Field
The present invention relates generally to wireless charging, and more specifically to devices, systems, and methods related to portable wireless charging systems.
Background
Typically, each battery powered device such as a wireless communication device such as a cell-phone requires its own charger and power source, which is usually the AC power outlet. This becomes unwieldy when many devices need charging.
Approaches are being developed that use over the air power transmission between a transmitter and the device to be charged. These generally fall into two categories. One is based on the coupling of plane wave radiation (also called far-field radiation) between a transmit antenna and receive antenna on the device to be charged which collects the radiated power and rectifies it for charging the battery. Antennas are generally of resonant length in order to improve the coupling efficiency. This approach suffers from the fact that the power coupling falls off quickly with distance between the antennas. So charging over reasonable distances (e.g., >1-2 m) becomes difficult. Additionally, since the system radiates plane waves, unintentional radiation can interfere with other systems if not properly controlled through filtering.
Other approaches are based on inductive coupling between a transmit antenna embedded, for example, in a “charging” mat or surface and a receive antenna plus rectifying circuit embedded in the host device to be charged. This approach has the disadvantage that the spacing between transmit and receive antennas must be very close (e.g. mms). Though this approach does have the capability to simultaneously charge multiple devices in the same area, this area is typically small, hence the user must locate the devices to a specific area. Therefore, there is a need to provide a wireless charging arrangement that accommodates flexible placement and orientation of transmit and receive antennas. In addition, it is desirable to have wireless power platforms that are mobile platforms, to enable users to charge their device while on the go.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention can be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other exemplary embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary embodiments of the invention. It will be apparent to those skilled in the art that the exemplary embodiments of the invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary embodiments presented herein.
The words “wireless power” is used herein to mean any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise that is transmitted between from a transmitter to a receiver without the use of physical electromagnetic conductors.
Transmitter 104 further includes a transmit antenna 114 for providing a means for energy transmission and receiver 108 further includes a receive antenna 118 for providing a means for energy reception. The transmit and receive antennas are sized according to applications and devices to be associated therewith. As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near-field of the transmitting antenna to a receiving antenna rather than propagating most of the energy in an electromagnetic wave to the far field. When in this near-field a coupling mode may be developed between the transmit antenna 114 and the receive antenna 118. The area around the antennas 114 and 118 where this near-field coupling may occur is referred to herein as a coupling-mode region.
The receiver may include a matching circuit 132 and a rectifier and switching circuit to generate a DC power output to charge a battery 136 as shown in
As illustrated in
As stated, efficient transfer of energy between the transmitter 104 and receiver 108 occurs during matched or nearly matched resonance between the transmitter 104 and the receiver 108. However, even when resonance between the transmitter 104 and receiver 108 are not matched, energy may be transferred at a lower efficiency. Transfer of energy occurs by coupling energy from the near-field of the transmitting antenna to the receiving antenna residing in the neighborhood where this near-field is established rather than propagating the energy from the transmitting antenna into free space.
The resonant frequency of the loop or magnetic antennas is based on the inductance and capacitance. Inductance in a loop antenna is generally simply the inductance created by the loop, whereas, capacitance is generally added to the loop antenna's inductance to create a resonant structure at a desired resonant frequency. As a non-limiting example, capacitor 152 and capacitor 154 may be added to the antenna to create a resonant circuit that generates resonant signal 156. Accordingly, for larger diameter loop antennas, the size of capacitance needed to induce resonance decreases as the diameter or inductance of the loop increases. Furthermore, as the diameter of the loop or magnetic antenna increases, the efficient energy transfer area of the near-field increases. Of course, other resonant circuits are possible. As another non-limiting example, a capacitor may be placed in parallel between the two terminals of the loop antenna. In addition, those of ordinary skill in the art will recognize that for transmit antennas the resonant signal 156 may be an input to the loop antenna 150.
Exemplary embodiments of the invention include coupling power between two antennas that are in the near-fields of each other. As stated, the near-field is an area around the antenna in which electromagnetic fields exist but may not propagate or radiate away from the antenna. They are typically confined to a volume that is near the physical volume of the antenna. In the exemplary embodiments of the invention, magnetic type antennas such as single and multi-turn loop antennas are used for both transmit (Tx) and receive (Rx) antenna systems since magnetic near-field amplitudes tend to be higher for magnetic type antennas in comparison to the electric near-fields of an electric-type antenna (e.g., a small dipole). This allows for potentially higher coupling between the pair. Furthermore, “electric” antennas (e.g., dipoles and monopoles) or a combination of magnetic and electric antennas is also contemplated.
The Tx antenna can be operated at a frequency that is low enough and with an antenna size that is large enough to achieve good coupling (e.g., >−4 dB) to a small Rx antenna at significantly larger distances than allowed by far field and inductive approaches mentioned earlier. If the Tx antenna is sized correctly, high coupling levels (e.g., −2 to −4 dB) can be achieved when the Rx antenna on a host device is placed within a coupling-mode region (i.e., in the near-field) of the driven Tx loop antenna.
As examples, points p1, p2, p3, and p7 are all coplanar placement points for a receive antenna relative to a transmit antenna. As another example, point p5 and p6 are coaxial placement points for a receive antenna relative to a transmit antenna. The table below shows coupling strength (S21) and coupling efficiency (expressed as a percentage of power transmitted from the transmit antenna that reached the receive antenna) at the various placement points (p1-p7) illustrated in
As can be seen, the coplanar placement points p1, p2, and p3, all show relatively high coupling efficiencies. Placement point p7 is also a coplanar placement point, but is outside of the transmit loop antenna. While placement point p7 does not have a high coupling efficiency, it is clear that there is some coupling and the coupling-mode region extends beyond the perimeter of the transmit loop antenna.
Placement point p5 is coaxial with the transmit antenna and shows substantial coupling efficiency. The coupling efficiency for placement point p5 is not as high as the coupling efficiencies for the coplanar placement points. However, the coupling efficiency for placement point p5 is high enough that substantial power can be conveyed between the transmit antenna and a receive antenna in a coaxial placement.
Placement point p4 is within the circumference of the transmit antenna but at a slight distance above the plane of the transmit antenna in a position that may be referred to as an offset coaxial placement (i.e., with surface normals in substantially the same direction but at different locations) or offset coplanar (i.e., with surface normals in substantially the same direction but with planes that are offset relative to each other). From the table it can be seen that with an offset distance of 2.5 cm, placement point p4 still has relatively good coupling efficiency.
