with the helmet or device. In embodiments, 5 watts or more of power may be transferred across a gap of 10 cm or 18 cm or more from a source resonator to a device resonator. In embodiments, repeaters may be used in the wireless energy transfer system.


An example embodiment showing one configuration of the system is shown in FIG. 1. In the exemplary embodiment, energy is transferred wirelessly to an energy capture device resonator 102 mounted on the back of a helmet 104 from a source resonator 106 mounted on a vest 112 of a person 110. The source resonator 106 may be energized by a battery 115 carried by the person 110, which is connected to a first resonator 117. The source resonator 106 generates an oscillating magnetic field that induces an electric current in the energy capture device resonator 102. The electrical energy induced in the device resonator 102 may be used to energize electric or electronic devices 108 mounted or attached to the helmet 104. Thus energy is transferred wirelessly across a gap 114 to power devices 108 on a person's head without cables between the device and the main battery carried by the person 110.


The wireless energy transfer is based on carefully designed, high quality magnetic resonators, strongly coupled to other magnetic resonators, so that electric power is selectively and efficiently transferred from one resonator to another, via a magnetic field, with very little power lost or dissipated to other near-by off-resonant or non-resonant objects. In the system it may be necessary to ensure energy transfer during changes in resonator positioning or movement due to the movement of a person's head, changes in the mounting of the resonators and the like.


In embodiments, the system may use any number of resonators and resonator structures. A large number of suitable resonator structures have been described in U.S. patent application Ser. No. 12/789,611 Published as U.S. Publication Number 2010/0237709A1 on Sep. 23, 2010. For example, the so called planar resonator structures comprising an electrical conductor wrapped around a block of magnetic material or various configurations may be used. Likewise many different forms of capacitively loaded loop resonators with or without shielding may be employed. In embodiments, the types of resonators chosen, their orientation, size and the like may depend on the details of the application and the desired offset tolerance, size limits, power transfer efficiency, target weight specifications and the like.


In embodiments, various coil configurations with different dipole moments and orientations may be effective for person mounted (e.g. vest) to helmet energy transfer. In embodiments the resonators may be oriented with two different dipole moment orientations and configurations. FIG. 2A and FIG. 2B show two different dipole orientations of resonators, vertically aligned, and horizontally aligned. FIG. 2A shows a configuration with vertically aligned dipole moments. FIG. 2B shows a configuration with horizontally aligned dipole moments. The benefit of the parallel or horizontally aligned configuration is that both ends of the magnetic dipole resonator on the vest can couple to the helmet resonator. The parallel configuration may also have an advantage in its size, shape, and weight. In an exemplary environment, a coupling coefficient of k=0.02 was achieved with a helmet-resonator weight of 0.17 kg and a vest-resonator weight of 1.1 kg. Also, the shape of each resonator may be more suitable for integration with both the helmet and the vest than the vertical configuration.


To ensure adequate energy transfer from a source resonator on the body to a device resonator on the head and/or helmet, over a range of resonator offsets and distances with a constraint on size and weight of the resonators, the resonators may preferably be oriented with horizontally aligned dipole moments. Resonators with horizontally aligned dipole moments may be a variant of the so called planar resonator structures. An embodiment of the system with planar resonator structures is shown in FIG. 3. The helmet mounted device resonator coil (Helmet coil) and the vest mounted source resonator coil (vest coil) both comprise a conductor 304, 308 wrapped around a block or core of magnetic material 302, 306. In this configuration the two resonators have their dipole moments in the horizontal direction or parallel to one another.


An example embodiment comprising horizontally aligned resonators was used to demonstrate the feasibility and performance of the system. In the example embodiment, the energy capture device resonator mounted on the helmet comprises 10 turns of 1054/44 AWG Litz wire wound around 160 g of 3F3 ferrite material and has a Q>200. The vest-mounted resonator contains 215 g of ferrite encased in a polymer sleeve that is wound with 10 turns of the same type of Litz wire to form planar type resonators similar to that shown in FIG. 3 and has a Q>200.


A lithium ion battery back worn in the vest of the user is used as the power source for the electronics board that houses the power and control circuitry for the source resonator. The helmet-mounted resonator is connected to a small device board with a rectifier and output voltage regulator. The output regulator was set for 5 Vdc and connected to a LED headlamp for demonstration purposes.


The ferrite material used for both the helmet and vest resonators consists of small rectangular tiles that were stacked to make resonators in a parallel-piped shape. Shaped resonators may be fabricated that conform to the natural contours of both the helmet and the vest. This could be accomplished either by grinding angled faces on the individual tiles or by sintering magnetic powder in a custom mold.



FIG. 4 shows the experimental configuration used to measure the efficiency and power as a function of head position. The source resonator 106 was mounted on the vest 112 worn by the person 110. The device or energy capture resonator 102 was mounted on the back of a helmet 104. The energy captured by the device resonator was used to power a headlamp 108 on the helmet via a wire. The separation distance 114 as well as the azimuth angle or the head rotation angle 402 was modified while parameters of the wireless energy transfer were measured.


The efficiency of energy transfer as a function of the azimuth rotation for 12 cm separation distance between the source and device resonators is shown in FIG. 5. When the resonators are aligned the efficiency of energy transfer reaches almost 60%. A null in the coupling coefficient occurs when the head swivels approximately 60 degrees in azimuth and is manifested as a drop in efficiency of energy transfer in the figure. The null may be extended or moved to larger angles by enlarging the resonators along their dipole moments.


The efficiency of energy transfer as a function of the separation distance between the source and device resonators is shown in FIG. 6. The graph shows that even though the resonators were tuned for a fixed distance of 12 cm the efficiency of energy transfer remain above 50% for the variation of separation distance of 7.5 cm to 15 cm.


In embodiments, the captured energy may be used to power any number of devices, sensors, electronics, communication equipment and the like on or around the head or on the helmet. The electrical energy from the device resonator may be used directly as AC current or may be conditioned or rectified to provide DC current. In embodiments the system may include a small energy storage element on the helmet or on the head that is charged from the energy captured by the device resonator. The energy storage may be a rechargeable battery or a super capacitor that may be used to provide energy to the devices in cases when the wireless energy transfer gets interrupted. For example if the user rotates his head to reach the null point in the resonator coupling the wireless energy transfer may be interrupted. During this time power delivery to the electronics may be continued by using energy in the small battery or super capacitor. The energy storage element may be sized according to the expected or maximum time of wireless energy interruption for a specific use scenario. For example, use studies may be conducted to examine the frequency and amount of time that a user may turn his head to an area where the wireless energy transfer is no longer effective. The energy storage element may be sized only to provide energy to the devices during those times and recharge when wireless energy transfer is again possible. The energy storage element may therefore be small or light weight compared to a battery that is expected to power the devices continuously.


In other embodiments, the source resonators and the device resonators may be configured to reduce or eliminate dead spots within the range of the person's head mobility. In one exemplary embodiment, multiple source resonators may be used as wireless energy sources. The multiple source resonators may be selectively driven depending on the rotation of the head. The source resonator with the strongest coupling may only be activated or some or all of the source resonators may be driven with oscillating currents with different phase or amplitude to steer the magnetic fields.


In one exemplary embodiment, multiple device resonators 712, 710, 708 may be used to capture the energy from one or more source resonators 706, 704, 702 as depicted in FIG. 7. The multiple device resonators may be selectively activated depending on the rotation 402 of the head. Only the device resonator with the strongest coupling to the source may be activated or all three or more device resonators may be activated and their captured electrical energy combined to charge a battery or power an electronic device. The system may include a controller to measure the efficiency of energy transfer and electrical characteristics of the energy transfer between the sources and devices. By measuring the voltage and current on the source resonators and voltage and current on the device resonators the controller may actively choose to energize some or all of the sources depending on the measurements.


In embodiments, the device or source resonator may be used to charge batteries from an external wireless energy source. The source resonator worn by the person may normally be used to transfer energy to the helmet but may be configurable to also capture energy from an external source allowing the resonator to wirelessly recharge the central person worn battery. The source resonator worn by the person may be configured to become a device resonator. The electronics may be configurable from a source amplifier functionality to rectifier and battery charger functionality. External source resonators may be mounted inside vehicles, on the back of seats, beds, and other structures providing wireless energy to the resonator mounted on the person when the person is sitting in the vehicle, resting in a bed, and the like.


In embodiments source resonators may be located on the shoulders, back, front, neck, chest, stomach, hips, buttocks, thighs, hands, feet, and arms of the person. Device resonators capable of capturing the energy may be positioned on the sides, back, top and the like of the helmet, head, and head-worn devices. The device resonators may be positioned on the outside of the helmet or may be configured to cover the inside of the helmet protecting it from external abrasions and damage.


Although the example embodiment demonstrated the use of a wireless energy transfer system from a vest to a helmet, it should be understood that other configurations are within the scope of this design. Energy may be transferred from a person to any number of peripherals that may be carried, or attached to a person. For example energy may be transferred to glasses, heads up displays, portable monitors and the like. An example embodiment for wireless energy transfer to a glasses mounted heads up display is shown in FIG. 8. The heads up display may have a device resonator 810 mounted on the side or the temple area 812 of the glasses 802. The source resonator 808 may be worn on the shoulder area of the person. The source resonator 808 may be energized from a person worn battery that may be carried on the back or side of the person eliminating a heavy battery or energy storage element from the glasses.


In other embodiments energy may be transferred from a vest to a device carried by the user such as a weapon, computer, tool, and the like. Energy may be transferred from the legs to shoes that may be integrated with sensors for monitoring the persons' foot health, or overall fitness and stability by measuring stride length, pressure, movement and the like.


Likewise, although the exemplary embodiment was described using a military helmet those skilled in the art will appreciate that the design may be configured for any helmet or any head mounted structure for recreational, industrial, and other uses. For example, wireless energy transfer may be used for motorcycle helmets to power radios, lights, and instruments inside the helmet. In another example wireless energy transfer may be used in bicycle helmets to transfer energy from a backpack to a helmet fitted with lights. In another example, wireless energy transfer may be used for hard hats to power lights, radios, sensors, glasses and the like.


In embodiments, wireless energy transfer for person worn peripherals, a system may include a separate device resonator for each electronic device. Having an independent resonator for each device may allow simpler power control. Each device may be able to control its resonator and detune the resonator from the resonant frequency of the source if it is off or not requiring power. In some embodiments, the device resonators may be imbedded in the devices requiring power. In other embodiments, a single source resonator may power many device resonators.


In other embodiments, the device resonators may be separate from the devices. The device resonator may be located separately from the device requiring power. The energy captured by the device resonator may be transferred to the device via conductor wire. A separate wired device resonator may be placed away from the device in a location closer to a source resonator or in a location that is less obtrusive to the user. For example, in the helmet embodiment shown in FIG. 1, the device resonator 102 is located at a distance away from the headlamp 108 and energy is transferred to the headlamp from the device resonator via a wire (not shown). In this embodiment the device resonator was positioned to reduce inconvenience and obstruction to the user.


In some embodiments, a single device resonator may deliver power to more than one electronic device. In embodiments energy transfer may be divided into regions or subsystems. For example, wireless energy transfer may be used to span moving human parts or areas where wires are cumbersome or ineffective and once transferred wirelessly may be distributed in a traditional means using electrical conductors such as wires, printed circuit board (PCB) traces, conductive textiles, and the like. For example, a helmet may be such a subsystem. A single device resonator may wirelessly receive energy and distribute the energy to multiple devices on the helmet or near the helmet using wires. Other such systems may include hands, shoes, feet, arms, and the like. In embodiments a subsystem may include more than one device resonator that may receive wireless energy from more than one source resonator and distribute the energy over one or more devices in the subsystem.


In embodiments, the device resonators may be embedded in the batteries or the battery packs of the devices. The batteries of devices may be configured for wireless energy transfer allowing the batteries to be recharged when within range of a wireless energy source. For example, sample designs of wireless power enabled batteries are described in U.S. patent application Ser. No. 13/534,966 published on Jan. 2, 2014 as U.S. 2014/0002012 and entitled “Wireless Energy Transfer for Rechargeable Batteries,” the contents of which are incorporated by reference.


In embodiments, the person worn energy transfer system may include safety precautions. The oscillating magnetic fields may cause localized tissue heating or induced currents in some types of tissues. Depending on the location and orientation of the resonators it may be important to limit the power output of the source resonators or the magnitude of the magnetic fields reaching the body tissue or the nervous system of the user. In the example system shown in FIG. 4, five watts was safely transferred to the device resonators while meeting all safety limits despite being close to the spinal cord and nervous system tissue of the user. To meet safety limits it may be preferable to operate the resonators at resonant frequencies at higher frequencies of 150 kHz or more. In some embodiments resonant frequencies and the frequencies of the generated magnetic fields may be 1 MHz or more.


