To achieve inductive coupling in wireless power transfer (WPT) systems, a new WPT system includes a high-Q LC-circuit for the receiving antenna. Conventional receiving antennas tend to overheat if there is high power-energy transfer that is associated the high Q factor and high current of the circuit.
An optimized structure of a coil of a receiving antenna for inductive coupling in a WPT system is useful for applications that require: (i) low weight, such as aerial vehicles like UAVs (unmanned aerial vehicles) or a VTOLs (vertical takeoff and landing aircraft), or robotics; and (ii) low temperature of the corresponding antenna coil.
Conventional WPT systems use a solid, single, relatively thick wire as a conductor for high frequency currents (above 10 kHz). Because of a so-called skin-effect, a substantial part of the wire is useless for WPT purposes, due to current flow in a thin-surface layer of a conductor called skin layer. For example, at a frequency of 100 kHz, the thickness of the skin layer in copper is 0.2 mm. At that frequency, a wire of 5 mm diameter will have effective ohmic losses roughly equal to those of 0.7 mm diameter wire for DC current. To decrease the amount of useless weight of a conductor for high frequency applications, conventional systems use a so-called litz wire, which is a wire composed of multiple, thin, separate, insulated strands. The diameter of each strand is comparable with the thickness of a skin layer for the required frequency. This type of conventional system uses a substantial part of the total cross section of the strands for current conduction and, as a result, there is a decrease in ohmic losses and in the weight of the wire.
However due to their complex internal structure, litz wires have poor heat transfer capabilities. Despite desirably low ohmic losses, the problem of overheating still exists for high-current applications. Also, litz wires are relatively soft and not durable, so they require environmental protection, which undesirably increases the weight of a receiving antenna and exacerbates the problem of antenna overheating.
Instead of using a litz wire, the invention involves using thin-wall aluminum tubes. Aluminum has lower ohmic losses for the same weight and length of a conductor compared to a copper conductor. For examples, the ohmic resistance of aluminum is 0.028 Ω*mm2/m, which is 1.6 times higher than that of copper (0.017 Ω*mm2/m). However, the density of aluminum (2700 kg/m3) is 3.3 times lower than density of a copper (8900 kg/m3). Thus, an aluminum conductor that has ohmic resistance equal to that of a copper conductor will have almost 2 times lower weight (although cross section of such aluminum conductor will be 1.64 times higher than that of a copper conductor).
For the frequency of operation of WPT system, it is also preferable that the thickness of a wall of a conductor is not substantially greater than the thickness of a skin layer. The overheating problem must also be addressed. To solve the above-described problems, the invention involves using thin-walled tubes as a conductor for a high-current WPT antenna, and it includes the following features:
The methods and systems set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/310,068, filed Feb. 14, 2022, the disclosure of which is herein incorporated by reference. Also incorporated herein by reference are the following U.S. patent applications: (1) U.S. patent application Ser. No. 18/161,817, filed Jan. 30, 2023; (2) U.S. patent application Ser. No. 16/581,559, filed Sep. 24, 2019; and (3) U.S. Provisional Patent Application Ser. No. 63/484,943, filed Feb. 14, 2023.
Number | Date | Country | |
---|---|---|---|
63310068 | Feb 2022 | US |