Placement point p6 illustrates a placement point outside the circumference of the transmit antenna and at a substantial distance above the plane of the transmit antenna. As can be seen from the table, placement point p7 shows little coupling efficiency between the transmit and receive antennas.
Transmit circuitry 202 may include a fixed impedance matching circuit 206 for matching the impedance of the transmit circuitry 202 (e.g., 50 ohms) to the transmit antenna 204 and a low pass filter (LPF) 208 configured to reduce harmonic emissions to levels to prevent self-jamming of devices coupled to receivers 108 (
Transmit circuitry 202 further includes a processor 214 for enabling the oscillator 212 during transmit phases (or duty cycles) for specific receivers, for adjusting the frequency of the oscillator, and for adjusting the output power level for implementing a communication protocol for interacting with neighboring devices through their attached receivers.
The transmit circuitry 202 may further include a load sensing circuit 216 for detecting the presence or absence of active receivers in the vicinity of the near-field generated by transmit antenna 204. By way of example, a load sensing circuit 216 monitors the current flowing to the power amplifier 210, which is affected by the presence or absence of active receivers in the vicinity of the near-field generated by transmit antenna 204. Detection of changes to the loading on the power amplifier 210 are monitored by processor 214 for use in determining whether to enable the oscillator 212 for transmitting energy to communicate with an active receiver. Transmit antenna 204 may be implemented as an antenna strip with the thickness, width and metal type selected to keep resistive losses low.
Receive antenna 304 is tuned to resonate at the same frequency, or near the same frequency, as transmit antenna 204 (
Receive circuitry 302 provides an impedance match to the receive antenna 304. Receive circuitry 302 includes power conversion circuitry 306 for converting a received RF energy source into charging power for use by device 350. Power conversion circuitry 306 includes an RF-to-DC converter 308 and may also in include a DC-to-DC converter 310. RF-to-DC converter 308 rectifies the RF energy signal received at receive antenna 304 into a non-alternating power while DC-to-DC converter 310 converts the rectified RF energy signal into an energy potential (e.g., voltage) that is compatible with device 350. Various RF-to-DC converters are contemplated including partial and full rectifiers, regulators, bridges, doublers, as well as linear and switching converters.
Receive circuitry 302 may further include switching circuitry 312 for connecting receive antenna 304 to the power conversion circuitry 306 or alternatively for disconnecting the power conversion circuitry 306. Disconnecting receive antenna 304 from power conversion circuitry 306 not only suspends charging of device 350, but also changes the “load” as “seen” by the transmitter 200 (
When multiple receivers 300 are present in a transmitter's near-field, it may be desirable to time-multiplex the loading and unloading of one or more receivers to enable other receivers to more efficiently couple to the transmitter. A receiver may also be cloaked in order to eliminate coupling to other nearby receivers or to reduce loading on nearby transmitters. This “unloading” of a receiver is also known herein as a “cloaking.” Furthermore, this switching between unloading and loading controlled by receiver 300 and detected by transmitter 200 provides a communication mechanism from receiver 300 to transmitter 200 as is explained more fully below. Additionally, a protocol can be associated with the switching which enables the sending of a message from receiver 300 to transmitter 200. By way of example, a switching speed may be on the order of 100 μsec.
In an exemplary embodiment, communication between the transmitter and the receiver refers to a Device Sensing and Charging Control Mechanism, rather than conventional two-way communication. In other words, the transmitter uses on/off keying of the transmitted signal to adjust whether energy is available in the near-filed. The receivers interpret these changes in energy as a message from the transmitter. From the receiver side, the receiver uses tuning and de-tuning of the receive antenna to adjust how much power is being accepted from the near-field. The transmitter can detect this difference in power used from the near-field and interpret these changes as a message from the receiver.
Receive circuitry 302 may further include signaling detector and beacon circuitry 314 used to identify received energy fluctuations, which may correspond to informational signaling from the transmitter to the receiver. Furthermore, signaling and beacon circuitry 314 may also be used to detect the transmission of a reduced RF signal energy (i.e., a beacon signal) and to rectify the reduced RF signal energy into a nominal power for awakening either un-powered or power-depleted circuits within receive circuitry 302 in order to configure receive circuitry 302 for wireless charging.
Receive circuitry 302 further includes processor 316 for coordinating the processes of receiver 300 described herein including the control of switching circuitry 312 described herein. Cloaking of receiver 300 may also occur upon the occurrence of other events including detection of an external wired charging source (e.g., wall/USB power) providing charging power to device 350. Processor 316, in addition to controlling the cloaking of the receiver, may also monitor beacon circuitry 314 to determine a beacon state and extract messages sent from the transmitter. Processor 316 may also adjust DC-to-DC converter 310 for improved performance.
The transmit circuitry can send signals to receivers by using an ON/OFF keying process on the power amplifier 210. In other words, when the transmit modulation signal 224 is asserted, the power amplifier 210 will drive the frequency of the carrier signal 220 out on the transmit antenna 204. When the transmit modulation signal 224 is negated, the power amplifier will not drive out any frequency on the transmit antenna 204.
The transmit circuitry of
A receiver and a transmitter may communicate on a separate communication channel (e.g., Bluetooth, zigbee, etc). With a separate communication channel, the transmitter may determine when to switch between beacon mode and high power mode, or create multiple power levels, based on the number of receive devices in the coupling-mode region 510 and their respective power requirements.
Exemplary embodiments of the invention include enhancing the coupling between a relatively large transmit antenna and a small receive antenna in the near-field power transfer between two antennas through introduction of additional antennas into the system of coupled antennas that will act as repeaters and will enhance the flow of power from the transmitting antenna toward the receiving antenna.
In an exemplary embodiment, one or more extra antennas (illustrated below) are used that couple to the transmit antenna and receive antenna in the system. These extra antennas comprise repeater antennas, such as active or passive antennas. A passive antenna may include simply the antenna loop and a capacitive element for tuning a resonant frequency of the antenna. An active element may include, in addition to the antenna loop and one or more tuning capacitors, an amplifier for increasing the strength of a repeated near-field radiation.