In embodiments, the system may include shielding material around high power (10 W or more) source of device resonators to limit or reduce the interactions of the magnetic fields used for energy transfer with the person's body parts. The shielding may comprise a good electrical conductor. The electrical conductor shield may be positioned against a portion of the user's body such that the magnetic fields of the source are deflected away from that portion of the user's body. In embodiments the shield may comprise a flexible electrical conductor. The conductor may be a thin sheet of copper or an electrically conductive textile for example.


Going back to the example embodiment of wireless energy transfer to a helmet as shown in FIG. 4, the system may include a shield to reduce the interactions of the fields with the back of the neck, spice, and head. In embodiments that may require higher power transfer, 10 W or 20 W or more the system may include a flexible or rigid flap that covers the neck area 404 of the user. The flap may comprise a conductive material that shields the neck and spinal cord from the magnetic fields. The flap map be part of the helmet or part of the headwear of the user. In embodiments, the shield may be part of the collar of the user's clothing.



FIG. 9 shows an embodiment of a wireless power transfer system for a soldier's outerwear or gear, including helmet 904 and vest 908, where a resonator 902, 906 may be shaped to be more conformal to the human body and/or gear. In exemplary embodiments, each resonator may be curved to better conform to the gear of the soldier. In exemplary embodiments, each resonator may be curved to increase efficiency of wireless power transfer from vest to helmet. In embodiments, the source resonator and device resonator may have substantially the same degree and/or radius of curvatures. For example, the degree of curvatures of the resonators may be within ±5 degrees, ±10 degrees, or more relative to one another. In another example, the radii of curvatures of the resonators may be within 5 mm, 10 mm, or more of one another.



FIG. 10 shows a high-level view of a wireless power transfer system from the power source to the load. In this embodiment, the wireless power transfer system may comprise an AC/DC and/or DC/DC converter, amplifier, source-side impedance matching network, source resonator, device resonator, device-side impedance matching network, rectifier, load protector, DC/DC converter, and the like. In some embodiments, the wireless power transfer system may comprise one or more controllers along the path. In further embodiments, the wireless power transfer system may comprise a communication facility to support system performance monitoring and control.



FIG. 11A shows an embodiment of a wireless power transfer system comprising two resonators, both having substantially straight shapes 1106, 1108. FIG. 11B shows an embodiment of a wireless power transfer system comprising two resonators, one having a curved shape 1102 and one having a straight shape 1104. In some embodiments, the coupling between the resonators in FIG. 11B may be worse compared to the coupling between resonators in FIG. 11A due to the mismatch of shapes within a resonator set. For example, in the example embodiment shown in FIG. 11, coupling k for FIG. 11A is 0.0182 while the k value for FIG. 11B is 0.0162. This may be remedied by designing both resonators of the system to be of similar shape, as seen in FIG. 12B. In this embodiment, the coupling between the curved resonators 1202, 1204 in FIG. 12B matches that of the straight resonators 1206, 1208 in FIG. 12A, when other parameters and conditions are kept equal.



FIG. 13A shows an embodiment of a wireless power transfer system comprising two straight-shaped resonators 1306, 1308 moving with respect to one another. Similarly, FIG. 13B shows an embodiment of a wireless power transfer system comprising two curve-shaped resonators 1302, 1304 moving with respect to one another.



FIG. 13C shows a comparison of the movement of straight-shaped and curve-shaped resonators and the effects on coupling values. The data shows that as there is greater degree of movement (in azimuthal rotation angle), there is an associated decrease in coupling for both sets of straight-shaped and curve-shaped resonators. However, it can also be seen from the data that coupling between the curved-shaped resonators is typically greater than or equal to that of the straight-shaped resonators. Therefore, in some embodiments, such as when an application may require lateral or rotational movement of resonators with respect to one another, curve-shaped resonators may be advantageous. In the example of a soldier wearing a wireless power transfer system integrated in his or her gear as shown in FIG. 9A and FIG. 9B, greater coupling between a source and device resonator while maintaining a greater degree of movement may be important in efficiently delivering power to critical tools, weapons, and the like.


In some embodiments, a wireless power resonator may comprise more than one piece of magnetic material. It may be advantageous to use multiple pieces (e.g., 3 or more) of magnetic material in a resonator due to weight, cost, size, shape or positional restrictions. For example, in fitting a curve, multiple pieces of magnetic material may be necessary when it is not possible to create or form the magnetic material to a particular shape. In exemplary embodiments, lengths of magnetic material segments may be greater than 1 cm, greater than 3 cm, greater than 5 cm, and the like.


In a preferred embodiment, a wireless power resonator may comprise multiple pieces of magnetic material in which the pieces are joined so there is little space in between the pieces. In preferable embodiments, the spaces between the segments of magnetic material may be less than 0.5 mm, less than 1 mm, less than 5 mm, and the like. In addition, ends of magnets may be beveled to further reduce the spaces between the segments of magnetic material. Less space between magnetic material may lead to greater coupling and efficiency. FIG. 14A shows an example of a source resonator 1406 and a device resonator 1404 where gaps 1402 have been formed at intervals in the magnetic material in the device resonator 1404. FIG. 14B shows how coupling, k, decreases with increasing gap size between the pieces of magnetic material.


In embodiments, a wireless power resonator comprising a curved shaped magnetic material may be lighter in weight than the straight piece of magnetic material that may be required to achieve similar coupling efficiencies. Similarly, in embodiments, a resonator comprising multiple pieces of magnetic material to create a curve shape may also be lighter due to the gaps in between segments. For example, such a resonator may be greater than 10% lighter, greater than 25% lighter, greater than 50% lighter than a straight-shaped resonator.


In another exemplary embodiment, a wireless energy transfer system may comprise different types of resonators. For example, FIG. 15A shows a pair of resonators 1502, 1504 where the source resonator coil 1510 may be shielded using additional magnetic material or conductive material 1512. This shield may be used to guide or otherwise control the magnetic field.



FIG. 15B shows yet another embodiment of a pair of resonators 1506, 1508 where the source and device resonators comprise a different coil shape. This resonator coil 1514 may be on one side of the magnetic material and may have a lower profile and weight compared to the coil shape 1516 shown in FIG. 15A. Such a resonator coil may be designed such that its span varies along its length, as shown in FIG. 15A.


Any of the features described may be used alone or in combination without departing from the scope of this disclosure. A resonator may be referred to as a source resonator or a device resonator and may be designed to be interchangeable. Each shown resonator may comprise one or more conducting loops and/or one or more pieces of magnetic material, as well as capacitors, inductors, resistors, other electronics and the like.


Seat to Vest Power Transmission


Several different types of resonators were modeled and analyzed to predict the energy transfer performance and to ensure the design meets Federal Communications Commission (FCC) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits for human safety. In exemplary embodiments, the system design was chosen to allow for a wide range of positional flexibility and high efficiency. In further embodiments, the system design was chosen to not increase the weight on the soldier. In yet further embodiment, the system design was chosen to decrease the weight on the soldier. In exemplary embodiments, more than 10 W of power was transmitted wirelessly from a wireless power source in the seat back 1602 to a wireless power device in a vest 1604 over a wide range of movement and positioning at an operating frequency of 250 kHz (see FIG. 16A). Using the coordinate convention seen in FIG. 16B, the range over which more than 10 W of power was transmitted is: ±5 cm in the X-direction, ±5 cm in the Y-direction, and 5 cm in the Z-direction. In exemplary embodiments, more than 12 W of power was transmitted wirelessly from a seat to a vest at an operating frequency of 250 kHz. This amount of power was transmitted over the following range: ±4 cm in the X-direction, ±4 cm in the Y-direction, and 5 cm in the Z-direction.


As shown in FIG. 16, the target application consists of a soldier-worn vest-mounted device and a source resonator designed to be incorporated in a vehicle seat. An electromagnetic study was performed to ensure the viability of the system design. As part of this effort, the modeling and simulation results were evaluated with respect to compliance with applicable human exposure limits for Specific Absorption Rates (SARs), as delineated by ICNIRP, Institute of Electrical and Electronics Engineers (IEEE), and or FCC. While the initial study focused on a 10 W system, the simulations have been performed to determine the practical upper limit of power transfer that could be implemented while complying with applicable FCC human exposure limits.


Conformal Seat Resonator Constraints


In exemplary embodiments, mechanical constraints may be defined for the seatback source and vest device resonators based on the dimensions of the selected seat and the soldier vest. The following are constraints that help determine the parameters for the simulation models. In exemplary embodiments, the source resonator area is within the area of a cushion of the seat. In embodiments, the thickness of the source resonator is within the thickness of a seat cushion, such as less than 5 cm, less than 3 cm, less than 1 cm, or less. In embodiments, the source resonator may be shielded using magnetic material to avoid any lossy materials in the construction of a seat. The shielding may be between the resonator and the seat back, the shielding may be around the resonator, and/or the shielding may cover one or more lossy parts of a seat.


In exemplary embodiments, the device resonator area may be within a width and length of a soldier's clothing, vest, or jacket. In embodiments, the device resonator is within 20 cm by 20 cm, 15 cm by 15 cm, 10 cm by 10 cm, or smaller. In embodiments, the device resonator thickness is less than 3 cm, less than 2 cm, less than 1 cm, or thinner. In embodiments, the weight of the device is minimized to be less than the 20 lbs, less than 10 lbs, less than 5 lbs, or less. In embodiments, movement in the lateral (X-direction) is at least ±2 cm, ±5 cm, or more. In embodiments, movement in the vertical (Y-direction) is at least ±2 cm, ±5 cm, or more. In embodiments, movement in the separation (Z-direction) is at least ±2 cm, ±5 cm, ±7 cm, or more.


Magnetic Performance


In order to optimize magnetic performance for a given wireless system, priority or design bounds may be placed on the system. Some of the design trades which were considered include but are not limited to the following: human safety, coil-to-coil efficiency, coil-to-coil distance separation, coil-to-coil offset, weight, size, shape, and movement.


In FIG. 17, the result of the modeled and measured coil-to-coil efficiencies for Z=5 cm are shown. The measured data correlates with the modeled data within the expected tolerances. Coil-to-coil efficiencies were computed using the following measured and/or modeled coupling k and quality factor Q values: k: 3%-19%, Qs: 335, Qd: 508.


In exemplary embodiments, because the wireless energy system may be positioned near the human body, it may be necessary to determine the impact of the body on the coil-to-coil performance. FIG. 18 demonstrates that when considering various design trades, the effect of the human body for these types of resonators is small and can be neglected. System 1804 includes a first resonator 1817 that receives energy from a seat-mounted resonator 1819 (FIG. 18B). First resonator 1817 includes a plurality of planar conductive loops positioned in a plane 1803, and defining a dipole moment 1805 that is orthogonal to plane 1803. The block 1802 shown in FIG. 18A is a model for the human body, specifically muscle tissue. The decrease in coil-to-coil efficiency is small (from 98.12% to 98.10%) compared to the system 1804 without a human body model present (FIG. 18B). This approximation may be useful in speeding up the simulation process to draw general conclusions about design trades. In embodiments, during the design trade optimization process, the following assumptions may be made. In embodiments, metallic or lossy objects may be positioned away from the proximity of the source and device resonators. In embodiments, the operating frequency may range between 250 kHz-6.78 MHz. In embodiments, the operating frequency may be greater than 6.78 MHz. In embodiments, the power delivered to the load may be greater than 5 W, greater than 10 W, or more. In embodiments, the distance between the resonator in soldier's vest and a soldier's body is greater than 1 cm, greater than 2 cm, or more. In embodiments, the distance between the source and device resonators may be greater than 2 cm, greater than 4 cm, greater than 6 cm, or more. In the interest of targeting a lighter and potentially smaller resonator coil for the device resonator coil (on the vest), performance was evaluated as a function of the area of the device resonator coil.


Source Resonator Embodiments


In exemplary embodiments, various resonator coil types were investigated for both the seatback and vest sides to achieve efficient options for a wireless power transfer system. The resonator coil types shown in FIG. 19 have been modeled with the system considerations discussed above in order to evaluate coil-to-coil efficiencies, X and Y offset performances as well as human safety limits.


For the source resonator coils, the types considered include a metal-backed magnetic material (such as ferrite) shield in order to prevent efficiency degradation due to close proximity with any lossy materials, such as the aluminum framework inside the seat cushion. FIG. 19 shows embodiments of the resonator coil types that were considered:



FIG. 19A: Type B: Planar resonator coil 1902 made of solid or Litz wire with magnetic material 1904 and a metal shield 1906;



FIG. 19B: Type D: Solenoidal resonator coil 1908 made of solid or Litz wire with magnetic material 1910 and a metal shield 1912;



FIG. 19C: PCB: Resonator coil with PCB trace 1914 with magnetic material 1916 and a metal shield 1918;



FIG. 19D: Type E: Planar resonator coil with double winding 1920 and a magnetic material 1922 and a metal shield 1924.


Device Resonator Embodiments



FIG. 20 shows exemplary embodiments of device resonator coils considered. In exemplary embodiments of the device resonator, shields may not be considered there are no metallic or lossy objects present in the close proximity of the resonator coil. In embodiments, shields may be used to decreases losses in the case where there are metallic or lossy objects present. By not requiring a shield, the weight of the device may be reduced significantly and also make the device resonator coil more flexible in shape and placement into gear. The following embodiments were considered for a device resonator:



FIG. 20A: Type A: Planar resonator coil 2002 made of solid wire or Litz wire without magnetic material or a metal shield;



FIG. 20B: Type B: Planar resonator coil 2004 made of solid wire or Litz wire with magnetic material 2006;



FIG. 20C: Type C: Solenoidal resonator coil 2010 made of solid wire or Litz wire with magnetic material 2008;



FIG. 20D: PCB: Resonator coil 2012 with PCB trace;



FIG. 20E: Type E: Planar resonator coil 2014 made of solid wire or Litz wire with double winding with magnetic material 2016.


Among these coils, the Type A, Type B, and PCB resonator coils have magnetic dipole moments substantially orthogonal to the plane in which the resonator coil is mounted whereas the magnetic dipole moments for Type C, Type D, and Type E resonator coils are substantially parallel with the plane. For optimal overall performance, source and device resonator coil magnetic dipole moments may need to align.


In exemplary embodiments, the following combinations were studied for this application:









TABLE 1







Source and device resonator coil combinations.










Source
Device







Type B
Type B (no shield)



Type B
Type A



Type D
Type C



PCB (with ferrite and shield)
PCB (no ferrite, no shield)



Type E
Type E










For all of these combinations, efficiency degradation was analyzed as a function of misalignment and maximum power that can be delivered to the load before reaching FCC and ICNIRP SAR and E-field limits. In an exemplary embodiment, based on the results of the magnetic study, a Type B resonator coil with dimensions of 20×16 cm was chosen for the seatback and a Type A resonator coil with dimensions of 16×16 cm was chosen for the vest-worn resonator coil. The operating frequency was chosen to be 250 kHz. Based on the chosen frequency, resonator coil type, geometry, and proximity to the soldier, it was determined that up to approximately 37.6 W could be transferred before reaching the limit in the ICNIRP guidelines.


Highly Resonant Wireless Power Transfer (HRWPT) Seat-Vest System and Performance



FIG. 16 shows an exemplary embodiment of a highly resonant wireless transfer system including a seat-back source 1602 and a vest-worn device 1604. FIG. 16B shows an embodiment of a model of a system further including the vest-worn source and a helmet-mounted device in addition to the system shown in FIG. 16A. A typical high level block diagram for a HRWPT system is shown in FIG. 10. Each stage of the system has a power efficiency rating caused by losses in the stage. The Greek symbol η represents the efficiency of a given stage. Because quiescent currents do not change drastically as output power is increased, the quiescent efficiency (ηquiescent) will actually increase with power. For example, assuming there is a constant quiescent power draw of around 1 W, the quiescent efficiency for a 10 W power delivery would be about 91% whereas if the power delivery were 20 W, the quiescent efficiency would be about 95%. Note, however, that the quiescent power is required for both source and device electronics. The overall efficiency is calculated by multiplying the efficiency of each stage. Considering the same circumstance above where 1 W each is consumed by the source and device electronics, the total quiescent efficiency would be 83% for a 10 W power delivery and 91% for a 20 W delivery. This results in an 8% difference.


Due to the multiplicative nature of the stages' efficiencies, it is advantageous to minimize quiescent losses and/or eliminate as many stages as possible. FIG. 21 shows the high level block diagram for a HRWPT seat-vest system with the unnecessary stages removed and a breakdown of efficiencies based on measurements of electronic losses and overall end-to-end efficiency. In this embodiment, the output power is 12.6 W at a Z-distance of 5 cm and X=Y=0 cm. An end-to-end efficiency of 82% was found for the system and is a product of all the individual efficiencies of each block. Efficiencies are shown at a single operating point and will vary across operation. Efficiencies are approximated using measurements and end-to-end system efficiency calculations.



FIG. 22 shows plots of end-to-end efficiency and FIG. 23 shows plots of DC output power. FIG. 22 shows an approximate 80% end-to-end efficiency at ±5 cm X (FIG. 22A) and Y (FIG. 22B) offset with 5 cm of separation between resonators. FIG. 23 shows an approximate output power of 12 W at ±4 cm X (FIG. 23A) and Y (FIG. 23B) offset with 5 cm of separation between resonator coils. Note that the use of a source power algorithm flattens peak power output, allows increased range of operation, and improves efficiency. In exemplary embodiments, the algorithm includes the monitoring of source power to ensure it is within a window of, for example, 12.5 W (lower threshold) to 14.5 W (upper threshold). In embodiments, the monitoring of the source power can be done by measuring the current and/or voltage into the input of the amplifier of the source. If source power is above the upper threshold, the phase angle of the switches of the switching amplifier of the power and control circuitry may be increased. In exemplary embodiments, the switching amplifier may be a differential class D amplifier. In other embodiments, the switching amplifier may of another class of amplifier, such as class E. This in turn may decrease power to below the upper threshold. If the source power is below the lower threshold, the phase angle of the switches of the power and control circuitry may be decreased. This in turn may increase power to above the lower threshold. Other thresholds may be set for the source power. In embodiments, other elements of the power and control circuitry may be adjusted to regulate source power.


Note also that for the designed HRWPT seatback system, a DC output load resistance of 10.5 Ω was chosen. Embodiments of the HRWPT seatback system with electronics are shown in FIGS. 24-25.


Modeling and simulation tools were utilized to explore and optimize the wireless efficiency and performance of the HRWPT seatback system for the specified range of operation. The modeling and simulation tools were also used to evaluate compliance with applicable human exposure limits for Specific Absorption Rates (SARs) and internal E-field level, as delineated by ICNIRP, IEEE, and/or FCC. The end-result was a highly efficient 250 kHz system capable of 12 W over a lateral and vertical movement of 0±4 cm (8 cm total) and a separation distance of up to 5 cm. An additional 2 cm of movement can be obtained yielding a minimum of 10 W output.


Vest to Helmet Power Transmission



FIG. 26 shows an exemplary embodiment of a system that demonstrates the capability to transfer power wirelessly from a battery pack worn on a vest to a helmet mounted electronic device requiring a minimum of 2.5 W. This demonstration provided a DC-AC transfer efficiency near 60% (45%-48% DC-DC transfer efficiency) at optimal positioning with degrading performance for azimuth head rotation. In embodiments, the source mounted to the vest provides at least 5 W of power over the following range to a device mounted on a helmet: azimuthal angle range from 0°±40° and elevation range from 5 to 13 cm. In embodiments, the operating frequency is approximately 200 kHz. In embodiments, the operating frequency may be chosen to be a frequency other than the operating frequency of the seatback to vest power transmission system to avoid unintentional power provided to the helmet from the seatback source. In embodiments, the operating frequency may be chosen to be the same to simply system electronics, such as those converting power transmitted to the vest to be used for the helmet.


Electromagnetic studies were performed to target positional performance enhancement and ensure the viability of the system design. As part of this effort, the modeling and simulation results were evaluated with respect to compliance with applicable human exposure limits for Specific Absorption Rates (SARs), as delineated by ICNIRP, IEEE, and or FCC. Although initial studies focused on a 5 W system, the simulations have been performed to determine the practical upper limit of power transfer that could be implemented while complying with applicable FCC human exposure limits.


In exemplary embodiments, the source and device resonator coils have horizontally aligned dipole moments. FIG. 27 shows the device and source resonator coils on the mock soldier. FIG. 28 shows measured and computed values of the magnetic coupling coefficient for the embodiment shown in FIG. 27. Diamond symbols correspond to measured points and square symbols to computed points. FIG. 29 shows AC power delivered to a 35-ohm power resistor (diamond shapes) and DC-AC energy transfer efficiency (square shapes) for the embodiment shown in FIG. 27.


Magnetic Performance Improvements


In FIG. 30, the results of the modeled and measured optimum coil-to-coil efficiencies are shown. The measured data correlates with the modeled data within the expected tolerances. For a radius of helmet rotation of 15 cm, the coupling k has a range 1%-5%. The Q of the source is 450 and the Q of the device is 390.


Since the application requires that the resonator coils be near the human body, it may be necessary to determine the impact of the body on the coil-to-coil performance. FIG. 31 demonstrates that when considering various design trades, the effect of the human body muscle for these types of resonator coils can be neglected. FIG. 31A shows that the efficiency using a human model is approximately 88.45%, which is a small decrease in efficiency without a human model (88.75%) as shown in FIG. 31B. This is useful in speeding up the simulation process to draw general conclusions about the trades. During the design trade optimization process, the one or more of the following assumptions may be made. In embodiments, metallic or lossy objects may be positioned away from the proximity of the source and device resonators. In embodiments, the operating frequency may be 250 kHz. In embodiments, the operating frequency may be greater than 250 kHz. In exemplary embodiment, the power delivered to the load is 5 W or greater. In embodiments, there is a distance of approximately 40 mm between the resonator in the helmet and a human head in the helmet. In embodiments, the source resonator may be positioned 5 mm, 10 mm, or greater from the human body.


In the interest of targeting a lighter and potentially smaller resonator for the device resonator (on the helmet), performance was evaluated as a function of various sizes and geometries of the device resonator. The evaluation resulted in a curved ferrite design for the helmet and vest. FIG. 32 shows an exemplary embodiment of a geometry of a resonator. This embodiment comprises a curved piece of magnetic material 3204 and a solenoidal coil 3202 wound around the magnetic material. FIG. 33 shows the mechanical dimensions of an exemplary embodiment of a curved piece of magnetic material. The curved piece has an arc angle of 83 degrees with a radius of curvature of approximately 155 mm and a thickness of approximately 10 mm (±0.3 mm).


When power transfer occurs between resonators with curved magnetic materials (e.g., curved ferrite), in some embodiments, the curved magnetic materials can have substantially similar radii of curvature. As used herein, two resonators have a substantially similar radii of curvature if the radii of curvature of their curved magnetic materials differ by less than 10%.


Highly Resonant Wireless Power Transfer (HRWPT) Helmet-Vest System and Performance


An exemplary embodiment of a HRWPT helmet-vest system is shown in FIG. 14 with its associated measured specifications. A high level block diagram for a HRWPT system is shown in FIG. 10.


Each stage of the system has a power efficiency rating caused by losses in the stage. The Greek symbol η represents the efficiency of a given stage. Because quiescent currents do not change drastically as output power is increased, the quiescent efficiency (ηquiescent) will actually increase with power. For example, assuming there is a constant quiescent power draw of around 1 W, the quiescent efficiency for a 10 W power delivery would be about 91% whereas if the power delivery were 20 W, the quiescent efficiency would be about 95%. Note, however, that the quiescent power is required for both source and device electronics. The overall efficiency is calculated by multiplying the efficiency of each stage. Considering the same circumstance above where 1 W each is consumed by the source and device electronics, the total quiescent efficiency would be 83% for a 10 W power delivery and 91% for a 20 W delivery. This results in an 8% difference. Due to the low power delivery of the HRWPT system, the efficiency may not appear as high as systems delivering more power.


Due to the multiplicative nature of the stages' efficiencies, it is advantageous to minimize quiescent losses and/or eliminate as many stages as possible. FIG. 34 shows the high level block diagram for the HRWPT helmet-vest system with the unnecessary stages removed and a breakdown of efficiencies based on measurements of electronic losses and overall end-to-end efficiency. Efficiencies are shown at a single operating point and will vary across operation. Efficiencies are approximated using measurements and end-to-end system efficiency calculations. For elevation of approximately 10 cm, azimuth of approximately 0° and output power of approximately 16.71 W, an approximate end-to-end efficiency of 66% was found for the system.



FIG. 35 shows a plot of end-to-end efficiency and FIG. 36 shows a plot of DC output power. FIG. 35 shows an approximate end-to-end efficiency of 66% with 10 cm of separation between resonators at 0° azimuth angle. FIG. 36 shows output power of 5 W over the azimuth rotation range of ±40° when elevation is less than or equal to 10 cm.


During testing of the HRWPT helmet system, it was determined that the type of helmet had a substantial impact on the efficiency of the magnetics. The impact on efficiency and performance was determined to be caused by a carbon fiber composite contained in this particular model of the helmet. The effects of the carbon fiber were characterized and are summarized in the FIGS. 37-38. The impacts of the helmet shown may be mitigated if an equivalent helmet without carbon fiber composite were used with the HRWPT helmet system. Note that for the designed HRWPT helmet-vest system, an optimum DC output load resistance of 21Ω was chosen. FIG. 39 shows pictures of the HRWPT helmet-vest system.