The combination of the transmit antenna and the repeater antennas in the power transfer system may be optimized such that coupling of power to very small receive antennas is enhanced based on factors such as termination loads, tuning components, resonant frequencies, and placement of the repeater antennas relative to the transmit antenna.
A single transmit antenna exhibits a finite near-field coupling-mode region. Accordingly, a user of a device charging through a receiver in the transmit antenna's near-field coupling-mode region may require a considerable user access space that would be prohibitive or at least inconvenient. Furthermore, the coupling-mode region may diminish quickly as a receive antenna moves away from the transmit antenna.
A repeater antenna may refocus and reshape a coupling-mode region from a transmit antenna to create a second coupling-mode region around the repeater antenna, which may be better suited for coupling energy to a receive antenna.
As a non-limiting example, the presence detector may be a motion detector utilized to sense the initial presence of a device to be charged that is inserted into the coverage area of the transmitter. After detection, the transmitter is turned on and the RF power received by the device is used to toggle a switch on the Rx device in a pre-determined manner, which in turn results in changes to the driving point impedance of the transmitter.
As another non-limiting example, the presence detector may be a detector capable of detecting a human, for example, by infrared detection, motion detection, or other suitable means. In some exemplary embodiments, there may be regulations limiting the amount of power that a transmit antenna may transmit at a specific frequency. In some cases, these regulations are meant to protect humans from electromagnetic radiation. However, there may be environments where transmit antennas are placed in areas not occupied by humans, or occupied infrequently by humans, such as, for example, garages, factory floors, shops, and the like. If these environments are free from humans, it may be permissible to increase the power output of the transmit antennas above the normal power restrictions regulations. In other words, the controller 214 may adjust the power output of the transmit antenna 204 to a regulatory level or lower in response to human presence and adjust the power output of the transmit antenna 204 to a level above the regulatory level when a human is outside a regulatory distance from the electromagnetic field of the transmit antenna 204.
In many of the examples below, only one guest device is shown being charged. In practice, a multiplicity of the devices can be charged from a near-field generated by each host.
In exemplary embodiments, a method by which the Tx circuit does not remain on indefinitely may be used. In such an exemplary embodiment, the Tx circuit may be programmed to shut off after a pre-determined amount of time, which may be user-defined or factory preset. This feature prevents the Tx circuit, notably the power amplifier, from running long after the wireless devices in its perimeter are fully charged. This event may be due to the failure of the circuit to detect the signal sent from either the repeater or the Rx coil that a device is fully charged. To prevent the Tx circuit from automatically shutting down if another device is placed in its perimeter, the Tx circuit automatic shut off feature may be activated only after a set period of lack of motion detected in its perimeter. The user may be able to determine the inactivity time interval, and change it as desired. As a non-limiting example, the time interval may be longer than that needed to fully charge a specific type of wireless device under the assumption of the device being initially fully discharged.
Exemplary embodiments of the invention include using portable apparatuses as the charging stations or “hosts,” housing totally, or partially, the transmit antenna and other circuitry necessary for wireless transfer of power to other often smaller devices, equipment, or machines referred to as “guests.” As non-limiting examples, these charging stations or hosts could be backpacks, briefcases, purses, clothing, luggage, and so on. The charging system, which can be at least partially embedded in the aforementioned examples, may either be a retrofit to existing apparatus, or made as part of its initial design and manufacturing.
In the exemplary embodiments described herein, multi-dimensional regions with multiple antennas may be performed by the techniques described herein. In addition, multi-dimensional wireless powering and charging may be employed, such as the means described in U.S. patent application Ser. No. 12/567,339, entitled “SYSTEMS AND METHOD RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING” filed on Sep. 25, 2009, the contents of which are hereby incorporated by reference in its entirety for all purposes.
Furthermore, charging system 400 may include a power connector 408 configured to couple an external power source (not shown), such as a power outlet, to transmit antenna 404 via transmit circuitry 202, to battery 406, or any combination thereof. Accordingly, power connector 408 may be configured to supply power to transmit antenna 404 via transmit circuitry 202, supply power for charging battery 406, or any combination thereof. Power connector 408 may comprise any known, suitable power source connector. As a non-limiting example, power connector 408 may comprise a removable power cord configured to couple to an electrical connector (e.g., a USB port or an external power plug) on bag 402. Furthermore, power connector 408 may comprise, for example only, a retractable power cord configured to retract into bag 402 and be pulled out from bag 402.
In one contemplated operation, transmit antenna 404 may receive, via transmit circuitry 202, power from the external power source by means of power connector 408, battery 406, or any combination thereof and, upon receipt of power, may transmit power within a near-field of transmit antenna 404. The power may then be received by a receive antenna within a coupling mode-region of the receive antenna and transmit antenna 404. For example, power transmitted from transmit antenna 404 may be received by a receive antenna 410 coupled to a battery (e.g., battery 136 of
Additionally, charging system 400 may include a coil 414 integrated within bag 402 and positioned proximate a storage area 416 (e.g., a pocket) of bag 402. With reference to
Accordingly, while bag 402 is coupled to an external power source (e.g., a power outlet), one or more devices (e.g., device 412) within bag 402 may wirelessly receive power from the external source via power connector 408 and transmit antenna 404, and one or more devices (e.g., device 418) within bag 402 may wirelessly receive power from the external source via power connector 408 and coil 414. Furthermore, while bag 402 is coupled to the external power source, battery 406 may be charged with power received from the external source via power connector 408. In addition, while bag 402 is not coupled to the external power source, one or more devices (e.g., device 412) within bag 402 may wirelessly receive power, via associated receive circuitry, from battery 406 via transmit antenna 404 and transmit circuitry 202. Furthermore, one or more devices (e.g., device 418) within bag 402 may wirelessly receive power from battery 406 via an associated coil. Moreover, it is noted that battery 406 may be configured to wirelessly receive power from a transmit antenna external to bag 402.
As depicted in
As illustrated in
Furthermore, as illustrated in
Although charging system 550 depicts a plurality of transmit antennas wherein each transmit antenna is oriented in a substantially similar plane, other exemplary embodiments of the present invention may include a plurality of transmit antennas integrated within a portably bag and having substantially differing orientations. For example,
Furthermore, another charging system 582 includes a first transmit antenna 590 oriented in a first lateral plane and a second transmit antenna 592 oriented in a second lateral plane parallel to the first lateral plane. Moreover, charging system 582 includes a third transmit antenna 588 oriented in a vertical plane perpendicular to the orientations of each of first transmit antenna 590 and second transmit antenna 592. It is noted that, although transmit antennas within charging systems 580 and 582 are depicted as being oriented in either a substantially vertical orientation or a substantially lateral orientation, transmit antennas oriented at an angle from a horizontal plane or a vertical plane are within the scope of the present invention. Orienting transmit antennas in differing orientations may more effectively provide power to receive antennas positioned in various orientations.