Modeling and simulation tools were utilized to explore and optimize the wireless efficiency and performance of the HRWPT helmet system for the specified range of operation. The modeling and simulation tools were also used to evaluate compliance with applicable human exposure limits for Specific Absorption Rates (SARs), as delineated by ICNIRP, IEEE, and/or FCC. The HRWPT helmet system was designed and tested. The end result was a highly efficient 200 kHz system capable of a minimum of 5 W over an azimuth angular movement of 0°±40° (80° total) and an elevation movement from 5 to 13 cm of resonator coil separation. Additional power can be obtained when operating at a smaller azimuth angle. The improvements in design also allow for a reduction in footprint of the various components of the system.


Note that article of clothing, gear, apparel, covering, and the like may be used interchangeably.


In exemplary embodiments, the power received by the device resonator on the vest from the source resonator on the seat may be used directly by the source resonator on the vest to provide power to the device resonator on the helmet. In embodiments, there may be a power manager that controls the power transferred from device resonator on the vest to the source resonator on the vest. The power transfer may be via a wired or wireless connection and the power manager may monitor, filter, and/or convert the power provided to the source resonator on the vest. In embodiments, the power manager may convert the frequency of power transfer in the seat-vest system to a different frequency in the vest-helmet system. For example, the frequency of power transfer in the seat-vest system may be 250 kHz, while the frequency of power transfer in the vest-helmet system may be 200 kHz.


In exemplary embodiments, the power received by the device resonator on the vest from the source resonator on the seat may be stored in a battery on the vest. In embodiments, there may be a power manager that monitors and controls the stored energy. This stored energy may be used by electronic devices on the vest or other clothing or it may be provided to the source resonator on the vest to wirelessly transfer power to the device resonator on the helmet. In embodiments, the power manager may monitor and control the power provided to the source resonator on the vest based on the electronic devices on the helmet. For example, night vision goggles may draw a different amount of power than another piece of equipment, such as an ear-piece. In embodiments, the battery may be optionally coupled to the power manager such that it may draw power directly from the device resonator (and associated electronics, such as a rectifier) on the vest or draw from a battery.


System Safety



FIGS. 40A-40B show safety modeling of an exemplary embodiment of a seat to vest system. For the safety modeling shown in FIG. 40A, the resonator coil to body separation is 2.5 mm. FIG. 40B shows a plot of maximum power the source can transfer while staying under the SAR (black diamond data points) and/or electric field limits (gray square data points). The Specific Absorption Rate (SAR) at a power level of 10 W is 0.0118 W/kg. Note that the limit is 1.6 W/kg. The maximum power that can be transferred at the SAR limit is 1.35 kW. The Internal E-field (E) levels at 10 W is 17.4 V/m. Note that the limit is 33.75 V/m. The maximum power that can be transferred at the E limit is 37.6 W.



FIG. 41A-40B shows safety modeling of an exemplary embodiment of a vest to helmet system (at the vest side). For the safety modeling shown in FIG. 41A, the resonator coil to body separation is 5 mm. FIG. 41B shows a plot of maximum power the source can transfer while staying under the SAR (black diamond data points) and/or electric field limits (gray square data points). The Specific Absorption Rate (SAR) at a power level of 5 W is 0.0031 W/kg. Note that the limit is 1.6 W/kg. The maximum power that can be transferred at the SAR limit is 1.8 kW. The Internal E-field (E) levels at 5 W is 11.22 V/m. Note that the limit 33.75 V/m. The maximum power that can be transferred at the E limit is 29 W.



FIG. 42A-42B shows safety modeling of an exemplary embodiment of a vest to helmet system (at the helmet side). For the safety modeling shown in FIG. 42A, the resonator coil to body separation is 40 mm. The Specific Absorption Rate (SAR) at a power level of 5 W is 0.0006 W/kg. Note that the limit is 1.6 W/kg. The maximum power that can be transferred at the SAR limit is 9.6 kW. The Internal E-field (E) levels at 5 W is 3.47 V/m. Note that the limit 33.75 V/m. The maximum power that can be transferred at the E limit is 301 W.


While the invention has been described in connection with certain preferred embodiments, other embodiments will be understood by one of ordinary skill in the art and are intended to fall within the scope of this disclosure, which is to be interpreted in the broadest sense allowable by law. For example, designs, methods, configurations of components, etc. related to transmitting wireless power have been described above along with various specific applications and examples thereof. Those skilled in the art will appreciate where the designs, components, configurations or components described herein can be used in combination, or interchangeably, and that the above description does not limit such interchangeability or combination of components to only that which is described herein.


All documents referenced herein are hereby incorporated by reference.

Claims
  • 1. An article configured to be worn on shoulders and an upper portion of a user's torso, comprising: at least one piece of material configured to conform to the shoulders and the upper portion of the user's torso;a first resonator attached to the at least one piece of material and comprising a conductive coil formed by a plurality of planar loops each positioned in a first plane to define a dipole moment for the first resonator that is aligned orthogonal to the first plane, wherein the first resonator is configured to wirelessly receive electrical power from an oscillating magnetic field;a battery attached to the at least one piece of material;an electrical apparatus attached to the at least one piece of material and coupled to the first resonator and the battery, and configured to store energy in the battery in response to the electrical power wirelessly received by the first resonator; anda second resonator coupled to the battery and configured to transmit electrical power by generating an oscillating magnetic field using power from the battery,wherein the second resonator is attached to the at least one piece of material at a location proximal to an opening in the at least one piece of material configured to at least partially surround a neck of the user; andwherein the second resonator comprises a helical coil comprising a plurality of loops of conductive material that extend along an arc-shaped helical axis.
  • 2. The article of claim 1, wherein the article is a vest.
  • 3. The article of claim 1, wherein the second resonator further comprises an arc-shaped magnetic material with an opposite pair of surfaces of concave and convex curvature, respectively.
  • 4. The article of claim 3, wherein a thickness of the magnetic material in a radial direction is substantially constant.
  • 5. The article of claim 1, wherein the second resonator further comprises a magnetic material core formed by at least three pieces of magnetic material, and wherein the at least three pieces of magnetic material are aligned along the arc-shaped helical axis.
  • 6. The article of claim 5, wherein each of the at least three pieces of magnetic material has a linear central axis.
  • 7. The article of claim 6, wherein each of the at least three pieces of magnetic material are aligned so that the central axes of adjacent pieces of magnetic material intersect to include an obtuse angle.
  • 8. The article of claim 5, wherein one or more pairs of adjacent surfaces of the at least three pieces of magnetic material are beveled.
  • 9. The article of claim 1, wherein the second resonator is configured to transmit electrical power to a third resonator disposed on or in a member spatially separated from the second resonator.
  • 10. The article of claim 9, wherein a coil-to-coil efficiency of power transfer between the second and third resonators is 40% or greater.
  • 11. The article of claim 9, wherein a quality factor of each of the second and third resonators is greater than 100.
  • 12. The article of claim 1, wherein the second resonator is enclosed within a sleeve attached to the at least one piece of material.
  • 13. The article of claim 12, wherein the sleeve forms at least a portion of a collar of the article.
  • 14. A wireless power transfer system, comprising: the article of claim 9; andthe member comprising the third resonator,wherein the third resonator comprises a helical coil comprising a plurality of loops of conductive material that extend along a second arc-shaped helical axis.
  • 15. The system of claim 14, wherein the second and third resonators have a substantially similar radius of curvature.
  • 16. The system of claim 14, wherein the member is configured to be worn on a head of the user.
  • 17. The system of claim 16, wherein the member is a helmet.
  • 18. The system of claim 16, wherein the helical coil of the third resonator is positioned on a surface of the member proximal to a neck of the user.
  • 19. The system of claim 14, wherein the third resonator comprises an arc-shaped magnetic material with an opposite pair of surfaces of concave and convex curvature, respectively.
  • 20. The system of claim 14, wherein the third resonator comprises a magnetic material core formed by at least three pieces of magnetic material that are aligned along the second arc-shaped helical axis.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 13/544,688, filed on Jul. 9, 2012, which claims the benefit of U.S. Provisional Application No. 61/505,593, filed on Jul. 8, 2011. This application also claims the benefit of U.S. Provisional Application No. 61/922,406, filed on Dec. 31, 2013, and U.S. Provisional Application No. 62/043,320, filed on Aug. 28, 2014. The entire contents of each of the foregoing applications are incorporated herein by reference.