As will be understood by one of ordinary skill in the art, concurrent operation of directly or nearly adjacent antennas may result in interfering effects between the concurrently activated and physically nearby or adjacent antennas. As such, a means may be used for selecting and multiplexing between directly or nearly adjacent antennas so as to minimize interfering effects. For example, independent activation of directly or nearly adjacent antennas may be controlled by a controller and may occur according to a time-domain based sequence. More specifically, a multiplexer may time-multiplex an output signal from an amplifier to each of the antennas. Furthermore, upon activation of one antenna, adjacent antennas may be “cloaked” to allow improved wireless charging efficiency of the activated antenna.
Additionally, as illustrated in
Placing a transmit antenna proximate a storage area wherein the transmit antenna has a substantially similar shape of the storage area may enable for improved wireless charging efficiency of a device (e.g., a cellular telephone) placed in the storage area. More specifically, because a device (e.g. a cellular telephone) placed in a storage area (e.g., storage area 626) may be passively aligned by the shape of the storage area, a device within the storage area may be substantially aligned with the transmit antenna and charging efficiency may be increased.
Another charging system 650, according to one or more exemplary embodiments of the present invention, is illustrated in
The exemplary embodiments described above may enable a device (e.g., a camera, cellular telephone, or a media player) user to simultaneously charge one or more devices while transporting a portable apparatus having the one or more chargeable devices therein. Further, the above described exemplary embodiments may enable a device user to simultaneously charge one or more devices within a portable apparatus without any need to remove any device from the portable apparatus. It is noted that, although the portable charging systems described above include portable bags, a portable charging system having any known and suitable portable apparatus is within the scope of the present invention.
Transmit antenna 672 may be configured to receive power from energy storage module 676 in any known and suitable wireless or wired manner. Furthermore, transmit antenna 672 may be configured to transmit power within a near-field of transmit antenna 672. The transmitted power may then be received by a receive antenna (not shown) within a coupling-mode region of the receive antenna and transmit antenna 672. For example, power transmitted from transmit antenna 672 may be received by a receive antenna coupled to a battery of a device (not shown) positioned within storage area 678. As an example, while an individual is wearing article of clothing 674, one or more devices positioned within storage area 678 and proximate transmit antenna 672 may wirelessly receive power, via receive circuitry 302, from battery 676 via transmit circuitry 202 and transmit antenna 672.
As described above with reference to
It is further noted that a “portable device,” as described herein, may comprise a device that is configured to receive a chargeable device and at least partially surround the chargeable device. Stated another way, a “portable device” may comprise a device configured to encompass more than one surface of a chargeable device.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the exemplary embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary embodiments of the invention.
The various illustrative logical blocks, modules, and circuits described in connection with the exemplary embodiments disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the exemplary embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
The previous description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other exemplary embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the exemplary embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application is a divisional of U.S. patent application Ser. No. 12/572,407, filed on Oct. 2, 2009 and hereby expressly incorporated in its entirety, which claims priority benefit from: U.S. Provisional Patent Application 61/163,381 entitled “WIRELESS CHARGING IN TRAVEL GEAR” filed on Mar. 25, 2009, and assigned to the assignee hereof and hereby expressly incorporated by reference herein; U.S. Provisional Patent Application 61/152,208 entitled “WIRELESS POWER CHARGERS IN CARRYING CASES” filed on Feb. 12, 2009, and assigned to the assignee hereof and hereby expressly incorporated by reference herein; U.S. Provisional Patent Application 61/164,263 entitled “PASSIVE ALIGNER FOR WIRELESS POWER” filed on Mar. 27, 2009, and assigned to the assignee hereof and hereby expressly incorporated by reference herein; U.S. Provisional Patent Application 61/164,399 entitled “WIRELESS CHARGING” filed on Mar. 28, 2009, and assigned to the assignee hereof and hereby expressly incorporated by reference herein; and U.S. Provisional Patent Application 61/151,290 entitled “MULTIDIMENSIONAL WIRELESS CHARGER” filed on Feb. 10, 2009, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3633109 | Schulz | Jan 1972 | A |
4684869 | Kobayashi | Aug 1987 | A |
4802080 | Bossi et al. | Jan 1989 | A |
5201066 | Kim | Apr 1993 | A |
5287112 | Schuermann | Feb 1994 | A |
5311198 | Sutton | May 1994 | A |
5520892 | Bowen | May 1996 | A |
5539394 | Cato et al. | Jul 1996 | A |
5619530 | Cadd et al. | Apr 1997 | A |
5790080 | Apostolos | Aug 1998 | A |
5956626 | Kaschke et al. | Sep 1999 | A |
5963144 | Kruest | Oct 1999 | A |
6151500 | Cardina et al. | Nov 2000 | A |
6195562 | Pirhonen et al. | Feb 2001 | B1 |
6263247 | Mueller et al. | Jul 2001 | B1 |
6344828 | Grantz et al. | Feb 2002 | B1 |
6388628 | Dettloff et al. | May 2002 | B1 |
6489745 | Koreis | Dec 2002 | B1 |
6600931 | Sutton et al. | Jul 2003 | B2 |
6608550 | Hayashi et al. | Aug 2003 | B2 |
6664770 | Bartels | Dec 2003 | B1 |
6683438 | Park et al. | Jan 2004 | B2 |
6690264 | Dalglish | Feb 2004 | B2 |
6760578 | Rotzoll | Jul 2004 | B2 |
6809498 | Nakamura et al. | Oct 2004 | B2 |
6839035 | Addonisio et al. | Jan 2005 | B1 |
6853629 | Alamouti et al. | Feb 2005 | B2 |
6906495 | Cheng et al. | Jun 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6970142 | Pleva et al. | Nov 2005 | B1 |
6975198 | Baarman et al. | Dec 2005 | B2 |
7069086 | Von Arx | Jun 2006 | B2 |
7142811 | Terranova et al. | Nov 2006 | B2 |
7146139 | Nevermann | Dec 2006 | B2 |
7164255 | Hui et al. | Jan 2007 | B2 |
7193578 | Harris et al. | Mar 2007 | B1 |
7239110 | Cheng et al. | Jul 2007 | B2 |
7243855 | Matsumoto et al. | Jul 2007 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7356588 | Stineman, Jr. et al. | Apr 2008 | B2 |
7375492 | Calhoon et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
7382260 | Agarwal et al. | Jun 2008 | B2 |
7382636 | Baarman et al. | Jun 2008 | B2 |
7428438 | Parramon et al. | Sep 2008 | B2 |
7478108 | Townsend et al. | Jan 2009 | B2 |
7480907 | Marolia et al. | Jan 2009 | B1 |
7499722 | McDowell et al. | Mar 2009 | B2 |
7521890 | Lee et al. | Apr 2009 | B2 |
7522878 | Baarman | Apr 2009 | B2 |
7538666 | Campman | May 2009 | B2 |
7539465 | Quan | May 2009 | B2 |
7554316 | Stevens et al. | Jun 2009 | B2 |
7561050 | Bhogal et al. | Jul 2009 | B2 |
7565108 | Kotola et al. | Jul 2009 | B2 |
7576657 | Duron et al. | Aug 2009 | B2 |
7579913 | Cheng et al. | Aug 2009 | B1 |
7598704 | Taniguchi et al. | Oct 2009 | B2 |
7605496 | Stevens et al. | Oct 2009 | B2 |
7609157 | McFarland | Oct 2009 | B2 |
7626544 | Smith et al. | Dec 2009 | B2 |
7629886 | Steeves | Dec 2009 | B2 |
7642918 | Kippelen et al. | Jan 2010 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7663490 | Dishongh | Feb 2010 | B2 |
7675403 | Quan et al. | Mar 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7778224 | Hayashi et al. | Aug 2010 | B2 |
7792553 | Fukui et al. | Sep 2010 | B2 |
7793121 | Lawther et al. | Sep 2010 | B2 |
7812481 | Iisaka et al. | Oct 2010 | B2 |
7831757 | Habuto et al. | Nov 2010 | B2 |
7844306 | Shearer et al. | Nov 2010 | B2 |
7868837 | Yun et al. | Jan 2011 | B2 |
7924751 | Dean | Apr 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7994880 | Chen et al. | Aug 2011 | B2 |
8004118 | Kamijo et al. | Aug 2011 | B2 |
8073387 | Maslennikov et al. | Dec 2011 | B2 |
8115448 | John | Feb 2012 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8301080 | Baarman | Oct 2012 | B2 |
8330475 | Van Bezooijen et al. | Dec 2012 | B2 |
8432293 | Symons | Apr 2013 | B2 |
8611815 | Mohammadian et al. | Dec 2013 | B2 |
8614526 | Cook et al. | Dec 2013 | B2 |
8629650 | Mohammadian et al. | Jan 2014 | B2 |
20010000960 | Dettloff | May 2001 | A1 |
20010046205 | Easton et al. | Nov 2001 | A1 |
20020041624 | Kim et al. | Apr 2002 | A1 |
20020154705 | Walton et al. | Oct 2002 | A1 |
20020158512 | Mizutani et al. | Oct 2002 | A1 |
20030048254 | Huang | Mar 2003 | A1 |
20030078634 | Schulman et al. | Apr 2003 | A1 |
20040002835 | Nelson | Jan 2004 | A1 |
20040041669 | Kawai | Mar 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040130425 | Dayan et al. | Jul 2004 | A1 |
20040130916 | Baarman | Jul 2004 | A1 |
20040145342 | Lyon | Jul 2004 | A1 |
20040154652 | Karapetyan | Aug 2004 | A1 |
20040166869 | Laroia et al. | Aug 2004 | A1 |
20040180637 | Nagai et al. | Sep 2004 | A1 |
20040227057 | Tuominen et al. | Nov 2004 | A1 |
20040245473 | Takayama et al. | Dec 2004 | A1 |
20040248523 | Nishimura et al. | Dec 2004 | A1 |