US Referenced Citations (691)
Number Name Date Kind
645576 Tesla Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1119732 Tesla Dec 1914 A
2133494 Waters Oct 1938 A
3517350 Beaver Jun 1970 A
3535543 Dailey Oct 1970 A
3780425 Penn et al. Dec 1973 A
3871176 Schukei Mar 1975 A
4088999 Fletcher et al. May 1978 A
4095998 Hanson Jun 1978 A
4180795 Matsuda et al. Dec 1979 A
4280129 Wells Jul 1981 A
4450431 Hochstein May 1984 A
4588978 Allen May 1986 A
5027709 Slagle Jul 1991 A
5033295 Schmid et al. Jul 1991 A
5034658 Hiering et al. Jul 1991 A
5053774 Schuermann et al. Oct 1991 A
5070293 Ishii et al. Dec 1991 A
5118997 El-Hamamsy Jun 1992 A
5216402 Carosa Jun 1993 A
5229652 Hough Jul 1993 A
5287112 Schuermann Feb 1994 A
5341083 Klontz et al. Aug 1994 A
5367242 Hillman Nov 1994 A
5374930 Schuermann Dec 1994 A
5408209 Tanzer et al. Apr 1995 A
5437057 Richley et al. Jul 1995 A
5455467 Young et al. Oct 1995 A
5493691 Barrett Feb 1996 A
5522856 Reineman Jun 1996 A
5528113 Boys et al. Jun 1996 A
5541604 Meier Jul 1996 A
5550452 Shirai et al. Aug 1996 A
5565763 Arrendale et al. Oct 1996 A
5630835 Brownlee May 1997 A
5697956 Bornzin Dec 1997 A
5703461 Minoshima et al. Dec 1997 A
5703573 Fujimoto et al. Dec 1997 A
5710413 King et al. Jan 1998 A
5742471 Barbee, Jr. et al. Apr 1998 A
5821728 Sshwind Oct 1998 A
5821731 Kuki et al. Oct 1998 A
5864323 Berthon Jan 1999 A
5898579 Boys et al. Apr 1999 A
5903134 Takeuchi May 1999 A
5923544 Urano Jul 1999 A
5940509 Jovanovich et al. Aug 1999 A
5957956 Kroll et al. Sep 1999 A
5959245 Moe et al. Sep 1999 A
5986895 Stewart et al. Nov 1999 A
5993996 Firsich Nov 1999 A
5999308 Nelson et al. Dec 1999 A
6012659 Nakazawa et al. Jan 2000 A
6047214 Mueller et al. Apr 2000 A
6066163 John May 2000 A
6067473 Greeninger et al. May 2000 A
6108579 Snell et al. Aug 2000 A
6127799 Krishnan Oct 2000 A
6176433 Uesaka et al. Jan 2001 B1
6184651 Fernandez et al. Feb 2001 B1
6207887 Bass et al. Mar 2001 B1
6232841 Bartlett et al. May 2001 B1
6238387 Miller, III May 2001 B1
6252762 Amatucci Jun 2001 B1
6436299 Baarman et al. Aug 2002 B1
6450946 Forsell Sep 2002 B1
6452465 Brown et al. Sep 2002 B1
6459218 Boys et al. Oct 2002 B2
6473028 Luc Oct 2002 B1
6483202 Boys Nov 2002 B1
6515878 Meins et al. Feb 2003 B1
6535133 Gohara Mar 2003 B2
6561975 Pool et al. May 2003 B1
6563425 Nicholson et al. May 2003 B2
6597076 Scheible et al. Jul 2003 B2
6609023 Fischell et al. Aug 2003 B1
6631072 Paul et al. Oct 2003 B1
6650227 Bradin Nov 2003 B1
6664770 Bartels Dec 2003 B1
6673250 Kuennen et al. Jan 2004 B2
6683256 Kao Jan 2004 B2
6696647 Ono et al. Feb 2004 B2
6703921 Wuidart et al. Mar 2004 B1
6731071 Baarman May 2004 B2
6749119 Scheible et al. Jun 2004 B2
6772011 Dolgin Aug 2004 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6806649 Mollema et al. Oct 2004 B2
6812645 Baarman Nov 2004 B2
6825620 Kuennen et al. Nov 2004 B2
6831417 Baarman Dec 2004 B2
6839035 Addonisio et al. Jan 2005 B1
6844702 Giannopoulos et al. Jan 2005 B2
6856291 Mickle et al. Feb 2005 B2
6858970 Malkin et al. Feb 2005 B2
6906495 Cheng et al. Jun 2005 B2
6917163 Baarman Jul 2005 B2
6917431 Soljacic et al. Jul 2005 B2
6937130 Scheible et al. Aug 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6961619 Casey Nov 2005 B2
6967462 Landis Nov 2005 B1
6975198 Baarman Dec 2005 B2
6988026 Breed et al. Jan 2006 B2
7027311 Vanderelli et al. Apr 2006 B2
7035076 Stevenson Apr 2006 B1
7042196 Ka-Lai et al. May 2006 B2
7069064 Govorgian et al. Jun 2006 B2
7084605 Mickle et al. Aug 2006 B2
7116200 Baarman et al. Oct 2006 B2
7118240 Baarman et al. Oct 2006 B2
7126450 Baarman et al. Oct 2006 B2
7127293 MacDonald Oct 2006 B2
7132918 Baarman et al. Nov 2006 B2
7147604 Allen et al. Dec 2006 B1
7180248 Kuennen et al. Feb 2007 B2
7191007 Desai et al. Mar 2007 B2
7193418 Freytag Mar 2007 B2
D541322 Garrett et al. Apr 2007 S
7212414 Baarman May 2007 B2
7233137 Nakamura et al. Jun 2007 B2
D545855 Garrett et al. Jul 2007 S
7239110 Cheng et al. Jul 2007 B2
7248017 Cheng et al. Jul 2007 B2
7251527 Lyden Jul 2007 B2
7288918 DiStefano Oct 2007 B2
7340304 MacDonald Mar 2008 B2
7375492 Calhoon et al. May 2008 B2
7375493 Calhoon et al. May 2008 B2
7378817 Calhoon et al. May 2008 B2
7382636 Baarman et al. Jun 2008 B2
7385357 Kuennen et al. Jun 2008 B2
7443135 Cho Oct 2008 B2
7462951 Baarman Dec 2008 B1
7466213 Lobl et al. Dec 2008 B2
7471062 Bruning Dec 2008 B2
7474058 Baarman Jan 2009 B2
7492247 Schmidt et al. Feb 2009 B2
7514818 Abe et al. Apr 2009 B2
7518267 Baarman Apr 2009 B2
7521890 Lee et al. Apr 2009 B2
7525283 Cheng et al. Apr 2009 B2
7545337 Guenther Jun 2009 B2
7554316 Stevens et al. Jun 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7615936 Baarman et al. Nov 2009 B2
7639514 Baarman Dec 2009 B2
7741734 Joannopoulos et al. Jun 2010 B2
7795708 Katti Sep 2010 B2
7825543 Karalis et al. Nov 2010 B2
7825544 Jansen et al. Nov 2010 B2
7835417 Heideman et al. Nov 2010 B2
7843288 Lee et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7863859 Soar Jan 2011 B2
7880337 Farkas Feb 2011 B2
7884697 Wei et al. Feb 2011 B2
7885050 Lee Feb 2011 B2
7919886 Tanaka Apr 2011 B2
7923870 Jin Apr 2011 B2
7932798 Tolle et al. Apr 2011 B2
7948209 Jung May 2011 B2
7952322 Partovi et al. May 2011 B2
7963941 Wilk Jun 2011 B2
7969045 Schmidt et al. Jun 2011 B2
7994880 Chen et al. Aug 2011 B2
7999506 Hollar et al. Aug 2011 B1
8022576 Joannopoulos et al. Sep 2011 B2
8035255 Kurs et al. Oct 2011 B2
8076800 Joannopoulos et al. Dec 2011 B2
8076801 Karalis et al. Dec 2011 B2
8084889 Joannopoulos et al. Dec 2011 B2
8097983 Karalis et al. Jan 2012 B2
8106539 Schatz et al. Jan 2012 B2
8115448 John Feb 2012 B2
8131378 Greenberg et al. Mar 2012 B2
8178995 Amano et al. May 2012 B2
8193769 Azancot et al. Jun 2012 B2
8212414 Howard et al. Jul 2012 B2
8260200 Shimizu et al. Sep 2012 B2
8304935 Karalis et al. Nov 2012 B2
8324759 Karalis et al. Dec 2012 B2
8334620 Park et al. Dec 2012 B2
8362651 Hamam et al. Jan 2013 B2
8395282 Joannopoulos et al. Mar 2013 B2
8395283 Joannopoulos et al. Mar 2013 B2
8400017 Kurs et al. Mar 2013 B2
8400018 Joannopoulos et al. Mar 2013 B2
8400019 Joannopoulos et al. Mar 2013 B2
8400020 Joannopoulos et al. Mar 2013 B2
8400021 Joannopoulos et al. Mar 2013 B2
8400022 Joannopoulos et al. Mar 2013 B2
8400023 Joannopoulos et al. Mar 2013 B2
8400024 Joannopoulos et al. Mar 2013 B2
8410636 Kurs et al. Apr 2013 B2
8441154 Karalis et al. May 2013 B2
8457547 Meskens Jun 2013 B2
8461719 Kesler et al. Jun 2013 B2
8461720 Kurs et al. Jun 2013 B2
8461721 Karalis et al. Jun 2013 B2
8461722 Kurs et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8466583 Karalis et al. Jun 2013 B2
8471410 Karalis et al. Jun 2013 B2
8476788 Karalis et al. Jul 2013 B2
8482157 Cook et al. Jul 2013 B2
8482158 Kurs et al. Jul 2013 B2
8487480 Kesler et al. Jul 2013 B1
8497601 Hall et al. Jul 2013 B2
8552592 Schatz et al. Oct 2013 B2
8569914 Karalis et al. Oct 2013 B2
8587153 Schatz et al. Nov 2013 B2
8587155 Giler et al. Nov 2013 B2
8598743 Hall et al. Dec 2013 B2
8618696 Karalis et al. Dec 2013 B2
8629578 Kurs et al. Jan 2014 B2
8643326 Campanella et al. Feb 2014 B2
8791600 Soar Jul 2014 B2
20020032471 Loftin et al. Mar 2002 A1
20020105343 Scheible et al. Aug 2002 A1
20020118004 Scheible et al. Aug 2002 A1
20020130642 Ettes et al. Sep 2002 A1
20020167294 Odaohhara Nov 2002 A1
20030038641 Scheible Feb 2003 A1
20030062794 Scheible et al. Apr 2003 A1
20030062980 Scheible et al. Apr 2003 A1
20030071034 Thompson et al. Apr 2003 A1
20030124050 Yadav et al. Jul 2003 A1
20030126948 Yadav et al. Jul 2003 A1
20030160590 Schaefer et al. Aug 2003 A1
20030199778 Mickle et al. Oct 2003 A1
20030214255 Baarman et al. Nov 2003 A1
20040000974 Odenaal et al. Jan 2004 A1
20040026998 Henriott et al. Feb 2004 A1
20040100338 Clark May 2004 A1
20040113847 Qi et al. Jun 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130915 Baarman Jul 2004 A1
20040130916 Baarman Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040150934 Baarman Aug 2004 A1
20040189246 Bulai et al. Sep 2004 A1
20040201361 Koh et al. Oct 2004 A1
20040222751 Mollema et al. Nov 2004 A1
20040227057 Tuominen et al. Nov 2004 A1
20040232845 Baamian Nov 2004 A1
20040233043 Yazawa et al. Nov 2004 A1
20040267501 Freed et al. Dec 2004 A1
20050007067 Baarman et al. Jan 2005 A1
20050021134 Opie Jan 2005 A1
20050027192 Govari et al. Feb 2005 A1
20050033382 Single Feb 2005 A1
20050085873 Gord et al. Apr 2005 A1
20050093475 Kuennen et al. May 2005 A1
20050104064 Hegarty et al. May 2005 A1
20050104453 Vanderelli et al. May 2005 A1
20050116650 Baarman Jun 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050122058 Baarman et al. Jun 2005 A1
20050122059 Baarman et al. Jun 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050127849 Baarman et al. Jun 2005 A1
20050127850 Baarman et al. Jun 2005 A1
20050127866 Hamilton et al. Jun 2005 A1
20050135122 Cheng et al. Jun 2005 A1
20050140482 Cheng et al. Jun 2005 A1
20050151511 Chary Jul 2005 A1
20050156560 Shimaoka et al. Jul 2005 A1
20050189945 Reiderman Sep 2005 A1
20050194926 DiStefano Sep 2005 A1
20050253152 Klimov et al. Nov 2005 A1
20050288739 Hassler, Jr. et al. Dec 2005 A1
20050288740 Hassler, Jr. et al. Dec 2005 A1
20050288741 Hassler, Jr. et al. Dec 2005 A1
20050288742 Giordano et al. Dec 2005 A1
20060001509 Gibbs Jan 2006 A1
20060010902 Trinh et al. Jan 2006 A1
20060022636 Xian et al. Feb 2006 A1
20060053296 Busboom et al. Mar 2006 A1
20060061323 Cheng et al. Mar 2006 A1
20060066443 Hall Mar 2006 A1
20060090956 Peshkovskiy et al. May 2006 A1
20060132045 Baarman Jun 2006 A1
20060164866 Vanderelli et al. Jul 2006 A1
20060181242 Freed et al. Aug 2006 A1
20060184209 John et al. Aug 2006 A1
20060184210 Singhal et al. Aug 2006 A1
20060185809 Elfrink et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060202665 Hsu Sep 2006 A1
20060205381 Beart et al. Sep 2006 A1
20060214626 Nilson et al. Sep 2006 A1
20060219448 Grieve et al. Oct 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060270440 Shearer et al. Nov 2006 A1
20060281435 Shearer et al. Dec 2006 A1
20070010295 Greene et al. Jan 2007 A1
20070013483 Stewart Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070021140 Keyes, IV et al. Jan 2007 A1
20070024246 Flaugher Feb 2007 A1
20070064406 Beart Mar 2007 A1
20070069687 Suzuki Mar 2007 A1
20070096875 Waterhouse et al. May 2007 A1
20070105429 Kohl et al. May 2007 A1
20070117596 Greene et al. May 2007 A1
20070126650 Guenther Jun 2007 A1
20070145830 Lee et al. Jun 2007 A1
20070164839 Naito Jul 2007 A1
20070171681 Baarman Jul 2007 A1
20070176840 Pristas et al. Aug 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070208263 John et al. Sep 2007 A1
20070222542 Joannopoulos et al. Sep 2007 A1
20070257636 Phillips et al. Nov 2007 A1
20070267918 Gyland Nov 2007 A1
20070276538 Kjellsson et al. Nov 2007 A1
20080012569 Hall et al. Jan 2008 A1
20080014897 Cook et al. Jan 2008 A1
20080030415 Homan et al. Feb 2008 A1
20080036588 Iverson et al. Feb 2008 A1
20080047727 Sexton et al. Feb 2008 A1
20080051854 Bulkes et al. Feb 2008 A1
20080067874 Tseng Mar 2008 A1
20080132909 Jascob et al. Jun 2008 A1