20050068009 | Aoki | Mar 2005 | A1 |
20050068019 | Nakamura et al. | Mar 2005 | A1 |
20050083881 | Ohwada | Apr 2005 | A1 |
20050110641 | Mendolia et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050151511 | Chary | Jul 2005 | A1 |
20050156560 | Shimaoka et al. | Jul 2005 | A1 |
20050205679 | Alihodzic | Sep 2005 | A1 |
20050219132 | Charrat | Oct 2005 | A1 |
20050220057 | Monsen | Oct 2005 | A1 |
20050225437 | Shiotsu et al. | Oct 2005 | A1 |
20050239018 | Green et al. | Oct 2005 | A1 |
20050242183 | Bremer | Nov 2005 | A1 |
20060084392 | Marholev et al. | Apr 2006 | A1 |
20060113955 | Nunally | Jun 2006 | A1 |
20060114102 | Chang et al. | Jun 2006 | A1 |
20060131193 | Sherman | Jun 2006 | A1 |
20060184705 | Nakajima | Aug 2006 | A1 |
20060197652 | Hild et al. | Sep 2006 | A1 |
20060202665 | Hsu | Sep 2006 | A1 |
20060220863 | Koyama | Oct 2006 | A1 |
20060238365 | Vecchione et al. | Oct 2006 | A1 |
20060244568 | Tong et al. | Nov 2006 | A1 |
20070001816 | Lindley et al. | Jan 2007 | A1 |
20070004456 | Shimada | Jan 2007 | A1 |
20070004466 | Haartsen et al. | Jan 2007 | A1 |
20070017804 | Myrtveit et al. | Jan 2007 | A1 |
20070021140 | Keyes, Iv et al. | Jan 2007 | A1 |
20070026799 | Wang et al. | Feb 2007 | A1 |
20070029965 | Hui et al. | Feb 2007 | A1 |
20070072474 | Beasley et al. | Mar 2007 | A1 |
20070080804 | Hirahara et al. | Apr 2007 | A1 |
20070090790 | Hui | Apr 2007 | A1 |
20070091006 | Thober et al. | Apr 2007 | A1 |
20070109708 | Hussman et al. | May 2007 | A1 |
20070158438 | Fukuda et al. | Jul 2007 | A1 |
20070165475 | Choi et al. | Jul 2007 | A1 |
20070171811 | Lee et al. | Jul 2007 | A1 |
20070191075 | Greene et al. | Aug 2007 | A1 |
20070222681 | Greene et al. | Sep 2007 | A1 |
20070241977 | Vance | Oct 2007 | A1 |
20070279002 | Partovi | Dec 2007 | A1 |
20070287508 | Telefus | Dec 2007 | A1 |
20070290654 | Govari et al. | Dec 2007 | A1 |
20070296393 | Malpas et al. | Dec 2007 | A1 |
20080014897 | Cook et al. | Jan 2008 | A1 |
20080030324 | Bekritsky et al. | Feb 2008 | A1 |
20080049372 | Loke | Feb 2008 | A1 |
20080054638 | Greene et al. | Mar 2008 | A1 |
20080058029 | Sato et al. | Mar 2008 | A1 |
20080066979 | Carter | Mar 2008 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080079396 | Yamazaki et al. | Apr 2008 | A1 |
20080091350 | Smith et al. | Apr 2008 | A1 |
20080114255 | Schwartz et al. | May 2008 | A1 |
20080116847 | Loke et al. | May 2008 | A1 |
20080122297 | Arai | May 2008 | A1 |
20080157711 | Chiang et al. | Jul 2008 | A1 |
20080165074 | Terry | Jul 2008 | A1 |
20080174266 | Tamura | Jul 2008 | A1 |
20080174267 | Onishi et al. | Jul 2008 | A1 |
20080203815 | Ozawa et al. | Aug 2008 | A1 |
20080211320 | Cook et al. | Sep 2008 | A1 |
20080242337 | Sampath et al. | Oct 2008 | A1 |
20080252254 | Osada | Oct 2008 | A1 |
20080258679 | Manico et al. | Oct 2008 | A1 |
20080261519 | Demarco et al. | Oct 2008 | A1 |
20080266748 | Lee | Oct 2008 | A1 |
20080278264 | Karalis et al. | Nov 2008 | A1 |
20080315826 | Alberth, Jr. et al. | Dec 2008 | A1 |
20090015075 | Cook et al. | Jan 2009 | A1 |
20090021374 | Stagg | Jan 2009 | A1 |
20090031069 | Habuto et al. | Jan 2009 | A1 |
20090045772 | Cook et al. | Feb 2009 | A1 |
20090058189 | Cook et al. | Mar 2009 | A1 |
20090061784 | Cordeiro | Mar 2009 | A1 |
20090072629 | Cook et al. | Mar 2009 | A1 |
20090072782 | Randall | Mar 2009 | A1 |
20090075704 | Wang | Mar 2009 | A1 |
20090127937 | Widmer et al. | May 2009 | A1 |
20090134712 | Cook et al. | May 2009 | A1 |
20090174258 | Liu et al. | Jul 2009 | A1 |
20090179502 | Cook | Jul 2009 | A1 |
20090212636 | Cook et al. | Aug 2009 | A1 |
20090224609 | Cook et al. | Sep 2009 | A1 |
20090243397 | Cook et al. | Oct 2009 | A1 |
20090284082 | Mohammadian | Nov 2009 | A1 |
20090284220 | Toncich et al. | Nov 2009 | A1 |
20090284227 | Mohammadian et al. | Nov 2009 | A1 |
20090284245 | Kirby et al. | Nov 2009 | A1 |
20090284369 | Toncich et al. | Nov 2009 | A1 |
20090286475 | Toncich et al. | Nov 2009 | A1 |
20090286476 | Toncich et al. | Nov 2009 | A1 |
20100023092 | Govari et al. | Jan 2010 | A1 |
20100033021 | Bennett | Feb 2010 | A1 |
20100038970 | Cook et al. | Feb 2010 | A1 |
20100039066 | Yuan et al. | Feb 2010 | A1 |
20100081378 | Kawamura | Apr 2010 | A1 |
20100109445 | Kurs et al. | May 2010 | A1 |
20100148939 | Yamada et al. | Jun 2010 | A1 |
20100181841 | Azancot et al. | Jul 2010 | A1 |
20100201189 | Kirby et al. | Aug 2010 | A1 |
20100201201 | Mobarhan et al. | Aug 2010 | A1 |
20100201202 | Kirby et al. | Aug 2010 | A1 |
20100201310 | Vorenkamp et al. | Aug 2010 | A1 |
20100201311 | Lyell Kirby et al. | Aug 2010 | A1 |
20100201312 | Kirby et al. | Aug 2010 | A1 |
20100201533 | Kirby et al. | Aug 2010 | A1 |
20100213896 | Ishii et al. | Aug 2010 | A1 |
20100219693 | Azancot et al. | Sep 2010 | A1 |