20080154331 John et al. Jun 2008 A1
20080176521 Singh et al. Jul 2008 A1
20080191638 Kuennen et al. Aug 2008 A1
20080197710 Kreitz et al. Aug 2008 A1
20080197802 Onishi et al. Aug 2008 A1
20080211320 Cook et al. Sep 2008 A1
20080238364 Weber et al. Oct 2008 A1
20080255901 Carroll et al. Oct 2008 A1
20080265684 Farkas Oct 2008 A1
20080266748 Lee Oct 2008 A1
20080272860 Pance Nov 2008 A1
20080273242 Woodgate et al. Nov 2008 A1
20080278264 Karalis et al. Nov 2008 A1
20080291277 Jacobsen et al. Nov 2008 A1
20080300657 Stultz Dec 2008 A1
20080300660 John Dec 2008 A1
20090010028 Baarman et al. Jan 2009 A1
20090015075 Cook et al. Jan 2009 A1
20090033280 Choi et al. Feb 2009 A1
20090033564 Cook et al. Feb 2009 A1
20090038623 Farbarik et al. Feb 2009 A1
20090039828 Jakubowski Feb 2009 A1
20090045772 Cook et al. Feb 2009 A1
20090051224 Cook et al. Feb 2009 A1
20090058189 Cook et al. Mar 2009 A1
20090058361 John Mar 2009 A1
20090067198 Graham et al. Mar 2009 A1
20090072627 Cook et al. Mar 2009 A1
20090072628 Cook et al. Mar 2009 A1
20090072629 Cook et al. Mar 2009 A1
20090072782 Randall Mar 2009 A1
20090079268 Cook et al. Mar 2009 A1
20090079387 Jin et al. Mar 2009 A1
20090085408 Bruhn Apr 2009 A1
20090085706 Baarman et al. Apr 2009 A1
20090096413 Patovi et al. Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090108997 Patterson et al. Apr 2009 A1
20090115628 Dicks et al. May 2009 A1
20090127937 Widmer et al. May 2009 A1
20090134712 Cook et al. May 2009 A1
20090146892 Shimizu et al. Jun 2009 A1
20090153273 Chen Jun 2009 A1
20090160261 Elo Jun 2009 A1
20090161078 Wu et al. Jun 2009 A1
20090167449 Cook et al. Jul 2009 A1
20090174263 Baarman et al. Jul 2009 A1
20090179502 Cook et al. Jul 2009 A1
20090188396 Hofmann et al. Jul 2009 A1
20090189458 Kawasaki Jul 2009 A1
20090195332 Joannopoulos et al. Aug 2009 A1
20090195333 Joannopoulos et al. Aug 2009 A1
20090212636 Cook et al. Aug 2009 A1
20090213028 Cook et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090224608 Cook et al. Sep 2009 A1
20090224609 Cook et al. Sep 2009 A1
20090224723 Tanabe Sep 2009 A1
20090224856 Karalis et al. Sep 2009 A1
20090230777 Baarman et al. Sep 2009 A1
20090237194 Waffenschmidt et al. Sep 2009 A1
20090243394 Levine Oct 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090261778 Kook Oct 2009 A1
20090267558 Jung Oct 2009 A1
20090267709 Joannopoulos et al. Oct 2009 A1
20090267710 Joannopoulos et al. Oct 2009 A1
20090271047 Wakamatsu Oct 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090273242 Cook Nov 2009 A1
20090273318 Rondoni et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284218 Mohammadian et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284245 Kirby et al. Nov 2009 A1
20090284369 Toncich et al. Nov 2009 A1
20090286470 Mohammadian et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090286476 Toncich et al. Nov 2009 A1
20090289595 Chen et al. Nov 2009 A1
20090299918 Cook et al. Dec 2009 A1
20090308933 Osada Dec 2009 A1
20090322158 Stevens et al. Dec 2009 A1
20090322280 Kamijo et al. Dec 2009 A1
20100015918 Liu et al. Jan 2010 A1
20100017249 Fincham et al. Jan 2010 A1
20100033021 Bennett Feb 2010 A1
20100034238 Bennett Feb 2010 A1
20100036773 Bennett Feb 2010 A1
20100038970 Cook et al. Feb 2010 A1
20100045114 Sample et al. Feb 2010 A1
20100052431 Mita Mar 2010 A1
20100052811 Smith et al. Mar 2010 A1
20100060077 Paulus et al. Mar 2010 A1
20100065352 Ichikawa Mar 2010 A1
20100066349 Lin et al. Mar 2010 A1
20100076524 Forsberg et al. Mar 2010 A1
20100081379 Cooper et al. Apr 2010 A1
20100094381 Kim et al. Apr 2010 A1
20100096934 Joannopoulos et al. Apr 2010 A1
20100102639 Joannopoulos et al. Apr 2010 A1
20100102640 Joannopoulos et al. Apr 2010 A1
20100102641 Joannopoulos et al. Apr 2010 A1
20100104031 Lacour Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100109445 Kurs et al. May 2010 A1
20100109604 Boys et al. May 2010 A1
20100115474 Takada et al. May 2010 A1
20100117454 Cook et al. May 2010 A1
20100117455 Joannopoulos et al. May 2010 A1
20100117456 Karalis et al. May 2010 A1
20100117596 Cook et al. May 2010 A1
20100123353 Joannopoulos et al. May 2010 A1
20100123354 Joannopoulos et al. May 2010 A1
20100123355 Joannopoulos et al. May 2010 A1
20100123452 Amano et al. May 2010 A1
20100123530 Park et al. May 2010 A1
20100127573 Joannopoulos et al. May 2010 A1
20100127574 Joannopoulos et al. May 2010 A1
20100127575 Joannopoulos et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100133918 Joannopoulos et al. Jun 2010 A1
20100133919 Joannopoulos et al. Jun 2010 A1
20100133920 Joannopoulos et al. Jun 2010 A1
20100141042 Kesler et al. Jun 2010 A1
20100148589 Hamam et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156346 Takada et al. Jun 2010 A1
20100156355 Bauerle et al. Jun 2010 A1
20100156570 Hong et al. Jun 2010 A1
20100164295 Ichikawa et al. Jul 2010 A1
20100164296 Kurs Jul 2010 A1
20100164297 Kurs et al. Jul 2010 A1
20100164298 Karalis et al. Jul 2010 A1
20100171368 Schatz et al. Jul 2010 A1
20100171370 Karalis et al. Jul 2010 A1
20100179384 Hoeg et al. Jul 2010 A1
20100181843 Schatz et al. Jul 2010 A1
20100181844 Karalis et al. Jul 2010 A1
20100181845 Fiorello et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100184371 Cook et al. Jul 2010 A1
20100187911 Joannopoulos et al. Jul 2010 A1
20100187913 Sample Jul 2010 A1
20100188183 Shpiro Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100190436 Cook et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100194207 Graham Aug 2010 A1
20100194334 Kirby et al. Aug 2010 A1
20100194335 Kirby et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201202 Kirby et al. Aug 2010 A1
20100201203 Schatz et al. Aug 2010 A1
20100201204 Sakoda et al. Aug 2010 A1
20100201205 Karalis et al. Aug 2010 A1
20100201310 Vorenkamp et al. Aug 2010 A1
20100201312 Kirby et al. Aug 2010 A1
20100201313 Vorenkamp et al. Aug 2010 A1
20100201316 Takada et al. Aug 2010 A1
20100201513 Vorenkamp et al. Aug 2010 A1
20100207458 Joannopoulos et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213770 Kikuchi Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100217553 Von Novak et al. Aug 2010 A1
20100219694 Kurs et al. Sep 2010 A1
20100219695 Komiyama et al. Sep 2010 A1
20100219696 Kojima Sep 2010 A1
20100222010 Ozaki et al. Sep 2010 A1
20100225175 Karalis et al. Sep 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100225271 Oyobe et al. Sep 2010 A1
20100225272 Kirby et al. Sep 2010 A1
20100231053 Karalis et al. Sep 2010 A1
20100231163 Mashinsky Sep 2010 A1
20100231340 Fiorello et al. Sep 2010 A1
20100234922 Forsell Sep 2010 A1
20100235006 Brown Sep 2010 A1
20100237706 Karalis et al. Sep 2010 A1
20100237707 Karalis et al. Sep 2010 A1
20100237708 Karalis et al. Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100244577 Shimokawa Sep 2010 A1
20100244578 Yoshikawa Sep 2010 A1
20100244579 Sogabe et al. Sep 2010 A1
20100244580 Uchida et al. Sep 2010 A1
20100244581 Uchida Sep 2010 A1
20100244582 Yoshikawa Sep 2010 A1
20100244583 Shimokawa Sep 2010 A1
20100244767 Turner et al. Sep 2010 A1
20100244839 Yoshikawa Sep 2010 A1
20100248622 Kirby et al. Sep 2010 A1
20100253152 Karalis et al. Oct 2010 A1
20100253281 Li Oct 2010 A1
20100256481 Mareci et al. Oct 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259108 Giler et al. Oct 2010 A1
20100259109 Sato Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100264745 Karalis et al. Oct 2010 A1
20100264746 Kazama et al. Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100276995 Marzetta et al. Nov 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277004 Suzuki et al. Nov 2010 A1
20100277005 Karalis et al. Nov 2010 A1
20100277120 Cook et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100289449 Elo Nov 2010 A1
20100295505 Jung et al. Nov 2010 A1
20100295506 Ichikawa Nov 2010 A1
20100308939 Kurs Dec 2010 A1
20100314946 Budde et al. Dec 2010 A1
20100327660 Karalis et al. Dec 2010 A1
20100327661 Karalis et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20110004269 Strother et al. Jan 2011 A1
20110012431 Karalis et al. Jan 2011 A1
20110018361 Karalis et al. Jan 2011 A1
20110025131 Karalis et al. Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110043046 Joannopoulos et al. Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043048 Karalis et al. Feb 2011 A1
20110043049 Karalis et al. Feb 2011 A1
20110049995 Hashiguchi Mar 2011 A1
20110049996 Karalis et al. Mar 2011 A1
20110049998 Karalis et al. Mar 2011 A1
20110074218 Karalis et al. Mar 2011 A1
20110074346 Hall et al. Mar 2011 A1
20110074347 Karalis et al. Mar 2011 A1
20110089895 Karalis et al. Apr 2011 A1
20110095618 Schatz et al. Apr 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115431 Dunworth et al. May 2011 A1
20110121920 Kurs et al. May 2011 A1
20110128015 Dorairaj et al. Jun 2011 A1
20110140544 Karalis et al. Jun 2011 A1
20110148219 Karalis et al. Jun 2011 A1
20110162895 Karalis et al. Jul 2011 A1
20110169339 Karalis et al. Jul 2011 A1
20110181122 Karalis et al. Jul 2011 A1
20110193416 Campanella et al. Aug 2011 A1
20110193419 Karalis et al. Aug 2011 A1
20110198939 Karalis et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110221278 Karalis et al. Sep 2011 A1
20110227528 Karalis et al. Sep 2011 A1
20110227530 Karalis et al. Sep 2011 A1
20110241618 Karalis et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110254377 Wildmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110266878 Cook et al. Nov 2011 A9
20110278943 Eckhoff et al. Nov 2011 A1
20120001492 Cook et al. Jan 2012 A9
20120001593 DiGuardo Jan 2012 A1
20120007435 Sada et al. Jan 2012 A1
20120007441 John et al. Jan 2012 A1
20120025602 Boys et al. Feb 2012 A1
20120032522 Schatz et al. Feb 2012 A1
20120038525 Monsalve Carcelen et al. Feb 2012 A1
20120062345 Kurs et al. Mar 2012 A1
20120068549 Karalis et al. Mar 2012 A1
20120086284 Campanella et al. Apr 2012 A1
20120086867 Kesler et al. Apr 2012 A1
20120091794 Campanella et al. Apr 2012 A1
20120091795 Fiorello et al. Apr 2012 A1
20120091796 Kesler et al. Apr 2012 A1
20120091797 Kesler et al. Apr 2012 A1
20120091819 Kulikowski et al. Apr 2012 A1
20120091820 Campanella et al. Apr 2012 A1
20120091949 Campanella et al. Apr 2012 A1
20120091950 Campanella et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120112531 Kesler et al. May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120112534 Kesler et al. May 2012 A1
20120112535 Karalis et al. May 2012 A1
20120112536 Karalis et al. May 2012 A1
20120112538 Kesler et al. May 2012 A1
20120112691 Kurs et al. May 2012 A1
20120119569 Karalis et al. May 2012 A1
20120119575 Kurs et al. May 2012 A1
20120119576 Kesler et al. May 2012 A1
20120119698 Karalis et al. May 2012 A1
20120139355 Ganem et al. Jun 2012 A1
20120146575 Armstrong et al. Jun 2012 A1
20120153732 Kurs et al. Jun 2012 A1
20120153733 Schatz et al. Jun 2012 A1
20120153734 Kurs et al. Jun 2012 A1
20120153735 Karalis et al. Jun 2012 A1
20120153736 Karalis et al. Jun 2012 A1
20120153737 Karalis et al. Jun 2012 A1
20120153738 Karalis et al. Jun 2012 A1
20120153893 Schatz et al. Jun 2012 A1
20120184338 Kesler et al. Jul 2012 A1