20100225272 | Kirby et al. | Sep 2010 | A1 |
20100289341 | Ozaki et al. | Nov 2010 | A1 |
20100323642 | Morita | Dec 2010 | A1 |
20100328044 | Waffenschmidt et al. | Dec 2010 | A1 |
20110057606 | Saunamaki | Mar 2011 | A1 |
20110074347 | Karalis et al. | Mar 2011 | A1 |
20110133569 | Cheon et al. | Jun 2011 | A1 |
20110176251 | Lee | Jul 2011 | A1 |
20120007437 | Fells et al. | Jan 2012 | A1 |
20130147428 | Kirby et al. | Jun 2013 | A1 |
20130300358 | Kirby et al. | Nov 2013 | A1 |
20140103881 | Mohammadian et al. | Apr 2014 | A1 |
20150171636 | Toncich et al. | Jun 2015 | A1 |
20150372503 | Toncich | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1119774 | Apr 1996 | CN |
1202754 | Dec 1998 | CN |
1242092 | Jan 2000 | CN |
1426170 | Jun 2003 | CN |
1460226 | Dec 2003 | CN |
2681368 | Feb 2005 | CN |
1604426 | Apr 2005 | CN |
1717879 | Jan 2006 | CN |
1722521 | Jan 2006 | CN |
1723643 | Jan 2006 | CN |
1726656 | Jan 2006 | CN |
1768462 | May 2006 | CN |
1768467 | May 2006 | CN |
1808473 | Jul 2006 | CN |
1829037 | Sep 2006 | CN |
1836953 | Sep 2006 | CN |
1881733 | Dec 2006 | CN |
1906863 | Jan 2007 | CN |
1912786 | Feb 2007 | CN |
1941541 | Apr 2007 | CN |
1965324 | May 2007 | CN |
1977294 | Jun 2007 | CN |
1996352 | Jul 2007 | CN |
101023600 | Aug 2007 | CN |
101123318 | Feb 2008 | CN |
101136561 | Mar 2008 | CN |
101151766 | Mar 2008 | CN |
101154823 | Apr 2008 | CN |
101159441 | Apr 2008 | CN |
201044047 | Apr 2008 | CN |
101233666 | Jul 2008 | CN |
101291268 | Oct 2008 | CN |
4004196 | Apr 1991 | DE |
29710675 | Aug 1997 | DE |
10104019 | Jan 2002 | DE |
0444416 | Sep 1991 | EP |
0689149 | Dec 1995 | EP |
0831411 | Mar 1998 | EP |
0878891 | Nov 1998 | EP |
0962407 | Dec 1999 | EP |
0977304 | Feb 2000 | EP |
1022677 | Jul 2000 | EP |
1050839 | Nov 2000 | EP |
1298578 | Apr 2003 | EP |
1420357 | May 2004 | EP |
1454769 | Sep 2004 | EP |
1502543 | Feb 2005 | EP |
1538726 | Jun 2005 | EP |
1575184 | Sep 2005 | EP |
1585268 | Oct 2005 | EP |
1602160 | Dec 2005 | EP |
1703435 | Sep 2006 | EP |
1713145 | Oct 2006 | EP |
1914663 | Apr 2008 | EP |
1919091 | May 2008 | EP |
2093860 | Aug 2009 | EP |
2307379 | May 1997 | GB |
2380359 | Apr 2003 | GB |
2394843 | May 2004 | GB |
2395627 | May 2004 | GB |
2416633 | Feb 2006 | GB |
2433178 | Jun 2007 | GB |
2440571 | Feb 2008 | GB |
59031054 | Feb 1984 | JP |
S62203526 | Sep 1987 | JP |
H04317527 | Nov 1992 | JP |
H05291991 | Nov 1993 | JP |
6112720 | Apr 1994 | JP |
H06133476 | May 1994 | JP |
H0711035 | Feb 1995 | JP |
H0739077 | Feb 1995 | JP |
H0771769 | Mar 1995 | JP |
H07131376 | May 1995 | JP |
9103037 | Apr 1997 | JP |
9147070 | Jun 1997 | JP |
H09172743 | Jun 1997 | JP |
10145987 | May 1998 | JP |
H10210751 | Aug 1998 | JP |
H10225020 | Aug 1998 | JP |
10240880 | Sep 1998 | JP |
10295043 | Nov 1998 | JP |
H10293826 | Nov 1998 | JP |
11025238 | Jan 1999 | JP |
11069640 | Mar 1999 | JP |
11098706 | Apr 1999 | JP |
11122832 | Apr 1999 | JP |
H11134566 | May 1999 | JP |
H11155245 | Jun 1999 | JP |
11188113 | Jul 1999 | JP |
11338983 | Dec 1999 | JP |
H11341711 | Dec 1999 | JP |
2000037046 | Feb 2000 | JP |
2000050534 | Feb 2000 | JP |
2000057450 | Feb 2000 | JP |
2000501263 | Feb 2000 | JP |
2000067195 | Mar 2000 | JP |
2000076008 | Mar 2000 | JP |
2000113127 | Apr 2000 | JP |
2000138621 | May 2000 | JP |
2000172795 | Jun 2000 | JP |
2001238372 | Aug 2001 | JP |
2001511574 | Aug 2001 | JP |
2001291080 | Oct 2001 | JP |
2001309579 | Nov 2001 | JP |
2001339327 | Dec 2001 | JP |
2002034169 | Jan 2002 | JP |
2002050534 | Feb 2002 | JP |
2002506259 | Feb 2002 | JP |
2002513490 | May 2002 | JP |
2002529982 | Sep 2002 | JP |
2003011734 | Jan 2003 | JP |
2003047178 | Feb 2003 | JP |
2003224937 | Aug 2003 | JP |
2004007851 | Jan 2004 | JP |
2004096589 | Mar 2004 | JP |
2004135455 | Apr 2004 | JP |
2004159456 | Jun 2004 | JP |
2004166384 | Jun 2004 | JP |
2004526236 | Aug 2004 | JP |
2004274972 | Sep 2004 | JP |
2004297779 | Oct 2004 | JP |
2004306558 | Nov 2004 | JP |
2004336742 | Nov 2004 | JP |
2004355212 | Dec 2004 | JP |
2005110399 | Apr 2005 | JP |
2005110412 | Apr 2005 | JP |
2005135455 | May 2005 | JP |
2005159607 | Jun 2005 | JP |
2005204493 | Jul 2005 | JP |
2005520428 | Jul 2005 | JP |
2005208754 | Aug 2005 | JP |
2005224045 | Aug 2005 | JP |
2005525705 | Aug 2005 | JP |
2005261187 | Sep 2005 | JP |
2005267643 | Sep 2005 | JP |
2005303697 | Oct 2005 | JP |
2006060909 | Mar 2006 | JP |
2006081249 | Mar 2006 | JP |
2006510101 | Mar 2006 | JP |
2006141170 | Jun 2006 | JP |
2006149168 | Jun 2006 | JP |
2006174676 | Jun 2006 | JP |
2006517378 | Jul 2006 | JP |
2006217731 | Aug 2006 | JP |
2006230129 | Aug 2006 | JP |
2006238548 | Sep 2006 | JP |
2006254678 | Sep 2006 | JP |
2006295905 | Oct 2006 | JP |
2006296123 | Oct 2006 | JP |
2006314181 | Nov 2006 | JP |
2007006029 | Jan 2007 | JP |
2007043773 | Feb 2007 | JP |
2007089341 | Apr 2007 | JP |
2007104868 | Apr 2007 | JP |
2007109301 | Apr 2007 | JP |
2007514400 | May 2007 | JP |
2007166379 | Jun 2007 | JP |
2007221584 | Aug 2007 | JP |
3995724 | Oct 2007 | JP |
2007336717 | Dec 2007 | JP |
2007537688 | Dec 2007 | JP |
2008011341 | Jan 2008 | JP |
2008048482 | Feb 2008 | JP |
2008054424 | Mar 2008 | JP |
2008508842 | Mar 2008 | JP |
2008104295 | May 2008 | JP |
2008109646 | May 2008 | JP |
2008120357 | May 2008 | JP |
2008199857 | Aug 2008 | JP |
2008199882 | Aug 2008 | JP |
2008283789 | Nov 2008 | JP |
2008543255 | Nov 2008 | JP |
2008295191 | Dec 2008 | JP |
2009523402 | Jun 2009 | JP |
2009527147 | Jul 2009 | JP |
2010508007 | Mar 2010 | JP |
2010508008 | Mar 2010 | JP |
2010527226 | Aug 2010 | JP |
2011030418 | Feb 2011 | JP |
1019980024391 | Jul 1998 | KR |
20000011967 | Feb 2000 | KR |
20040026318 | Mar 2004 | KR |
20040072581 | Aug 2004 | KR |
20050105200 | Nov 2005 | KR |
20070017804 | Feb 2007 | KR |
20070032271 | Mar 2007 | KR |
20080036702 | Apr 2008 | KR |
546960 | Aug 2003 | TW |
200306048 | Nov 2003 | TW |
200512964 | Apr 2005 | TW |
200614626 | May 2006 | TW |
M294779 | Jul 2006 | TW |
200717963 | May 2007 | TW |
M317367 | Aug 2007 | TW |
200820537 | May 2008 | TW |
200824215 | Jun 2008 | TW |
M334559 | Jun 2008 | TW |
200830663 | Jul 2008 | TW |
M336621 | Jul 2008 | TW |
200843282 | Nov 2008 | TW |
200901597 | Jan 2009 | TW |
M349639 | Jan 2009 | TW |
I347724 | Aug 2011 | TW |
I366320 | Jun 2012 | TW |
WO-9829969 | Jul 1998 | WO |
WO-9854912 | Dec 1998 | WO |
WO-9905658 | Feb 1999 | WO |
WO-0027137 | May 2000 | WO |
0227682 | Apr 2002 | WO |
WO-02062077 | Aug 2002 | WO |
WO-03044970 | May 2003 | WO |
WO-03079524 | Sep 2003 | WO |
2004025805 | Mar 2004 | WO |
WO-2004032349 | Apr 2004 | WO |
WO-2004055654 | Jul 2004 | WO |
WO-2004068726 | Aug 2004 | WO |
WO-2004073150 | Aug 2004 | WO |
WO-2004073166 | Aug 2004 | WO |
WO-2004096023 | Nov 2004 | WO |
WO-2005078922 | Aug 2005 | WO |
WO-2005104022 | Nov 2005 | WO |
2006011769 | Feb 2006 | WO |
2006031133 | Mar 2006 | WO |
WO-2006038167 | Apr 2006 | WO |
WO-2006068416 | Jun 2006 | WO |
WO-2006101285 | Sep 2006 | WO |
WO-2006127624 | Nov 2006 | WO |
2007000055 | Jan 2007 | WO |
WO-2007015599 | Feb 2007 | WO |
WO-2007044144 | Apr 2007 | WO |
WO-2007068974 | Jun 2007 | WO |
WO-2007081971 | Jul 2007 | WO |
WO-2007084717 | Jul 2007 | WO |
2007095267 | Aug 2007 | WO |
WO-2007089086 | Aug 2007 | WO |
WO-2007138690 | Dec 2007 | WO |
WO-2008011769 | Jan 2008 | WO |
WO-2008050260 | May 2008 | WO |
WO-2008050292 | May 2008 | WO |
2008072628 | Jun 2008 | WO |
2008109691 | Sep 2008 | WO |
2009140221 | Nov 2009 | WO |
WO-2009140222 | Nov 2009 | WO |
WO-2009140223 | Nov 2009 | WO |
Entry |
---|
International Search Report and Written Opinion—PCT/US2010/023795—International Search Authority, European Patent Office,Mar. 11, 2010. |
Taiwan Search Report—TW099104285—TIPO—Apr. 29, 2013. |
Nikitin P.V., et al., “Theory and Measurement of Backscattering from RFID Tags”, Antennas and Propagation Magazine, Dec. 2006, pp. 8. URL: http://www.ee.washington.edu/people/faculty/nikitin—pavel/papers/APmag—2006.pdf. |
Turner C., et al., “Backscatter modulation of Impedance Modulated RFID tags”, Feb. 2003, pp. 5. URL: http://www.rfip.eu/downloads/backscatter—tag—link—budget—and—modulation—at—reader—receiver.pdf. |
Fan Z., et al., “Bandwidth allocation in UWB WPANs with ECMA-368 MAC”, Computer Communications, Elsevier Science Publishers BV, Amsterdam, NL, vol. 32, No. 5, Mar. 27, 2009 (Mar. 27, 2009) , pp. 954-960, XP026001994, ISSN: 0140-3664, DOI: DOI:10.1016/J.COMCOM.2008.12.024 [retrieved on Dec. 30, 2008]. |
Yates et al., “Optimal transmission frequency for ultralow-power short-range radio links”, Source: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,, vol. 51, No. 7, Jul. 2004, pp. 1405-1413, ISSN: 1057-7122; DOI: 10.1109/TCSI.2004.830696; Publisher: IEEE, USA Author affiliation: Dept. of Electr. & Electron. Eng., Imperial Coll. London, UK. |
Want R: “The Magic of RFID” Queue, vol. 2, No. 7, Oct. 2004 (Oct. 2004), pp. 41-48, XP002585314 Internet ISSN: 1542-7730 DOI: http://doi.acm.org/10.1145/1035594.1035619. |
Want R: “An introduction to RFID technology” IEEE Pervasive Computing, IEEE Service Center, Los Alamitos, CA, US LNKD-DOI:10.1109/MPRV.2006.2. vol. 5, No. 1, Jan. 1, 2006 (Jan. 1, 2006) , pp. 25-33, XP002510139ISSN: 1536-1268. |
Number | Date | Country | |
---|---|---|---|
20130147429 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61163381 | Mar 2009 | US | |
61152208 | Feb 2009 | US | |
61164263 | Mar 2009 | US | |
61164399 | Mar 2009 | US | |
61151290 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12572407 | Oct 2009 | US |
Child | 13765564 | US |