20120206096 John Aug 2012 A1
20120223573 Schatz et al. Sep 2012 A1
20120228952 Hall et al. Sep 2012 A1
20120228953 Kesler et al. Sep 2012 A1
20120228954 Kesler et al. Sep 2012 A1
20120235500 Ganem et al. Sep 2012 A1
20120235501 Kesler et al. Sep 2012 A1
20120235502 Kesler et al. Sep 2012 A1
20120235503 Kesler et al. Sep 2012 A1
20120235504 Kesler et al. Sep 2012 A1
20120235505 Schatz et al. Sep 2012 A1
20120235566 Karalis et al. Sep 2012 A1
20120235567 Karalis et al. Sep 2012 A1
20120235633 Kesler et al. Sep 2012 A1
20120235634 Hall et al. Sep 2012 A1
20120239117 Kesler et al. Sep 2012 A1
20120242159 Lou et al. Sep 2012 A1
20120242225 Karalis et al. Sep 2012 A1
20120248884 Karalis et al. Oct 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248887 Kesler et al. Oct 2012 A1
20120248888 Kesler et al. Oct 2012 A1
20120248981 Karalis et al. Oct 2012 A1
20120256494 Kesler et al. Oct 2012 A1
20120267960 Low et al. Oct 2012 A1
20120280765 Kurs et al. Nov 2012 A1
20120313449 Kurs et al. Dec 2012 A1
20120313742 Kurs et al. Dec 2012 A1
20130007949 Kurs et al. Jan 2013 A1
20130020878 Karalis et al. Jan 2013 A1
20130033118 Karalis et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130062966 Verghese et al. Mar 2013 A1
20130069441 Verghese et al. Mar 2013 A1
20130069753 Kurs et al. Mar 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130154383 Kasturi et al. Jun 2013 A1
20130154389 Kurs et al. Jun 2013 A1
20130159956 Verghese et al. Jun 2013 A1
20130175874 Lou et al. Jul 2013 A1
20130175875 Kurs et al. Jul 2013 A1
20130200716 Kesler et al. Aug 2013 A1
20130200721 Kurs et al. Aug 2013 A1
20130221744 Hall et al. Aug 2013 A1
20130278073 Kurs et al. Oct 2013 A1
20130278074 Kurs et al. Oct 2013 A1
20130278075 Kurs et al. Oct 2013 A1
20130300353 Kurs et al. Nov 2013 A1
20130307349 Hall et al. Nov 2013 A1
20130320773 Schatz et al. Dec 2013 A1
20130334892 Hall et al. Dec 2013 A1
20140002012 McCauley et al. Jan 2014 A1
20140070764 Keeling Mar 2014 A1
Foreign Referenced Citations (108)
Number Date Country
142352 Aug 1912 CA
102239633 Nov 2011 CN
102439669 May 2012 CN
103329397 Sep 2013 CN
38 24 972 Jan 1989 DE
100 29147 Dec 2001 DE
200 16 655 Mar 2002 DE
102 21 484 Nov 2003 DE
103 04 584 Aug 2004 DE
10 2005 036290 Feb 2007 DE
10 2006 044057 Apr 2008 DE
1 335 477 Aug 2003 EP
1 521 206 Apr 2005 EP
1 524 010 Apr 2005 EP
2 357 716 Aug 2011 EP
02-097005 Apr 1990 JP
4-265875 Sep 1992 JP
6-341410 Dec 1994 JP
9-182323 Jul 1997 JP
9-298847 Nov 1997 JP
10-164837 Jun 1998 JP
11-75329 Mar 1999 JP
11-188113 Jul 1999 JP
2001-309580 Nov 2001 JP
2002-010535 Jan 2002 JP
2003-179526 Jun 2003 JP
2004-166459 Jun 2004 JP
2004-201458 Jul 2004 JP
2004-229144 Aug 2004 JP
2005-57444 Mar 2005 JP
2005-149238 Jun 2005 JP
2006-074848 Mar 2006 JP
2007-505480 Mar 2007 JP
2007-266892 Oct 2007 JP
2007-537637 Dec 2007 JP
2008-508842 Mar 2008 JP
2008-206231 Sep 2008 JP
2008-206327 Sep 2008 JP
2011-072074 Apr 2011 JP
2012-504387 Feb 2012 JP
2013-543718 Dec 2013 JP
10-2007-0017804 Feb 2007 KR
10-2008-0007635 Jan 2008 KR
10-2009-0122072 Nov 2009 KR
10-2011-0050920 May 2011 KR
112842 Jul 2005 SG
WO 9217929 Oct 1992 WO
WO 9323908 Nov 1993 WO
WO 9428560 Dec 1994 WO
WO 9511545 Apr 1995 WO
WO 9602970 Feb 1996 WO
WO 9850993 Nov 1998 WO
WO 0077910 Dec 2000 WO
WO 03092329 Nov 2003 WO
WO 03096361 Nov 2003 WO
WO 03096512 Nov 2003 WO
WO 2004015885 Feb 2004 WO
WO 2004038888 May 2004 WO
WO 2004055654 Jul 2004 WO
WO 2004073150 Aug 2004 WO
WO 2004073166 Aug 2004 WO
WO 2004073176 Aug 2004 WO
WO 2004073177 Aug 2004 WO
WO 2004112216 Dec 2004 WO
WO 2005024865 Mar 2005 WO
WO 2005060068 Jun 2005 WO
WO 2005109597 Nov 2005 WO
WO 2005109598 Nov 2005 WO
WO 2006011769 Feb 2006 WO
WO 2007008646 Jan 2007 WO
WO 2007020583 Feb 2007 WO
WO 2007042952 Apr 2007 WO
WO 2007084716 Jul 2007 WO
WO 2007084717 Jul 2007 WO
WO 2008109489 Sep 2008 WO
WO 2008118178 Oct 2008 WO
WO 2009009559 Jan 2009 WO
WO 2009018568 Feb 2009 WO
WO 2009023155 Feb 2009 WO
WO 2009023646 Feb 2009 WO
WO 2009033043 Mar 2009 WO
WO 2009062438 May 2009 WO
WO 2009070730 Jun 2009 WO
WO 2009126963 Oct 2009 WO
WO 2009140506 Nov 2009 WO
WO 2009149464 Dec 2009 WO
WO 2009155000 Dec 2009 WO
WO 2010030977 Mar 2010 WO
WO 2010036980 Apr 2010 WO
WO 2010039967 Apr 2010 WO
WO 2010090538 Aug 2010 WO
WO 2010090539 Aug 2010 WO
WO 2010093997 Aug 2010 WO
WO 2010104569 Sep 2010 WO
WO 2011061388 May 2011 WO
WO 2011061821 May 2011 WO
WO 2011062827 May 2011 WO
WO 2011112795 Sep 2011 WO
WO 2012037279 Mar 2012 WO
WO 2012170278 Dec 2012 WO
WO 2013013235 Jan 2013 WO
WO 2013020138 Feb 2013 WO
WO 2013036947 Mar 2013 WO
WO 2013059441 Apr 2013 WO
WO 2013067484 May 2013 WO
WO 2013113017 Aug 2013 WO
WO 2013142840 Sep 2013 WO
WO 2014004843 Jan 2014 WO
Non-Patent Literature Citations (117)
Entry
“Intel CTO Says Gap between Humans, Machines Will Close by 2050”, Intel News Release, (See intel.com/.../20080821comp.htm?iid=S . . . ) (Printed Nov. 6, 2009).
“Physics Update, Unwired Energy”, Physics Today, pp. 26, (Jan. 2007) (See http://arxiv.org/abs/physics/0611063.).
“In pictures: A year in technology”, BBC News, (Dec. 28, 2007).
“Next Little Thing 2010 Electricity without wires”, CNN Money (See money.cnn.com/galleries/2009/smallbusiness/0911/gallery.next_little_thing_2010.smb/) (dated Nov. 30, 2009).
Abe et al. “A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil”. IEEE, 36(2):444-451, Mar./Apr. 2000.
Ahmadian, M. et al., “Miniature Transmitter for Implantable Micro Systems”, Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, pp. 3028-3031 (Sep. 17-21, 2003).
Aoki, T. et al., “Observation of strong coupling between one atom and a monolithic microresonator”, Nature, vol. 443:671-674 (2006).
Apneseth et al. “Introducing wireless proximity switches” ABB Review Apr. 2002.
Aristeidis Karalis et al., “Efficient Wireless non-radiative mid-range energy transfer”, Annals of Physics, vol. 323, pp. 34-48 (2008).
Baker et al., “Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1(1):28-38 (Mar. 2007).
Balanis, C.A., “Antenna Theory: Analysis and Design,” 3rd Edition, Sections 4.2, 4.3, 5.2, 5.3 (Wiley, New Jersey, 2005).
Berardelli, P., “Outlets Are Out”, ScienceNOW Daily News, Science Now, http://sciencenow.sciencemag.org/ cgi/content/full/2006/1114/2, (Nov. 14, 2006) 2 pages.
Biever, C., “Evanescent coupling' could power gadgets wirelessly”, NewScientistsTech.com, http://www. newscientisttech.com/article.ns?id=dn1 0575&print=true, (Nov. 15, 2006) 2 pages.
Borenstein, S., “Man tries wirelessly boosting batteries”, (The Associated Press), USA Today, (Nov. 16, 2006) 1 page.
Borenstein, S., “Man tries wirelessly boosting batteries”, AP Science Writer, Boston.com, (See http://www.boston.com/business/technology/articles/2006/11/15/man_tries_wirelessly_b . . . ) (Nov. 15, 2006).
Boyle, A., “Electro-nirvana? Not so fast”, MSNBC, http:/lcosmiclog.msnbc.msn.com/_news/2007/06/08/4350760- electro-nirvana-not-so-fast, (Jun. 8, 2007) 1 page.
Budhia, M. et al., “A New IPT Magnetic Coupler for Electric Vehicle Charging Systems”, IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, pp. 2487-2492 (Nov. 7-10, 2010).
Budhia, M. et al., “Development and evaluation of single sided flux couplers for contactless electric vehicle charging”, 2011 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, pp. 614-621 (Sep. 17-22, 2011).
Budhia, M. et al.,“Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT”, IEEE Transactions on Industrial Electronics, vol. 60:318-328 (Jan. 2013).
Bulkeley, W. M., “MIT Scientists Pave the Way for Wireless Battery Charging”, The Wall Street Journal (See http://online.wsj.com/article/SB118123955549228045.html?mod=googlenews_wsj), (Jun. 8, 2007) 2 pages.
Burri et al., “Invention Description”, (Feb. 5, 2008).
Cass, S., “Air Power—Wireless data connections are common—now scientists are working on wireless power”, Sponsored by IEEE Spectrum, http://spectrum.ieee.org/computing/hardware/air-power, (Nov. 2006) 2 pages.
Castelvecchi, Davide, “The Power of Induction—Cutting the last cord could resonate with our increasingly gadget dependent lives”, Science News Online, vol. 172, No. 3, Jul. 21, 2007, 6 pages.
Chang, A., “Recharging the Wireless Way—Even physicists forget to recharge their cell phones sometimes.”, PC Magazine, ABC News Internet Ventures, (Dec. 12, 2006) 1 page.
Chinaview, ,“Scientists light bulb with ‘wireless electricity’”,www.Chinaview.en, http://news.xinhuanet.com/english/2007-06/08/content_6215681.htm,Jun. 2007,1 page.
Cooks, G., “The vision of an MIT physicist: Getting rid of pesky rechargers”, Boston.com, (Dec. 11, 2006) 1 page.
Derbyshire, D., “The end of the plug? Scientists invent wireless device that beams electricity through your home”, Daily Mail, http://www.dailymail.co.uk/pages/live/articles/technology/technology.html?in_article_id=4 . . . ), (Jun. 7, 2007) 3 pages.
Eisenberg, Anne, “Automatic Recharging, From a Distance”, The New York Times, (see www.nytimes.com/2012/03/11/business/built-in-wireless-chargeing-for-electronic-devices.html?_r=0) (published on Mar. 10, 2012).
Esser et al., “A New Approach to Power Supplies for Robots”, IEEE, vol. 27(5):872-875, (Sep./Oct. 1991).
Fan, Shanhui et al., “Rate-Equation Analysis of Output Efficiency and Modulation Rate of Photomic-Crystal Light-Emitting Diodes”, IEEE Journal of Quantum Electronics, vol. 36(10):1123-1130 (Oct. 2000).
Fenske et al., “Dielectric Materials at Microwave Frequencies”, Applied Microwave & Wireless, pp. 92-100 (2000).
Fernandez, C. et al., “A simple dc-dc converter for the power supply of a cochlear implant”, IEEE, pp. 1965-1970 (2003).
Ferris, David, “How Wireless Charging Will Make Life Simpler (and Greener)”, Forbes (See forbes.com/sites/davidferris/2012/07/24/how-wireless-charging-will-make-life-simpler-and-greener/print/) (dated Jul. 24, 2012).
Fildes, J., “Physics Promises Wireless Power”, (Science and Technology Reporter), BBC News, (Nov. 15, 2006) 3 pages.
Fildes, J., “The technology with impact 2007”, BBC News, (Dec. 27, 2007) 3 pages.
Fildes, J., “Wireless energy promise powers up”, BBC News, http://news.bbc.co.uk/2/hi/technology/6725955.stm, (Jun. 7, 2007) 3 pages.
Finkenzeller, Klaus, “RFID Handbook—Fundamentals and Applications in Contactless Smart Cards”, Nikkan Kohgyo-sya, Kanno Taihei, first version, pp. 32-37, 253 (Aug. 21, 2001).
Finkenzeller, Klaus, “RFID Handbook (2nd Edition)”, The Nikkan Kogyo Shimbun, Ltd., pp. 19, 20, 38, 39, 43, 44, 62, 63, 67, 68, 87, 88, 291, 292 (Published on May 31, 2004).
Freedman, D.H., “Power on a Chip”, MIT Technology Review, (Nov. 2004).
Gary Peterson, “MIT WiTricity Not So Original After All”, Feed Line No. 9, (See http://www.tfcbooks.com/articles/witricity.htm) printed Nov. 12, 2009.
Geyi, Wen, “A Method for the Evaluation of Small Antenna Q”, IEEE Transactions on Antennas and Propagation, vol. 51(8):2124-2129 (Aug. 2003).
Hadley, F., “Goodbye Wires—MIT Team Experimentally Demonstrates Wireless Power Transfer, Potentially Useful for Power Laptops, Cell-Phones Without Cords”, Massachusetts Institute of Technology, Institute for Soldier D Nanotechnologies, http://web.mit.edu/newsoffice/2007/wireless-0607.html, (Jun. 7, 2007) 3 pages.
Haus, H.A., “Waves and Fields in Optoelectronics,” Chapter 7 “Coupling of Modes—Reasonators and Couplers” (Prentice-Hall, New Jersey, 1984).
Heikkinen et al., “Performance and Efficiency of Planar Rectennas for Short-Range Wireless Power Transfer at 2.45 GHz”, Microwave and Optical Technology Letters, vol. 31(2):86-91, (Oct. 20, 2001).
Highfield, R., “Wireless revolution could spell end of plugs”,(Science Editor), Telegraph.co.uk, http://www. telegraph.co.uk/news/main.jhtml?xml=/news/2007/06/07/nwireless1 07.xml, (Jun. 7, 2007) 3 pages.
Hirai et al., “Integral Motor with Driver and Wireless Transmission of Power and Information for Autonomous Subspindle Drive”, IEEE, vol. 15(1):13-20, (Jan. 2000).
Hirai et al., “Practical Study on Wireless Transmission of Power and Information for Autonomous Decentralized Manufacturing System”, IEEE, vol. 46(2):349-359, Apr. 1999.
Hirai et al., “Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information”, IEEE, vol. 15(2):335-345, (Mar. 2000).
Hirai et al., “Wireless Transmission of Power and Information and Information for Cableless Linear Motor Drive”, IEEE, vol. 15(1):21-27, (Jan. 2000).
Hirayama, M., “Splashpower—World Leaders in Wireless Power”, PowerPoint presentation, Splashpower Japan, (Sep. 3, 2007) 30 pages.
Ho, S. L. et al., “A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging”, IEEE Transactions on Magnetics, vol. 47(5):1522-1525 (May 2011).
Infotech Online, “Recharging gadgets without cables”, infotech.indiatimes.com, (Nov. 17, 2006) 1 page.
Jackson, J. D., “Classical Electrodynamics”, 3rd Edition, Wiley, New York, 1999, pp. 201-203.
Jackson, J.D., “Classical Electrodynamics,” 3rd Edition, Sections 1.11, 5.5, 5.17, 6.9, 8.1, 8.8, 9.2, 9.3 (Wiley, New York, 1999).
Jacob, M. V. et al., “Lithium Tantalate—A High Permittivity Dielectric Material for Microwave Communication Systems”, Proceedings of IEEE TENCON—Poster Papers, pp. 1362-1366, 2003.
Karalis, Aristeidis, “Electricity Unplugged”, Feature: Wireless Energy Physics World, physicsworld.com, pp. 23-25 (Feb. 2009).
Kawamura et al., “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications”, IEEE, vol. 32(3):503-508, (May/Jun. 1996).
Kurs, A. et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science vol. 317, pp. 83-86 (Jul. 6, 2007).
Kurs, A. et al., “Simultaneous mid-range power transfer to multiple devices”, Applied Physics Letters, vol. 96, No. 044102 (2010).
Kurs, A. et al.,“Optimized design of a low-resistance electrical conductor for the multimegahertz range”, Applied Physics Letters, vol. 98:172504-172504-3 (Apr. 2011).
Lamb, Gregory M. ,“Look Ma—no wires!—Electricity broadcast through the air may someday run your home”,The Christian Science Monitor,http://www.csmonitor.com/2006/1116/p14s01-stct.html,Nov. 15, 2006,2 pages.
Lee, “Antenna Circuit Design for RFID Applications,” Microchip Technology Inc., AN710, 50 pages (2003).
Lee, “RFID Coil Design,” Microchip Technology Inc., AN678, 21 pages (1998).
Liang et al., “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Applied Physics Letters, 81(7):1323-1325 (Aug. 12, 2002).
Markoff, J. ,“Intel Moves to Free Gadgets of Their Recharging Cords”, The New York Times—nytimes.com, Aug. 21, 2008, 2 pages.
Mediano, A. et al. “Design of class E amplifier with nonlinear and linear shunt capacitances for any duty cycle”, IEEE Trans. Microwave Theor. Tech., vol. 55, No. 3, pp. 484-492, (2007).
Microchip Technology Inc., “microID 13.56 MHz Design Guide—MCRF355/360 Reader Reference Design,” 24 pages (2001).
Minkel, J R. ,“Wireless Energy Lights Bulb from Seven Feet Away—Physicists vow to cut the cord between your laptop battery and the wall socket—with just a simple loop of wire”,Scientific American,http://www.scientificamerican.com/article.cfm?id=wireless-energy-lights-bulb-from-seven-feet-away,Jun. 7, 2007,1 page.
Minkel, J R. ,“Wireless Energy Transfer May Power Devices at a Distance”,Scientific American,Nov. 14, 2006,1 page.
Morgan, J., “Lab report: Pull the plug for a positive charge”, The Herald, Web Issue 2680, (Nov. 16, 2006) 3 pages.
Moskvitch, Katia, “Wireless charging—the future for electric cars?”, BBC News Technology (See www.bbc.co.uk/news/technology-14183409) (dated Jul. 21, 2011).
O'Brien et al., “Analysis of Wireless Power Supplies for Industrial Automation Systems”, IEEE, pp. 367-372 (Nov. 2-6, 2003).
O'Brien et al., “Design of Large Air-Gap Transformers for Wireless Power Supplies”, IEEE, pp. 1557-1562 (Jun. 15-19, 2003).
Pendry, J. B., “A Chiral Route to Negative Refraction”, Science, vol. 306:1353-1355 (2004).
Physics Today, “Unwired energy questions asked answered”, Sep. 2007, pp. 16-17.
Powercast LLC. “White Paper” Powercast simply wire free, 2003.
PR News Wire, “The Big Story for CES 2007: The public debut of eCoupled Intelligent Wireless Power”, Press Release, Fulton Innovation LLC, Las Vegas, NV, (Dec. 27, 2006) 3 pages.
Press Release, “The world's first sheet-type wireless power transmission system: Will a socket be replaced by e-wall?”,Public Relations Office, School of Engineering, University of Tokyo, Japan,Dec. 12, 2006,4 pages.
PRESSTV, “Wireless power transfer possible”, http://edition.presstv.ir/detail/12754.html, Jun. 11, 2007, 1 page.
Reidy, C. (Globe Staff), “MIT discovery could unplug your iPod forever”, Boston.com, http://www.boston.com/ business/ticker/2007/06/mit_discovery_c.html, (Jun. 7, 2007) 3 pages.
Risen, C., “Wireless Energy”, The New York Times, (Dec. 9, 2007) 1 page.
Sakamoto et al., “A Novel Circuit for Non-Contact Charging Through Electro-Magnetic Coupling”, IEEE, pp. 168-174 (1992).
Scheible, G. et al., “Novel Wireless Power Supply System for Wireless Communication Devices in Industrial Automation Systems”, IEEE, pp. 1358-1363, (Nov. 5-8, 2002).
Schneider, D. “A Critical Look at Wireless Power”, IEEE Spectrum, pp. 35-39 (May 2010).
Schneider, David, “Electrons Unplugged. Wireless power at a distance is still far away”, IEEE Spectrum, pp. 35-39 (May 2010).
Schuder, J. C. et al., “An Inductively Coupled RF System for the Transmission of 1 kW of Power Through the Skin”, IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 4, pp. 265-273 (Jul. 1971).
Schuder, J. C., “Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960”, Artificial Organs, vol. 26:909-915 (2002).
Schuder, J.C. et al., “Energy Transport Into the Closed Chest From a Set of Very-Large Mutually Orthogonal Coils”, Communication Electronics, vol. 64:527-534 (Jan. 1963).
Schutz, J. et al., “Load Adaptive Medium Frequency Resonant Power Supply”, IEEE, pp. 282-287 (Nov. 2002).
Sekitani et al. “A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches” www.nature.com/naturematerials. Published online Apr. 29, 2007.
Sekitani et al., “A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors”, IEDM '06, International Electron Devices Meeting, (Dec. 11-13, 2006) 4 pages.
Sekiya, H. et al., “FM/PWM control scheme in class DE inverter”, IEEE Trans. Circuits Syst. I, vol. 51(7) (Jul. 2004).
Senge, M., “MIT's wireless electricity for mobile phones”, Vanguard, http://www.vanguardngr.com/articles/2002/features/gsm/gsm211062007.htm, (Jun. 11, 2007) 1 page.
Sensiper, S., “Electromagnetic wave propogation on helical conductors”, Technical Report No. 194 (based on PhD Thesis), Massachusetts Institute of Technology, (May 16, 1951) 126 pages.
Soljacic, M. , “Wireless Non-Radiative Energy Transfer—PowerPoint presentation”. Massachusetts Institute of Technology, (Oct. 6, 2005).
Soljacic, M. et al., “Wireless Energy Transfer Can Potentially Recharge Laptops Cell Phones Without Cords”, (Nov. 14, 2006) 3 pages.
Soljacic, M. et al., “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity”, J. Opt. Soc. Am B, vol. 19, No. 9, pp. 2052-2059 (Sep. 2002).
Soljacic, M., “Wireless nonradiative energy transfer”, Visions of Discovery New Light on Physics, Cosmology, and Consciousness, Cambridge University Press, New York, NY pp. 530-542 (2011).
Someya, Takao. “The world's first sheet-type wireless power transmission system”. University of Tokyo, (Dec. 12, 2006).
Staelin, David H. et al., Electromagnetic Waves, Chapters 2, 3, 4, and 8, pp. 46-176 and 336-405 (Prentice Hall Upper Saddle River, New Jersey 1998).
Stark III, Joseph C., “Wireless Power Transmission Utilizing a Phased Array of Tesla Coils”, Master Thesis, Massachusetts Institute of Technology (2004).
Stewart, W., “The Power to Set you Free”, Science, vol. 317:55-56 (Jul. 6, 2007).
Tang, S.C. et al., “Evaluation of the Shielding Effects on Printed-Circuit-Board Transformers Using Ferrite Plates and Copper Sheets”, IEEE Transactions on Power Electronics, vol. 17:1080-1088 (Nov. 2002).
Tesla, Nikola, “High Frequency Oscillators for Electro-Therapeutic and Other Purposes”, Proceedings of the IEEE, vol. 87:1282-1292 (Jul. 1999).
Tesla, Nikola, “High Frequency Oscillators for Electro-Therapeutic and Other Purposes”, The Electrical Engineer, vol. XXVI, No. 50 (Nov. 17, 1898).
Texas Instruments, “HF Antenna Design Notes—Technical Application Report,” Literature No. 11-08-26-003, 47 pages (Sep. 2003).
Thomsen et al., “Ultrahigh speed all-optical demultiplexing based on two-photon absorption in a laser diode,” Electronics Letters, 34(19):1871-1872 (Sep. 17, 1998).
UPM Rafsec, “Tutorial overview of inductively coupled RFID Systems,” 7 pages (May 2003).
Valtchev et al. “Efficient Resonant Inductive Coupling Energy Transfer Using New Magnetic and Design Criteria”. IEEE, pp. 1293-1298, 2005.
Vandevoorde et al., “Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability”, Sensors and Actuators, vol. 92:305-311 (2001).
Vilkomerson, David et al., “Implantable Doppler System for Self-Monitoring Vascular Grafts”, IEEE Ultrasonics Symposium, pp. 461-465 (2004).
Villeneuve, Pierre R. et al., “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency”, Physical Review B, vol. 54:7837-7842 (Sep. 15, 1996).
Yariv, Amnon et al., “Coupled-resonator optical waveguide: a proposal and analysis”, Optics Letters, vol. 24(11):711-713 (Jun. 1, 1999).
Yates, David C. et al., “Optimal Transmission Frequency for Ultralow-Power Short-Range Radio Links”, IEEE Transactions on Circuits and Systems—1, Regular Papers, vol. 51:1405-1413 (Jul. 2004).
Yoshihiro Konishi, Microwave Electronic Circuit Technology, Chapter 4, pp. 145-197 (Marcel Dekker, Inc., New York, NY 1998).
Ziaie, Babak et al., “A Low-Power Miniature Transmitter Using a Low-Loss Silicon Platform for Biotelemetry”, Proceedings—19th International Conference IEEE/EMBS, pp. 2221-2224, (Oct. 30-Nov. 2, 1997) 4 pages.
Zierhofer, Clemens M. et al., “High-Efficiency Coupling-Insensitive Transcutaneous Power and Data Transmission Via an Inductive Link”, IEEE Transactions on Biomedical Engineering, vol. 37, No. 7, pp. 716-722 (Jul. 1990).
Related Publications (1)
Number Date Country
20150115733 A1 Apr 2015 US
Provisional Applications (3)
Number Date Country
61922406 Dec 2013 US
62043320 Aug 2014 US
61505593 Jul 2011 US
Continuation in Parts (1)
Number Date Country
Parent 13544688 Jul 2012 US
Child 14587597 US